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Abstract When considering distributed computing, reliable message-passing
synchronous systems on the one side, and asynchronous failure-prone shared-
memory systems on the other side, remain two quite independently studied
ends of the reliability/asynchrony spectrum. The concept of locality of a com-
putation is central to the first one, while the concept of wait-freedom is central
to the second one. The paper proposes a new DECOUPLED model in an at-
tempt to reconcile these two worlds. It consists of a synchronous and reliable
communication graph of n nodes, and on top a set of asynchronous crash-prone
processes, each attached to a communication node.

To illustrate the DECOUPLED model, the paper presents an asynchronous
3-coloring algorithm for the processes of a ring. From the processes point of
view, the algorithm is wait-free. From a locality point of view, each process
uses information only from processes at distance O(log∗ n) from it. This local
wait-free algorithm is based on an extension of the classical Cole and Vishkin’s
vertex coloring algorithm in which the processes are not required to start
simultaneously.
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IUF & IRISA (Université de Rennes), Rennes, France
E-mail: michel.raynal@irisa.fr
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1 Introduction

Locality in synchronous distributed computing. The standard synchronous mes-
sage passing model (e.g. see [21,22]) consists of a graph, whose vertices repre-
sent computational processes, each with a unique ID, and whose edges repre-
sent bidirectional communication links. In each synchronous round, a process
sends messages to its neighbors, then receives messages from them, and finally
performs arbitrary computations. Failures are not considered: each message
is received in the same round in which it was sent, and processes do not fail.
The time complexity of a distributed algorithm in this model is the maximum
number of rounds any process requires to terminate.

In sequential computing only the most trivial tasks can be solved in con-
stant time. In contrast, there are many synchronous distributed algorithms
that run in a number of rounds d which is constant (or nearly constant),
independently of the number of vertices of the graph [25]. In such an algo-
rithm, a process is able to collect information from others at most d links
away, and hence we can think of the algorithm as a function that maps the
d-neighborhood of a node to a local output, for each node. In synchronous dis-
tributed computing the focus is on locality, or to what extent a global property
about the graph can be obtained from locally available data [18].

The study of the LOCAL synchronous model was initiated at the very early
days of distributed computing [21], with problems such as coloring the vertices
of a ring with 3 colors. This is a problem that depends globally on the ring, yet
it can be solved locally. Cole and Vishkin [8] designed an algorithm that finds a
3-coloring of the vertices of a ring in O(log∗ n) rounds. Soon after, Linial proved
that Ω(log∗ n) rounds are needed for 3-coloring a ring. For general graphs, it
is known that (∆+1)-coloring can be done in time O(∆+log∗ n) [7], and only
recently it was shown that it can be done in time o(∆)+O(log∗ n) [4,10], where
∆ is the largest degree in the graph. Developments on what can or cannot be
locally computed can be found in many papers (e.g., [5,17,18,20] to cite a
few; more references can be found in the survey [25]). This part of distributed
computing is mainly complexity-oriented [12,21], as every decidable problem
can be solved in D rounds, where D equal to the diameter of the graph.

Fault-tolerance in asynchronous distributed computing. At the same time that
the LOCAL model began to be studied, ignoring asynchrony and failures, an
orthogonal branch of distributed computing was beginning to focus on fault-
tolerance, and disregarding the communication network topology [9,15]. In an
asynchronous crash-prone distributed computing model [23,24], (i) there are
communication links between every pair of processes, (ii) there are no bounds
on message transfer delays and each process runs at its own arbitrary speed,
which can vary along with time, and (iii) processes can fail by crashing. In
this area, consensus is a fundamental problem, because, roughly speaking, it
allows processes to agree on a function of their inputs, which can then be used
by each process to individually perform a consistent computation. However,
it was proved early on that there is no deterministic distributed asynchronous
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message-passing consensus algorithm even if only one process may crash [9].
Hence, computability questions are central in this part of distributed com-
puting. Given assumptions about how many processes may fail, how severe
the failures can be, and other assumptions about communication, one tries to
identify the distributed problems that are solvable in a specific model.

Reliable message-passing synchronous systems and asynchronous failure-
prone systems remain two quite independently studied poles of distributed
computing.

Aim and content of the paper. In a distributed system failures and asynchrony
are rarely coming from the hardware, but much more often from the software.
Hence, it is natural to consider a model composed of two distinct layers, with
distinct reliability and synchrony features, namely:

– A synchronous and reliable communication graph G with n nodes, and
– n asynchronous crash-prone processes, each one attached to a distinct node.

At each vertex of G there are two components: a failure-free synchronous node
in charge of communicating with the nodes of its neighbors, and a failure-prone
asynchronous process in charge of performing the actual computation. Notice
that, in contrast to the LOCAL model, in the DECOUPLED model after
d rounds of communication, a process can collect the local inputs of only a
subgraph of its d-neighborhood, since processes can start at distinct times and
run at different speeds. Thus, the new model is in principle more challenging
than the LOCAL model.

To illustrate the DECOUPLED model approach, the paper considers a
fundamental problem of failure-free synchronous distributed computing. It
presents a 3-coloring algorithm for a ring, denoted WLC (for Wait-free Lo-
cal Coloring), suited to the DECOUPLED model. This algorithm is based
on the time-optimal Cole and Vishkin’s vertex coloring algorithm, which is
denoted CV86 in the following [8]1. The CV86 algorithm runs in log∗ n + 3
rounds2 while the new algorithm runs in log∗ n+6 rounds. From the processes
point of view, the algorithm is fully asynchronous, wait-free, i.e., a process
never waits for an event in another process. Yet the algorithm is local, in
the sense that each process uses information only from processes at distance
O(log∗ n) from it. Moreover, this amount of information is asymptotically op-
timal due to Linial’s lower bound [18] and because in the absence of failures
and asynchrony, the DECOUPLED model boils down to the LOCAL model.

The WLC algorithm for the DECOUPLED model is built in two stages.
First an extension of CV86 is presented that may be interesting in itself. This
extension, denoted AST-CV, is an implementation of CV86 in a synchronous
system where reliable processes need not start at the very same round. The

1 CV86 was designed for trees in the PRAM model. It can be easily adapted to failure-free
message-passing synchronous systems, for a ring, or a chain of processes.

2 Assuming n ≥ 2, log∗ n is the number of times the function “log2” needs to be applied
in the invocation log2(log2(log2 ...(log2 n)....)) to obtain value 1. Let us remember that
log∗(approx. number of atoms in the universe) = 5.
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main idea of the first stage is to run CV86 within each segment of the ring
that happens to wake up at precisely the same time. Then, adjacent endpoints
of such segments fix their colors by giving priority to the segment that began
earlier. Somewhat surprisingly this approach works even when all segments
happen to consist of a single process. In the second stage it is shown how
to derive the wait-free algorithm WLC from AST-CV. When a process starts
(asynchronously with respect to other processes), it obtains information on
the “current state” of the processes at distance at most O(log∗ n) from it;
then, using the information obtained, the process executes alone a purely local
simulation of AST-CV, at the end of which it obtains its final color.

The new algorithm shows how it is possible to extend the scope of a syn-
chronous failure-free algorithm to run on asynchronous and crash-prone pro-
cesses, without losing its fundamental locality properties, and at the cost of
only a small constant number of rounds. Up to the best of our knowledge this
is the first time the design of fault-tolerant asynchronous algorithms on top
of a synchronous communication network is considered from the locality per-
spective. However this is certainly not the first work that relates synchronous
and asynchronous systems, a few examples follow. From very early on the
performance of asynchronous processes with access to a global clock has been
considered [1]. The performance of wait-free algorithms running on top of
partially synchronous, fully-connected systems has been of interest for some
time, e.g. [11,16]. The opposite problem, of running a synchronous algorithm
in an asynchronous (failure-free) network was introduced in [2], and there are
extensions even to the case where links are assumed to crash and recover dy-
namically [3]. In globally asynchronous locally-synchronous (GALS) design for
microprocessor networks, the system is partitioned into synchronous blocks of
logic which communicate with each other asynchronously [19]. An example of a
reliable network infrastructure is provided by the highly popular Synchronous
Optical Networking (SONET), which provides synchronous transport signals
for fiber-optic based transmissions on top of which asynchronous algorithms
may be deployed.

Roadmap The paper is composed of 6 sections. Section 2 presents the first
contribution, namely the two-component-based computation DECOUPLED
model. The WLC algorithm is built incrementally. Section 3 presents first the
distributed graph coloring problem and a version of CV86 tailored for a ring,
which is the starting point of WLC. Then, Section 4 presents an extension of
CV86 (denoted AST-CV) suited to synchronous reliable systems, which does
not require the processes to start participating in the algorithm at the very
same time. Section 5 shows that a local wait-free algorithm (WLC) can be
obtained in two stages: after it started (asynchronously with respect to the
other processes), a process executes first a communication stage during which
it obtains information on the “current state” of the processes at distance at
most O(log∗ n) from it; then, using the information previously obtained, it
executes a second stage, which is a purely local simulation of AST-CV, at the
end of which it obtains its final color. Finally, Section 6 concludes the paper.
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2 The Two-Component-Based Model

Here the DECOUPLED model is presented, where asynchronous crash-prone
processes running a wait-free algorithm are mounted on top of a reliable, syn-
chronous network.

Communication component. The communication component is modelled by
a connected graph G of n vertices. Its vertices represent nodes, nd1, ..., ndn.
Each node ndi is a communication device connected with two types of entities.
It is connected with its neighbor nodes in G, and to its local process pi, in
charge of running the wait-free algorithm. A node is connected to each of
these entities through an input port and an output port. Moreover, a node ndi
is a device in charge only of transmitting and receiving messages (the actual
computation of the wait-free algorithm is performed by the process pi).

Each edge of G represents a reliable communication link, which does not
corrupt, lose, create, nor duplicate messages. Similarly, nodes do not fail in
any way. The communication component is synchronous. All its entities and
message exchanges proceed in a lock-step manner. More precisely, there is
a global clock which governs the progress of the communication component:
at every clock tick3, each node ndi reads its input ports (from its neighbor
nodes, and from its process pi), composes a message from what it has read,
and sends this message on all its output ports (to its neighbor nodes, and to
pi). Every message is received in the same clock tick as the one in which it
was sent. Recall that the communication component is always active: at every
clock tick, each node ndi sends and receives messages, independently of the
behaviour of its associated process pi.

Computing component. Each communication node ndi has an associated se-
quential process pi. A process pi can communicate only with its node ndi. A
process is asynchronous, which means that it proceeds at its own speed, which
can vary along with time, and is independent of the speed of other processes.
Moreover, processes may crash, and when a process crashes it never recovers.
As processes are asynchronous, they can wake up at arbitrary times to partic-
ipate in an algorithm. Therefore, as the communication component is reliable,
when a process wakes up, it may find messages from its input port waiting to
be read, which were sent by its neighbors that started the algorithm before it,
as described below.

Interaction between the components. The input and output ports connecting
a process pi with its node ndi have two buffers (in our algorithms they are
bounded). The one denoted outi is from pi to ndi, while the one denoted ini
is from ndi to pi, initially empty. When a process starts, it writes in outi some

3 We use the “time” and “clock tick” terminology for the communication component, to
prevent confusion with the “round” terminology used in the description of the CV86 and
AST-CV algorithms.
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value, which may depend on the problem being solved. At every communica-
tion step, node ndi first receives a message from each of its neighbors, and
reads the local buffer outi. Then, it packs the content of these messages and
the current value of outi into a single message, sends it to its neighbors, and
writes it in ini. Thus, due to asynchrony, it could be the case that the first
time pi reads from ini, it sees messages from processes that started before.

The global ticks of the communication component govern when each com-
munication step happens. In addition, each tick is associated to a global time.
Given a process pi, tsi is the global time at which pi wakes up and starts exe-
cuting. Thanks to the underlying messages exchanged by the communication
nodes at every clock tick (communication step), a process pi which started
participating in the algorithm can know (a) which of its neighbors (until some
predefined distance D) started the algorithm, and (b) at which time they
started4. More precisely, considering a process pi that starts at time sti, after
D time units, pi can have information from processes in the graph at distance
up to D from it.

Initial knowledge. Each of the n pairs made up of a communication node (ndi)
and a process (pi) has a unique identity idi. It is assumed that each identity
can be encoded in log n bits. Initially, a process knows its identity, the value
of n, and possibly the graph G. Moreover, while a process knows that no two
processes have the same identity, it does not know the identities of the other
processes.

Power of the model. TheDECOUPLED model behaves exactly like the LOCAL
model, in the absence of failures and presence of synchrony: all processes run in
lock-step manner until decisions are made. Thus, if there is an algorithm solv-
ing a given problem in DECOUPLED, then one can easily obtain an algorithm
solving the corresponding problem in LOCAL. The rest of the paper presents
WLC, a 3-vertex coloring algorithm for a ring, showing that, in principle, the
other direction is possible as well.

4 The assumption that processes know the global time is made only to simplify the de-
scription of our algorithms. All that a process pi needs to know is the relative order of wake
up with respect to its neighbors, which can be deduced from the content of the buffers at
wake up time sti.
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3 Distributed Graph Coloring
and a Look at Cole and Vishkin’s Algorithm

In the 3-coloring problem, each vertex of a graph is assigned a color from a
set of three possible colors, in such a way that no two adjacent vertices have
the same color. In sequential computing, deciding if a graph can be 3-colored
is a famous NP-complete problem [13].

3.1 Graph coloring

In the context of synchronous systems, there is an Ω(log∗ n) rounds lower
bound on the number communication rounds needed to 3-color the nodes of a
ring [18], and the CV86 algorithm solves the problem in log∗ n+3 rounds [8]. A
monograph entirely devoted to distributed graph coloring can be found in [6].

The structure of Cole and Vishkin’s algorithm. This algorithm assumes that
the underlying bi-directional communication graph has a logical orientation,
such that each process has at most a single predecessor. It assumes that the
processes have distinct identities, each consisting of O(log n) bits. The algo-
rithm can be decomposed in two phases.

– Phase 1. From n colors to six colors. An original and clever bit-level tech-
nique is first used (see below), which allows the processes to be properly
colored with six colors. Starting with colors encoded with log n bits (node
identities), a sequence of synchronous communication steps is executed,
such that in each step a process computes a new proper color whose size in
bits is exponentially smaller than the previous one. This is repeated until
attaining at most six colors, which requires log∗ n communication rounds.

– Phase 2. From six colors to three colors. The algorithm uses then a simple
reduction technique to reduce the number of colors from six to three. This
requires three additional rounds (each one eliminating a color).

Features of CV86. Those are the following: it is local, it’s time complexity is
log∗ n+35, time asymptotically optimal [18], and deterministic. Combining the
locality and determinism properties, it follows that the final color of a process
depends only on the log∗ n + 3 identities of the processes on its predecessor
path.

3.2 A version of Cole and Vishkin’s algorithm suited to a ring

A version of CV86 suited to a ring is given in Figure 1. The two neighbors of
a process pi are denoted predi and nexti. The local variable colori contains

5 Usually, local refers to time complexity O(1). Here we adopt the more broad definition
of time complexity o(D), where D is the diameter of the graph.



8 Castañeda, Delporte, Fauconnier, Rajsbaum, Raynal

initially the identity of pi, using log n bits. Let m = dlog ne − 1. The initial
value of colori is a sequence of (m + 1) bits bm, bm−1, · · · , b1, b0, and no two
processes have the same initial sequence of bits. We say that “by is at position
y”, i.e., the position of a bit in a color is defined by starting from position 0
and going from right to left.

Underlying principle. The aim is, from round to round, to compress as much
as possible the size of the colors of the processes, while keeping invariant
the property that no two neighbors have the same color. Basically, a process
compares its current color with the one of its predecessor, to define its new
color (using the logical orientation of the ring).

The two issues that have then to be solved are (i) how to compare current
colors and how to compute a new shorter color (while maintaining adjacent
processes with different colors), and (ii) how many iterations have to be exe-
cuted to get to at most three colors.

(01) colori ← bit string representing pi’s identity;
(02) when r = 1, 2, ..., log∗ n do % Part 1: reduction from n colors to 6 colors %
(03) begin synchronous round
(04) send color(colori) to nexti;
(05) receive color(color p) from predi;
(06) x = position (starting at 0 from the right) where colori and color p differ;
(07) colori ← bit string encoding the binary value of x followed at its right

by bx (first bit of colori where colori and color p differ)
(08) end synchronous round;

% Here colori ∈ {0, 1, · · · , 5}; Part 2: reduction from 6 to 3 colors %
(09) when r = log∗ n+ 1, log∗ n+ 2, log∗ n+ 3 do
(10) begin synchronous round
(11) send color(colori) to predi and nexti;
(12) receive color(color p) from predi and color(color n) from nexti;
(13) let k be r − log∗ n+ 2; % k ∈ {3, 4, 5} %
(14) if (colori = k) then colori ← min({0, 1, 2} \ {color p, color n}) end if
(15) end synchronous round;

% Here colori ∈ {0, 1, 2} %
(16) return(colori).

Fig. 1 Cole and Vishkin’s synchronous algorithm for a ring (code for pi)

Description of the algorithm. Let r denote the current round number. Initial-
ized to 1, it takes then the successive values 2, 3, etc. It is a global variable
provided by the synchronous system, which can be read by all processes. Each
process pi first defines its current color as the bit string representing its iden-
tity (line 01). As already indicated, it is assumed that each identity can be
coded in log n bits. Then pi executes synchronous rounds until it obtains its
final color (line 16). The total number of rounds that are executed is log∗ n+3,
which decompose into two parts.

The first log∗ n rounds (lines 03-08) allow each process pi to compute a color
in the set {0, 1, · · · , 5}. Considering a round r, let k be an upper bound on the
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number of different colors at the beginning of round r, and m be the smallest
integer such that k ≤ 2m. Hence, at round r, the color of a process is coded
on m bits. After a send/receive communication step (lines 04-05), a process pi
compares its color with the one it has received from its predecessor (color p),
and computes (starting at 0 from the right), the rightmost bit position x
where they differ (line 06). Assuming for example that k = 28 (hence m = 8),
let colori = 10011001 and color p = 11011101; we have then x = 2. Then
(line 07), pi defines its new color as the bit sequence whose prefix is the binary
encoding of x in logm bits (010 in our example) and suffix is the first bit of its
current color where both colors differ, namely bx (bx = b2 = 0 in the example).
Hence, its new color is 010bx = 0100.

Consider two neighbor processes during a round r. If they have the same
value for x, due to the bit suffix they use to obtain their new color, they
necessarily obtain different new colors. If they have different values for x, they
trivially have different new colors. It is easy to see (from the computation of
the position x –which defines the prefix of the new color–, and the value of the
bit bx –which defines the suffix of the new color–), that the round r reduces
the number of colors from k to at most 2dlog ke ≤ 2m. It is shown in [8] that,
after at most log∗ n rounds, the binary encoding of a color requires only three
bits, where the suffix bx is 0 or 1, and the prefix is 00, 10, or 01. Hence, only
six color values are possible: 000, 100, 010, 001, 101, and 011.

The second part of the algorithm consists of three additional rounds, each
round eliminating one of the colors in {3, 4, 5} (lines 10-15). Each process first
exchanges its color with its two neighbors. Due to the previous log∗ n rounds,
these three colors are different. Hence, if its color is 3, pi selects any color in
{0, 1, 2} not owned by its neighbors. This is then repeated twice to eliminate
the colors 4 and 5.

Proofs of the algorithm correctness and its time complexity can be found
in [8].

From a ring to a chain. A chain is a sequence where each vertex appears at
most once (a ring that has been cut). Hence, each non-singleton chain has two
processes that define its ends.

Cole-Vishkin’s algorithm described in Figure 1 is modified as follows to
work on a process chain. At line 05, the process that has no predecessor can-
not compare its current color with another color. It simply does as if it has
a (fictitious) predecessor whose color is different from its initial color, and
executes normally the algorithm. As an example, if pi (whose initial color is
100101) is the process without predecessor, it considers a fictitious predeces-
sor whose color is the same as its color except for its first bit (starting from
the right), i.e., the color 100100). It follows from the algorithm that after the
first round, pi obtains the color 01 (which will never change thereafter as the
fictitious predecesor has the same color in every round).

Finally, at line 12, an end process defines the color of its “missing neighbor”
as being the “no-color” denoted −1.
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4 Extending Cole and Vishkin’s Algorithm to Asynchronous
Starting Times

This section presents an extension of CV86 for synchronous systems, where
reliable processes may start at different rounds.

4.1 Asynchronous starting times and unit-segment

Asynchronous starting times. Let sti denote the round number at which pro-
cess pi wakes up and starts participating in the algorithm. A process may start
at any of the discrete time points defined by beginning of rounds, and then
runs synchronously.

Notion of a unit-segment. A unit-segment is a maximal sequence of consecutive
processes in the ring, pa, pnexta , · · · , ppredz

, pz, that start the algorithm in
the same round.

A unit-segment is identified by a starting time (round number), and any
two contiguous unit-segments are necessarily associated with distinct starting
times. It follows that, from an omniscient observer’s point of view, and at
any time, the ring can be decomposed into a set of unit-segments, some of
these unit-segments being contiguous, while others are separated by processes
that have not yet started (or will never start, due to an initial crash). In the
particular case where all processes start simultaneously, the ring is composed
of a single unit-segment, and if all start at different times, the ring is composed
of n unit-segments.

4.2 A coloring algorithm with asynchronous starting times

This section presents the local algorithm AST-CV, which allows processes to
start at different times. Each process executes ∆ = log∗ n + 6 rounds. The
algorithm is decomposed into four parts.

Starting round of the algorithm. The underlying synchronous system defines
the first round (r = 1) as being the round at which the first process(es) starts
the algorithm. Hence, when such a process pi starts the algorithm, we have
sti = 1. Then, the progress of r is managed by the system synchrony.

Part 1 and Part 2. These parts are described in Figure 2. Considering a unit-
segment (identified by a starting time st) they are a simple adaptation of CV86,
which considers the behavior of any process pi belonging to this unit-segment.

A process pi executes first log∗ n synchronous rounds. During each round,
it sends its current color to its neighbors, and receives their current colors.
msg pred = ⊥ if there is no message from predi (line 04).



Making Local Algorithms Wait-Free: The Case of Ring Coloring 11

init: colori: bit string initialized to pi’s identity; sti: starting round of pi;
when pi starts, there are three cases for each of its neighbors predi and nexti:
(a) it already started the algorithm;
(b) it starts the algorithm at the very same round;
(c) it will start the algorithm at a later round.
In the first case, the messages sent in previous rounds by the corresponding
neighbor are in pi’s input buffer, and can be consequently read by pi.
In the last case, to simplify the presentation, we consider that pi
receives a dummy message.
fict predi: fictitious process whose identity is the same as pi’s identity except
for its first bit (starting from the right); used as predecessor in case pi discovers
it is a left end of a unit-segment.

================ Part 1 : reduction from n colors to 6 colors =====

(01)when r = sti, sti + 1, ..., (sti − 1) + log∗ n do
(02)begin synchronous round
(03) send color(0, sti, colori) to nexti and predi;
(04) receive msg predi from predi;
(05) if (msg predi = color(0, sti, col))
(06) then x= first position (starting right at 0) where colori and col differ;
(07) colori ← bit string encoding the binary value of x followed at
(08) its right by bx (first bit of colori where colori and col differ)
(09) else pi has no predecessor (it is an end process of its unit segment) it
(10) considers fict predi as its predecessor and executes lines 06-08
(11) end if;
(12)end synchronous round;

% Here colori ∈ {0, 1, · · · , 5}
================== Part 2 : reduction from 6 to 3 colors ======

(13)when r = (sti − 1) + log∗ n+ 1, (sti − 1) + log∗ n+ 2, (sti − 1) + log∗ n+ 3 do
(14)begin synchronous round
(15) send color(0, sti, colori) to predi and nexti;
(16) color set← ∅;
(17) if color(0, sti, color p) received from predi

then color set← color set ∪ color p end if;
(18) if color(0, sti, color n) received from nexti

then color set← color set ∪ color n end if;
(19) let k be r − (sti − 1 + log∗ n) + 2; % k ∈ {3, 4, 5} %
(20) if (colori = k) then colori ← any color from {0, 1, 2} \ color set end if
(21)end synchronous round;
=============================================
% Here colori ∈ {0, 1, 2}, and the unit segment including pi is properly colored but
% two end processes of two consecutive unit segments may have the same color

Fig. 2 Initialization, Part 1, and Part 2, of AST-CV (code for pi)

In line 05, pi can tell if its predecessor belongs to the same unit-segment
from the st value received. If so, pi executes CV86. If its predecessor belongs
to a different unit-segment or has not yet started the algorithm, pi considers
a fictitious predecessor whose identity is the same as its own identity, except
for the first bit, starting from the right (see the last paragraph of Section 3.2).
Lines 06-10 constitute the core of CV86, which exponentially fast reduces the
bit size representation of colori at every round, to end up with a color in the
set {0, 1, · · · , 5} after log∗ n rounds.
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Part 2 of AST-CV (lines 13-21) is the same as the part in CV86 that reduces
the set of colors in each unit-segment from at most six to at most three [8],
and hence, at the end of this part, the processes of the unit-segment identified
by sti have obtained a proper color within their unit-segment. Moreover, if
the process is internal to its unit-segment, it will have obtained its final color
(after log∗ n+ 3 rounds).

Message management. Let us observe that, as not all processes start at the
same round, it is possible that, while executing a round of the synchronous
algorithm of Figure 2, a process pi receives a message color(0, st,−) with st 6=
sti from its predecessor, or messages color(j,−) (where j ∈ {1, 2, 3}, sent in
Parts 3 or 4) from one or both of its neighbors. To simplify and make clearer
the presentation, the reception of these messages is not indicated in Figure 2.
It is implicitly assumed that, when they are received during a synchronous
round, these messages are saved in the local memory of pi (so that they can
be processed later, if needed, at lines 25-28 and line 39 of Figure 3).

Moreover, a process pi learns the starting round of predi (resp., nexti)
when it receives for the first time a message color(0, st,−) from predi (resp.
nexti). To not overload the presentation, this is left implicit in the description
of the algorithm.

Part 3 and Part 4. These parts are described in Figure 3. If pi is a left end,
or a right end, or both, of a unit-segment6, its color at the end of Part 2
is not necessarily its final color, because Part 1 and Part 2 color different
unit-segments independently from each other. Hence, it is possible for two
contiguous unit-segments to be such that the left end of one, say pi, and the
right end of the other, say pj , have colori = colorj .

The aim of Part 3 and Part 4 is to resolve these coloring conflicts. To this
end, each process pi manages six local variables, denoted colori[j, nbg], where
j ∈ {1, 2, 3} and nbg ∈ {predi, nexti}. They are initialized to −1 (no color).

Solving the conflict between neighbors belonging to contiguous unit-segments.
A natural idea to solve a coloring conflict between two neighbor processes
belonging to different unit-segments, consists in giving “priority” to the unit-
segment whose starting time is the first.

Let sti[predi] (resp., sti[nexti]) be the knowledge of pi on the starting time
of its left (resp., right) neighbor. If predi has not yet started let sti[predi] =
+∞ (and similarly for nexti). Thanks to this information, pi knows if it is at
the left (resp., right) end of a unit-segment: this is the case if sti 6= sti[predi]
(resp., if sti 6= sti[nexti]). Moreover, if pi is a left (resp., right) end of a unit-
segment, it knows that it has not priority if sti > sti[predi] (resp., sti >
sti[nexti]). If such cases, pi may be required to change its color to ensure
it differs from the color of its neighbor belonging to the priority contiguous
unit-segment.

6 If pi is both a left end and a right end of a unit-segment, it forms its own unit-segment.
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In the following parts of the algorithm, each process pi uses local variables
denoted colori[j, nbg], where j ∈ {1, 2, 3} and nbg ∈ {predi, nexti}.
These variables are initialized to −1 (no color) and updated when pi receives
a message color(j,−) from predi or nexti. Due to the fact that the
processes do not start the algorithm at the same round, process pi may
have received messages color(j,−) during previous synchronous rounds.

== Part 3 : colori can be changed only if pi is the left end of its unit-segment

(22)when r = (sti − 1) + log∗ n+ 4 do
(23)begin synchronous round
(24) send color(1, colori) to predi and nexti;
(25) for each j ∈ {1, 2, 3} do
(26) if (color(j, color) received from predi in a round ≤ r)

then colori[j, predi]← color end if;
(27) if (color(j, color) received from nexti in a round ≤ r)

then colori[j, nexti]← color end if
(28) end for;
(29) if (sti > sti[predi]) then % pi has not priority
(30) case (sti = sti[nexti]) then

colori ← a color in {0, 1, 2} \ {colori[2, predi], colori[1, nexti]}
(31) (sti > sti[nexti]) then

colori ← a color in {0, 1, 2} \ {colori[2, predi], colori[2, nexti]}
(32) (sti < sti[nexti]) then colori ← a color in {0, 1, 2} \ {colori[2, predi]}
(33) end case
(34) end if
(35)end synchronous round;

== Part 4 : colori can be changed only if pi is the right end of its unit-segment

(36)when r = (sti − 1) + log∗ n+ 5 do
(37)begin synchronous round
(38) send color(2, colori) to predi and nexti;
(39) same statements as in lines 25-28;
(40) if (sti > sti[nexti]) then % pi has not priority
(41) case (sti = sti[predi]) then

colori ← a color in {0, 1, 2} \ {colori[2, predi], colori[3, nexti]}
(42) (sti > sti[predi]) then

colori ← a color in {0, 1, 2} \ {colori[3, predi], colori[3, nexti]}
(43) (sti < sti[predi]) then colori ← a color in {0, 1, 2} \ {colori[3, nexti]}
(44) end case
(45) end if
(46)end synchronous round;
== Additional round to inform the neighbors that will start later
(47)when r = (sti − 1) + log∗ n+ 6 do send color(3, colori) to predi and nexti;
(48)return(colori).

Fig. 3 Part 3 and Part 4 of AST-CV (code for pi)

The tricky cases are the ones of the unit-segments composed of either a
single process p or two processes pa and pb. This is because, in these cases, it
can be required that p (possibly twice, once as right end, and once as left end
of its unit-segment), or once pa and once pb (in the case of a 2-process unit-
segment), be forced to change the color they obtained at the end of Part 2,
to obtain a final color consistent with respect to their neighbors in contiguous
unit-segments. To prevent inconsistencies from occurring, it is required that
(in addition to the previous priority rule) (a) first a left end process of a unit-
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segment modifies its color with respect to its predecessor neighbor (which
belongs to its left unit-segment), and (b) only then a right end process of a
unit-segment modifies its color if needed (this specific order is immaterial; the
other order –first right, then left– would be equally fine).

Summary of the conflict resolution rules. Let us consider a process pi.

– If pi is inside a unit-segment (i.e., sti = sti[predi] = sti[nexti] ), or is the
left end of a unit-segment and predi began after it (i.e., sti < sti[predi]),
or is the right end of a unit-segment and nexti began after it (i.e., sti <
sti[nexti]), then the color it obtained at the end of Part 2 is its final color.

– If pi is the left end of a unit-segment and predi began before pi (i.e.,
sti > sti[predi]), then pi may be forced to change its color. This is done
in Part 3. The color pi obtains at the end of Part 3 will be its final color,
if it is not also the right end of its unit-segment and nexti began before it
(i.e., sti > sti[nexti]).

– This case is similar to the previous one. If pi is the right end of a unit-
segment and nexti began before it (i.e., sti > sti[nexti]), pi may be forced
to change its color to have a final color different from the one of nexti.
This is done in Part 4.

Recall that a process that is neither the left end, nor the right end of a
unit-segment obtains its final color in Part 2. It follows that, during Part 3
and Part 4, such a process only needs to execute the sending of messages
color(j,−), j ∈ {1, 2, 3} it lines 24, 38, and 47 (the other statements cannot
change its color).

Part 3. This part is composed of a single round (lines 22-35). A process pi
sends first to its neighbors a message color(1, c) carrying the color c it has
obtained at the end of Part 2. Then, according to the messages it received from
them up to the current round, pi updates its local variables colori[j, predi] and
colori[j, nexti] (lines 25-28).

Part 4. This part, composed of a single round (lines 36-46), is similar to the
previous one. Due to the predicate of line 40, the lines 41-44 are executed
only if pi is the right end of its unit segment. Their meaning is similar to the
one of lines 30-33. Finally, pi sends (line 47) to its two neighbors the message
color(3, colori) to inform them of its last color, in case it was modified in
Part 4.

An example of an execution of AST-CV. Let us consider that p`, pa, pb, and
pr are four consecutive processes such that (i) st` = 10, and p` obtained the
final color 1, (ii) str = 12, and pr obtained the final color 2, and (iii) pa and
pb starts the algorithm at time 15. Hence, pa and pb define a unit-segment,
whose starting time is greater than the one of both p` and pr. Hence, the
unit segment composed of pa and pb has not priority with respect to its two
contiguous unit-segments.
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Let us suppose that after having executed Part 1 and Part 2, pa obtains
the color 1, while pb obtains the color 2, i.e., each obtains a color different from
its neighbor in the same unit-segment, but this color is the same as the one of
its other neighbor (which belongs to a contiguous “older” unit-segment).

As pa is the left end of its unit-segment and started after preda (=p`), it
received the message color(2, 1) from p` (line 26), and consequently obtains
colora[2, preda] = 1. Moreover, as pa is in the same unit-segment as pb, it
receives the message color(1, 2) from pb and obtains colora[1, nexta] = 2
(line 27). Then process pa executes lines 29-30, and obtains the color 0, which
happens because

{0, 1, 2} \ {colora[2, preda], colora[1, nexta]} = {0, 1, 2} \ {1, 2} = {0}.

As stb = sta, pb does not execute lines 30-33, but received the message
color(2, 0) from pa at line 39, and we have consequently colorb[2, predb] = 0.
It also received color(3, 2) from pr (line 39), and we have colorb[3, nextb] = 2.
Process pb then executes lines 40-41, and its final colors is 1 as

{0, 1, 2} \ {colorb[2, predb], colorb[3, nextb]} = {0, 1, 2} \ {0, 2} = {1}.

It follows that the final colors of the sequence of the four processes p`, pa,
pb, and pr is 1, 0, 1, 2.

4.3 Properties of the algorithm

AST-CV inherits the two most important properties from CV86: locality and
determinism.

– The locality property of CV86 states that a process obtains its final color
by log∗ n + 3 rounds. In AST-CV, it obtains it log∗ n + 6 rounds after its
starting round.

– In CV86, the determinism property states that the final color of a process
depends only of the identities of the consecutive processes which are its
log∗ n + 3 predecessors on the ring. In AST-CV, its final color depends
only of the starting times and the identities of the consecutive processes
which are its log∗ n+ 6 predecessors on the ring.

4.4 Proof of the algorithm

Definition 1 The final color of a process is the color it returns at line 48.

Lemma 1 Let pi be a process which wakes up at time sti. After pi has executed
the round (sti−1)+log∗ n+3 (Part 1 of Figure 2), no two neighbors of its unit-
segment have the same color. Moreover, their colors are in the set {0, 1, 2}.
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Proof The proof follows from the observation that, when considering the
processes of a unit-segment, Part 1 and Part 2 of Figure 2 boils down to
CV86, from which the lemma follows. 2Lemma 1

Lemma 2 Let pi be a process that wakes up. If pi is neither the left end, nor
the right end, of its unit-segment, its final color is the color it obtains at the
end of Part 2.

Proof If pi is neither the left end nor the right end of its unit-segment we
have sti = sti[predi] = sti[nexti]. The lemma follows then directly from the
predicates of lines 29 and 40. 2Lemma 2

Lemma 3 If pi wakes up, its final color belongs to {0, 1, 2}.

Proof The proof follows from Lemma 1 and the fact, whatever the lines 30-32
and 41-43 executed by a process pi (if some are ever executed), any of them
restricts the new color to belong to the set {0, 1, 2}. 2Lemma 3

Lemma 4 Let us assume that both pi and pj wake up, where pj is pnexti . If
pi and pj belong to the same unit-segment (stj = sti) their final colors are
different.

Proof The proof is a case analysis. There are four cases, namely:
Case (a): pi is not the left end and pj is not the right end of their unit-segment,
Case (b): pi is not the left end and pj is the right end of their unit-segment,
Case (c): pi is the left end and pj is not the right end of their unit-segment,
Case (d): pi is the left end and pj is the right end of their unit-segment.

Case (a): pi is not the left end and pj is not the right end of their unit segment.
In this case, it follows from Lemma 1 and Lemma 2 that the final color of pi
and the final color of pj are different.

Case (b): pi is not the left end and pj is the right end of their unit-segment.
Then, by Lemma 2, the final color of pi is the value of colori at the end of Part
2 (round (sti− 1) + log∗ n+ 3). By the algorithm, pj does not change its color
at round (sti − 1) + log∗ n + 4 (predicate of line 29 where sti = sti[predi]),
but may change it during round (sti − 1) + log∗ n+ 5 (Part 5). There are two
sub-cases.

– stj < stj [nextj ]. In this case the predicate of line 40 is false, and pj does
not modify colorj . It then follows that both pi and pj keep the color they
obtained at the end of Part 2. By Lemma 1, these colors are different.

– stj > stj [nextj ]. In this case, pj executes the update of line 41, where the
color assigned to colorj remains different from colori (which was received
during a previous round and saved in its local variable colorj [2, predj ]).
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Case (c): pi is the left end and pj is not the right end of their unit-segment. By
Lemma 2, pj does not change its color after Part 2 (round (sti−1)+log∗ n+3).
There are two cases.

– sti < sti[predi]. It follows from the predicate of line 29 that pi does not
change its color during Part 3. As sti = stj , the predicate of line 40 is false,
and pi does not change its color in Part 4. It then follow from Lemma 1
that pi and pj have different final colors.

– sti > sti[predi]. As pi and pj are in the same unit-segment, pi receives
color(1, colorj) at line 27 during the round (sti − 1) + log∗ n + 4 (Part
3), and saves this value in its local variable colori[1, nexti]. Then, due to
the predicates of lines 29 and 30, pi changes its color at line 30 during the
round (sti−1)+log∗ n+4 (Part 3), and this color is different from the final
color of pj . Finally, as sti = stj , the predicate of line 40 is not satisfied,
and pi does not update colori during the round (sti− 1) + log∗ n+ 5 (Part
4). It then follows from that pi and pj have different final colors.

Case (d): pi is the left end and pj is the right end of their unit-segment. There
are four cases.

– sti < sti[predi] and stj < stj [nextj ]. In this case, pi and pj do not change
their color after round (sti− 1) + log∗ n+ 3. Hence, by Lemma 1, they will
have different final colors.

– sti < sti[predi] and stj > stj [nextj ]. In this case, when evaluated by pi,
the predicates of lines 29 and 40 (we have then sti = sti[nexti] = stj) are
false. Hence, pi does not change its color after round (sti− 1) + log∗ n+ 3.
This case is similar to the second sub-case of Case (b).

– sti > sti[predi] and stj < stj [nextj ]. In this case pj does not change its
color after Part 2 (round (stj − 1) + log∗ n+ 3). This case is similar to the
second sub-case of Case (c).

– sti > sti[predi] and stj > stj [nextj ]. Due to the predicates of lines 29
and 30, pi changes its color at line 30 during round (sti−1)+log∗ n+4 (Part
3). Moreover, as sti = stj , it does not change its color in Part 4. Hence, its
final color is the one obtained at line 30. Differently, as stj > stj [nextj ] and
stj = sti, pj updates its color at line 41 during round (stj − 1) + log∗ n+
5 (Part 4), where it obtains a color different from colori (final color of
pi received at line 38 and saved in pj ’s local variable colorj [2, predj ]). It
follows that pi and pj have different final colors.

2Lemma 4

Lemma 5 Let us assume that both pi and pj wake up, where pj is pnexti . If
pi and pj are not in the same unit-segment and sti > stj, their final colors
are different.

Proof The processes pi and pj are neighbors but belong to different unit-
segments. As stj < sti and all processes gets their final color after the same
constant number of round after they wake up, pj gets its final color before pi.
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The proof considers the following two possible cases: Case (a): pi is not a left
end of its unit segment, and Case (b) pi is a left end of its unit segment.

Case (a): pi is not a left end of its unit segment. In this case, it follows from
the predicate of line 29 that pi does not change its color during Part 3, and
from the predicates of lines 40 and 41 (Part 4), that pi updates its color at
line 41. As pj woke up before pi, pi received the message color(3, col) sent at
line 47 by pj during its round (stj −1) + log∗ n+ 6. This message was received
by pi at the latest while it executes its round (sti− 1)i+ log∗ n+ 5. Moreover,
col is then the final color of pj . It follows that, when it executes its round
(sti − 1) + log∗ n + 5, pi is such that colori[3, nexti] = col. Consequently, at
line 41, pi adopts a final color different from the final color of pj .

Case (b): pi is a left end of its unit segment. We consider two sub-cases.

– sti < sti[predi]. In this case, it follows from the predicate of line 29 that pi
does not change its color during Part 3. Differently, due to the predicates
of lines 40 and 43, it updates colori at line 43. Moreover, as sti > stj , pi
received from pj the message color(3, col) (where col is the final color of
pj) at a round ≤ (sti − 1) + log∗ n + 5, and saved col in colori[3, nexti].
It then follows that, when pi executes line 43, it assigns to colori a value
different from the final color of pj .

– sti > sti[predi]. In this case, it follows from the predicates of lines 29 and 31
that pi updates its color at line 31 (Part 3), and from the predicates of
lines 40 and 42 that pi updates again its color at line 42 (Part 4).
As pj woke up before pi, pi received the message color(3, col) from pj
before (or at) round (sti − 1) + log∗ n + 5 (Part 4), and col is the final
color of pj . It follows that, when pi updates its color at line 42, we have
colori[3, nexti] = col. Consequently, the final color of pi is different from
the final color of its neighbor pj .

2Lemma 5

Lemma 6 Let us assume that both pi and pj wake up, where pj is pnexti . If
pi and pj are not in the same unit-segment and stj > sti, their final colors
are different.

Proof By assumption, pi and pj are neighbors, but belong to different unit-
segments. As stj > sti and all processes execute the same number of rounds
after they woke up (log∗ n + 6), pi returns its final color (line 48) before pj .
As for Lemma 4, the proof of the lemma considers four cases, namely
Case (a): pi is not the left end of its unit-segment and pj is not the right end
of its unit-segment,
Case (b): pi is not the left end of its unit-segment and pj is the right end of
its unit-segment,
Case (c): pi is the left end of its unit-segment and pj is not the right end of
its unit-segment,
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Case (d): pi is the left end of its unit-segment and pj is the right end of its
unit-segment.

Case (a): pi is not the left end of its unit-segment and pj is not the right end
of its unit segment. As pi is not the left end of its unit segment, it follows
from the predicate of line 29 that it does not update its color in Part 3. As
sti < stj = sti[nexti], it follows from the predicate of line 40 that pi does
not update its color in Part 4. Hence, pi obtained its final color at the end of
Part 2.

As far as pj is concerned, we have the following. As stj > sti and pj is not
the right end of its unit-segment, the predicates of lines 29 and 30 direct pj to
update its color at line 30 (Part 3). Moreover, as pj is not the right end of its
unit-segment, the predicate of line 40 is not satisfied and pj does not change
its color in Part 4.

As pi woke up before pj , pj received the message color(2, col) from pi at
a round ≤ (stj − 1) + log∗ n+ 4, and col is the final color of pi. It follows that
when pj executes line 30, it assigns to colorj a color different from the final
color of pi.

Case (b): pi is not the left end of its unit-segment and pj is the right end of
its unit-segment. As pi is not the left end of its unit-segment and sti < stj ,
it follows that the predicate of line 29 is not satisfied when evaluated by pi.
Similarly, as sti < sti[nexti] = stj , the predicate of line 40 is not satisfied
either. Consequently, pi does not modify its color in Part 3 or Part 4. Let cl i
be this color.

As pi wakes up before pj , pj has received the message color(2, cl i) sent
by pi at the latest during its round (stj−1)+log∗ n+4 (Part 3). Hence, at the
end of round (stj−1)+log∗ n+4, colorj [2, predj ] = cl i. Moreover, pj received
the message color(3, cl i) at the latest during its round (stj−1) + log∗ n+ 5,
and saved it in colorj [3, predj ] = cl i. It then follows that, whatever the update
of colorj done by pj at any line of Part 3 (lines 30-32) or Part 4 (lines 41-43),
the final color of pj will be different from the final color of pi.

Case (c): pi is the left end of its unit-segment and pj is not the right end of
its unit-segment.

As pi is the left end of its unit-segment, it may be forced to update its color
(at line 32 because stj > sti) if the predicate of line 29 is satisfied (Part 3). But
as stj > sti, the predicate of line 40 cannot be satisfied (Part 4). Hence, both
the messages color(2, cl i) and color(3, cl i) sent by pi at lines 38 and 47
carry its final color.

As stj > sti, pj received color(2, cl i) at the latest during its round
(stj − 1) + log∗ n+ 4, and color(3, cl i) at the latest during its round (stj −
1) + log∗ n+ 5. It follows that, whatever the update of colorj done by pj when
it executes Part 3 or Part 4, its final color will be different from cl i.
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Case (d): pi is the left end of its unit-segment and pj is the right end of its
unit-segment.

As indicated in the previous case, pi (left end of its unit-segment) may
change its color due the predicates of lines 29 and 32 when it executes its
round (sti − 1) + log∗ n+ 4 (Part 3), but (as sti < stj) it will not change it in
Part 4. We consider two cases. Let cl i be the final color of pi.

– stj > stj [nextj ]. In this case, As stj > sti the predicate of line 29 is
satisfied, and pj updates its color at line 31 when it executes its round
(stj − 1) + log∗ n + 4 (Part 3). Similarly, as stj > stj [nextj ], pj updates
its color at line 42 when it executes its round (stj − 1) + log∗ n + 4 (Part
4). As pj woke up after pi, it received color(2, cl i) from pi at the latest
when it executes its round (stj − 1) + log∗ n + 4 (Part 3), and received
color(3, cl i) at the latest when it executes its round (stj−1)+log∗ n+5
(Part 4). It follows that, whatever (if any) an update of colorj done at any
of the lines 30-32 and 41-43, the final color of pj will be different from the
one of pi.

– stj < stj [nextj ]. In this case, pj may update its color at line 32 while
executing its round stj + log∗ n+ 4 (Part 3). As sti < stj , pj receives the
message color(2, cl i) from pi at the latest during its round (stj − 1) +
log∗ n+ 4 (cl i is the final color of pi), and consequently colorj [2, predj ] =
cl i at round (stj − 1) + log∗ n + 4. Hence, when it executes line 32, pj
updates colorj to a color different from cl i. Let us finally observe that,
as stj < stj [nextj ], the predicate of line 40 (Part 4) is not satisfied, and
consequently pj does not modify colorj at lines 41-43, which completes the
proof of the lemma.

2Lemma 6

The following theorem showing the correctness of algorithm AST-CV di-
rectly follows from Lemmas 3, 4, 5 and 6.

Theorem 1 If pi and pj wake up and are neighbors, their final colors are
different and in the set {0, 1, 2}.

5 From Asynchronous Starting Times to Wait-Freedom

This section presents the WLC (Wait-free Local Coloring) algorithm for the
DECOUPLED model described in Section 2, which 3-colors the processes of a
ring. This algorithm consists of two consecutive stages executed independently
by each process pi. The first stage is a communication stage during which pi,
whatever its starting time, obtains enough information to execute its second
stage, which consists of a communication-free computation.

The following solvability notion incorporates asynchrony and failures, as
needed by the DECOUPLED model. An algorithm wait-free solves m-coloring
if for each of its executions: (1) Validity. The final color of any process is in
{0, . . . ,m− 1}. (2) Agreement. The final colors of any two neighbor nodes in
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the graph are different. (3) Termination. All processes that take an infinite
number of steps decide a final color.

5.1 On the communication side

A ring structure for the synchronous communication network. The neighbors
of a node ndi (or process pi with a slight abuse of language) are denoted as
before, predi and nexti.

On the side of the communication nodes. While each input buffer ini is ini-
tially empty, each output buffer outi is initialized to 〈i,+∞,⊥〉. When a pro-
cess starts its participation in the algorithm, it writes the pair 〈i, sti, idi〉 in
outi, where sti is its starting time (as defined by the current tick of the clock
governing the progress of the underlying communication component), and idi
is its identity.

As already described, at every clock tick (underlying communication step),
ndi first receives two messages (one from each neighbor), and reads the local
buffer outi. Then, it packs the content of these two messages and the content of
outi (which can be 〈i,+∞,⊥〉 if pi has not yet started) into a single message,
sends it to its two neighbors, and writes it in ini (full-information behavior of
a node).

5.2 Wait-free algorithm: first a communication stage

Let pi be a process that starts the algorithm at time sti = t. As previously
indicated, this means that, at time t (clock tick defined by the communication
component), pi writes 〈i, t, idi〉 in its output buffer outi. Then pi waits until
time t + Λ where Λ = log∗ n + 5. (7). At the end of this waiting period, and
as far pi is concerned, the “dices are cast”. No more physical communication
will be necessary. As we are about to see, pi obtained enough information to
compute alone its color: the rest of the algorithm executed by pi is purely
local (see below). This feature, and the fact that the starting time of a process
depends only on it, makes the algorithm wait-free.

It follows from the underlying communication component that, at time t+
Λ, pi has received information (i.e., a triplet 〈j, st, idj〉) from all the processes
at distance at most Λ of it. If st = t, pi knows that pj started the algorithm at
the same time as itself. If st < t (resp., st > t), pi knows that pj started the
algorithm before (resp., after) it. (If st = +∞ –we have then idj = ⊥– and pj
is at distance d from it, pi knows that pj did not start the algorithm before
the clock tick t+ Λ− d.)

7 Being asynchronous, the waiting of pi during an arbitrary long (but finite) period does
not modify its allowed behavior.
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5.3 Wait-free algorithm: then a local simulation stage of AST-CV

At the end of its waiting period, pi has information (triplets composed of an
index, a starting time –possibly +∞–, and a process identity –possibly ⊥–) of
all the processes at distance Λ = log∗ n+5 from it, and also from the processes
at distance k that started before sti + Λ − k (each triplet from process pj at
distance k was propagated from it to a process p` at distance Λ from pi, and
then from p` to pi). More precisely, for each of these processes pj , pi knows
whether pj started before it (stj < sti), at the same time as it (stj = sti), or
after it (stj > sti).

Simulation of AST-CV It follows from the previous observation that, after
its waiting period, pi has all the inputs (starting times and process identities)
needed to simulate AST-CV and compute its final color, be it inside a unit-
segment, the left end of a unit-segment, the right end of a unit-segment, or
both ends of a unit-segment (a maximal sequence of consecutive processes that
start the algorithm at the same time).

More precisely, the purely local simulation by a process pi is a follows.
Starting from round 0, pi simulates sti +Λ rounds of AST-CV, this simulation
involving the processes from which it has the initial information 〈j, stj , idj〉
and are s.t. stj ≤ sti.

Notice that the crash of a process pj has no impact on the termination and
the correctness of the coloring of other processes. This follows from the locality
property of AST-CV, and the fact that as soon as a process has obtained a
triplet 〈j, stj , idj〉 (where stj ≤ sti), it considers pj as competing for a color,
whatever is its behavior after it started participating in the algorithm.

Optimality of WLC When it executes WLC, each process waits duringO(log∗ n)
time units, which occurs during the communication phase. This duration is
asymptotically optimal as (1) Ω(log∗ n) is a lower bound on the number of
time units needed to color the nodes of a ring with at most three colors [18] in
LOCAL, and (2) when there is neither asynchrony nor failures, DECOUPLED
behaves like LOCAL.

6 Conclusion

The paper proposed a model where communication and processing are decou-
pled, consisting of asynchronous crash-prone processes that run on top of a
reliable synchronous network. This DECOUPLED model is weaker than the
synchronous model (on the process side) and stronger than the asynchronous
crash-prone model (on the communication side), while encompassing in a sin-
gle framework two fundamental issues of distributed computing, locality [18]
and wait-freedom [15].

A 3-coloring algorithm for a ring was derived for the DECOUPLED model.
This algorithm uses as a subroutine a generalization of Cole and Vishkin’s
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algorithm [8]. A process needs to obtain initial information from processes at
distance at most O(log∗ n) of it. As far as we know, this is the first wait-free
local coloring algorithm, which colors a ring with at most three colors.

In contrast to LOCAL, in the DECOUPLED model, after d rounds of
communication, a process collects the initial inputs of only a subgraph of its d-
neighborhood. The paper has shown that, despite this uncertainty, it is possible
to combine locality and wait-freedom, as far as 3-coloring is concerned. The
keys to this marriage were (a) the decoupling of communication and processing,
and (b) the design of a synchronous coloring algorithm (AST-CV), where the
processes are reliable, proceed synchronously, but are not required to start at
the very same round, which introduces a first type of asynchrony among the
processes. As we have seen, the heart of this algorithm lies in the consistent
coloring of the border vertices of subgraphs which started at different times
(unit segments).

It would be interesting if this methodology applies to other coloring algo-
rithms, or even to other distributed graph problems which are solvable in the
LOCAL model. Variants of the DECOUPLED model might be interesting to
study, e.g., several asynchronous processes running in the same node.
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