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Abstract

We establish the Level-1 and Level-3 Large Deviation Principle (LDP) for invariant measures on
shift spaces over finite alphabets under very general decoupling conditions for which thermody-
namic formalism does not apply. Such decoupling conditions arise naturally in multifractal analysis,
in Gibbs states with hard-core interactions, and in the statistics of repeated quantum measurement
processes. We also prove the LDP for the entropy production of pairs of such measures and
derive the related Fluctuation Relation. The proofs are based on Ruelle–Lanford functions, and the
exposition is essentially self-contained.
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1 Introduction

This work concerns the Large Deviation Principle (LDP) for a class of invariant probability measures
on shift spaces over finite alphabets. We prove:

1. The LDP for averages of continuous random variables (Level-1 LDP).

2. The LDP for empirical measures (Level-3 LDP).

3. The LDP for the entropy production of pairs of probability measures (Fluctuation Theorem)
together with the corresponding symmetry (Fluctuation Relation).

The class of invariant probability measures we shall consider are characterized by certain decoupling
properties that are described in Section 2.2. The nature and generality of these decoupling assumptions
exclude the application of thermodynamic formalism as in, for example, [FO88, OP88, Kif90, EKW94,
CJPS17]. The technical route that proved effective is based on Ruelle–Lanford functions.

In this paper, we mean by Fluctuation Theorem (FT) the LDP for the entropy production observable, and
Fluctuation Relation (FR) refers to the Gallavotti–Cohen symmetry (1.2) satisfied by the rate function
governing the FT. The FT will be established for general pairs of measures (subject to decoupling
assumptions), whereas the FR further requires the two measures to be related by some form of involution
(including, but not limited to, time reversal; see Definition 2.5).

We now discuss how our results fit in the existing literature, with special emphasis on Part 3 above,
which is the original motivation for this work and its most novel part. No knowledge of the works cited



INTRODUCTION 3

in this introduction is required to understand our results and their proofs, as our exposition is essentially
self-contained starting from Section 2.

Part 3 extends and complements the results of [BJPP17] in the spirit of the recent work [CJPS17],
and the reader may benefit from reading introductions of [BJPP17, CJPS17] in parallel with this one.
Both works [BJPP17, CJPS17] concern the FT and FR in the context of dynamical systems (M,ϕ),
where M is a compact metric space and ϕ : M →M a continuous map. However, the scope, details of
the setting, the assumptions, and the technical aspects of the two works are quite different, and we start
by describing them separately.

In [BJPP17] the metric space M was taken to be AN, where A is a finite alphabet, and ϕ is the
left shift map. A ϕ-invariant probability measure P of interest arises through a repeated quantum
measurement process generated by a quantum instrument on a finite-dimensional Hilbert space (we
recall the precise setup in Example 2.25). The time-reversed instrument and measurement process
yield another probability measure P̂, and the object of study is the entropic distinguishability of the
pair (P, P̂) that quantifies the emergence of the arrow of time in the repeated measurement process.
Denoting by Pt and P̂t the marginals of these measures on the first t coordinates of AN, the entropic
distinguishability is quantified by the sequence of entropy production observables

σt = log
dPt
dP̂t

.

The statement of the FT is the LDP for the sequence of random variables t−1σt with respect to the
measure P. The main application of the FT concerns hypothesis testing of the pairs (Pt, P̂t) as t→∞.
The corresponding error exponents (Stein, Chernoff, Hoeffding) quantify the emergence of the arrow
of time. The proofs in [BJPP17] follow the strategy that goes back to [LS99] and are centered around
the so-called entropic pressure defined by

e(α) = lim
t→∞

1

t
log

[∫
e−ασtdPt

]
. (1.1)

If the limit exists, and is finite and differentiable for all α ∈ R, then the FT follows from the Gärtner–
Ellis theorem, with a rate function I that satisfies the FR

I(−s) = I(s) + s, s ∈ R. (1.2)

The difficulty with this strategy is that the measures P and P̂ that arise through repeated quantum
measurement processes often do not satisfy the usual Gibbsian-type conditions that allow the appli-
cation of thermodynamic formalism and ensure the existence and regularity of e(α). In this case
the Gibbsian-type conditions are naturally replaced by a decoupling condition motivated by [Fen09,
Proposition 2.8], which is generalized in Section 2.2 below under the name selective lower decoupling.
Under those decoupling conditions the measures P and P̂ can exhibit a very singular behavior from the
thermodynamic formalism point of view. In [BJPP17] a restricted form of selective symmetric decou-
pling (see Section 2.2) has been employed to develop subadditive thermodynamical formalism that
leads to the proof of the existence and finiteness of the limit (1.1) for α ∈ [0, 1] and the differentiability
of e(α) on (0, 1). That sufficed for the proof of the local LDP on the interval J = (e′(0+), e′(1−))
(via the local Gärtner–Ellis theorem), the validity of (1.2) for s ∈ J, and the development of hypothesis
testing. It was however clear that this route cannot be used for the proof of the global LDP and FT since
the assumptions of [BJPP17] allowed, for example, for situations where e(α) = +∞ for α 6∈ [0, 1] and
|e′(0+)| = |e′(1−)| <∞; see the rotational instruments in [BCJP18].
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The work [CJPS17] concerned the FT and FR for general dynamical systems (M,ϕ) with a compact
metric space M and a continuous map ϕ, under minimal chaoticity assumptions (expansiveness and
specification). The proof of the FT bypassed the use of the Gärtner–Ellis theorem, hence lifting the
regularity requirement on e(α). Instead, a Level-3 LDP for empirical measures is established following
a strategy that goes back to [FO88, OP88] and has been used in a similar context in [EKW94]. The key
steps of the proof are based on application of the Shannon–McMillan–Breiman/Katok–Brin theorem in
the ergodic setting and an entropic approximation argument. After that, a fluctuation relation for the
rate function governing the Level-3 LDP is obtained,1 and a contraction argument yields the Level-1
LDP and the familiar FR and FT. This route has proved to be very robust and allowed for the proof
of the FR and FT in circumstances that were previously unreachable: in phase transition regime, for
discontinuous entropy production observables, and in the asymptotically additive thermodynamic
formalism setting. However, in spite of their generality, the assumptions of [CJPS17] did not cover the
decoupling conditions of [BJPP17]. An obvious question is whether the results of [CJPS17] could be
extended to the setting of [BJPP17] with possibly an alternative technical approach. One of the goals
of this work is to achieve that.

We shall work with pairs of invariant probability measures (P, P̂) on M = AN which are more general
than those considered in [BJPP17], and not necessarily related to each other by time reversal. We shall
establish LDPs and FRs that in particular extend those of [CJPS17] to the setting of [BJPP17].

The derivation of the LDPs in this work is very different from the one in [CJPS17]. Here we use the
method of Ruelle–Lanford (RL) functions that goes back to [Rue65, Lan73].2 The method was then used
in [BZ79], and further developed in [LPS94, LPS95, LP95, Pfi02]; see also [ORB11]. The main ideas
of the method are also exposed in [DZ00, Section 4.1.2], although the terminology Ruelle–Lanford
does not appear there. The method of RL functions provides a unified approach to the Level 1, Level 3,
and entropy production LDPs, and no application of the contraction principle is needed (in other words,
the different levels are independent, although their respective proofs have common threads). We are not
aware of any previous use of RL functions in the study of entropy production. After that, the FR is
proved under the assumption that P and P̂ are related by a suitable involution. It should be added that
our application of the RL function method is specific to M = AN (with straightforward extensions to
M = ANd and M = AZd), and at the moment the method does not extend to the general setting of
[CJPS17].

The paper is organized as follows. In Section 2 we describe the setting of the paper, state the assumptions
and our main results, and discuss examples. For reasons of space, the detailed discussion of examples
related to quantum measurement processes is postponed to [BCJP18] which is a continuation of
[BJPP17] and this work. The general construction leading to the proof of our main results together with
a presentation of the method of RL functions is given in Section 3. The proofs of the main results are
presented in Sections 4, 5, and 6. In the appendix we describe further applications (in particular to weak
Gibbs measures, which do not fit directly into our assumptions) and develop a prototypical example of
hidden Markov chain where the present method applies but not those of [CJPS17] and [BJPP17].

We finish with the following general remark. The RL functions method turned out to be surprisingly
effective for our purposes. Although this method is both very powerful and natural, it appears to be a
lesser used route to LDPs. Even in the cases where the respective LDPs are well known, this approach

1We also obtain this Level-3 fluctuation relation in (2.22), although in the present paper the usual FR (for the entropy
production observable) is not derived from it.

2See the introduction of [LPS95] for a historical perspective.
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gives a new perspective on the results and their proofs. The assumptions under which the method
is used here are different from the ones existing in the literature, and we hope that the essentially
self-contained presentation given in this paper will facilitate its future applications.
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2 Preliminaries and main results

2.1 Setup and notation

Let A be a finite set and let Ω = AN be the set of sequences ω = (ωj)j≥1 whose elements belong
to A. We denote by ϕ : Ω→ Ω the shift operator defined by ϕ(ω)j = ωj+1 for j ≥ 1. We write also
Ωt := At, and call w = (w1, . . . , wt) ∈ Ωt a word of length |w| = t. Given a sequence ω ∈ Ω and
two integers m ≤ n, we set ω[m,n] = (ωm, . . . , ωn), and similarly for w ∈ Ωt if m ≤ n ≤ t. The set
of words of finite length is denoted by Ωfin =

⋃
t≥0 Ωt, with the convention that Ω0 = {κ}, where κ is

the “empty word” (|κ| = 0). Given u, v ∈ Ωfin, uv ∈ Ωfin denotes the natural concatenation of u and
v, which satisfies |uv| = |u|+ |v|. For the empty word κ and any w ∈ Ωfin, wκ = κw = w.

The set Ω is endowed with the product topology and the corresponding Borel σ-algebra B. We denote
by C(Ω) the usual Banach space of real-valued continuous function on Ω. The set P(Ω) of probability
Borel measures on Ω is endowed with the weak topology.3 We shall write Q for generic elements
of P(Ω) and use the symbol P for the probability measure that will be fixed throughout. The set of
ϕ-invariant elements of P(Ω) (i.e., the set of Q ∈ P(Ω) such that Q ◦ ϕ−1 = Q) is denoted by Pϕ(Ω).
For Q ∈ P(Ω) and f ∈ L1(Q) we write

〈f,Q〉 =

∫
fdQ.

Given a word w ∈ Ωt, t ≥ 1, we introduce the cylinder set Cw := {ω ∈ Ω : ω[1,t] = w} and denote
by (Ft)t≥0 the filtration generated by the cylinder sets.4 We take the convention that Cκ = Ω for the
empty word κ.

For any Q ∈ P(Ω) and any integer t ≥ 1, Qt denotes the restriction of Q to Ft, which we identify with

3This topology is metrizable and P(Ω) is a compact metric space.
4Notice that Ft is the finite algebra generated by the sets {Cw : w ∈ Ωt}.
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a function on Ωt in the natural way:

Qt(w) = Q(Cw) =: Q(w) (w ∈ Ωt),

where the rightmost expression will be used by a slight abuse of notation. Consistently with the
convention that Cκ = Ω, we have Q(κ) = Q0(κ) = 1.

Throughout the paper, we fix an invariant probability measure P ∈ Pϕ(Ω), which will be subject to
some assumptions below. We write Ω+ = suppP = {ω ∈ Ω : P(ω[1,t]) > 0 ∀t ≥ 1} and notice
that Ω+ is a subshift (i.e., Ω+ is closed and satisfies ϕ(Ω+) = Ω+). Let Ω+

t = {w ∈ Ωt : Pt(w) > 0}
and Ω+

fin =
⋃
t≥0 Ω+

t = {w ∈ Ωfin : P(w) > 0}. The set Ω+
fin is a language5 in the sense that for each

w ∈ Ω+
fin the following holds: (1) each subword of w is also in Ω+

fin and (2) there exist non-empty
words u, v such that uwv ∈ Ω+

fin.

Finally, we use throughout the conventions that log 0 = −∞, and 0 log 0 = 0.

2.2 Assumptions

We now introduce a set of decoupling assumptions on P (which are not in force throughout). Without
further saying we shall always assume that the sequences6 (τt)t≥1 ⊂ N0 and (ct)t≥1 ⊂ [0,∞) satisfy
ct = o(t) and τt = o(t), i.e.,

lim
t→∞

ct
t

= lim
t→∞

τt
t

= 0.

The assumption that will play the central role in our work is

Selective lower decoupling (SLD). For all t ≥ 1, all u ∈ Ωt and all v ∈ Ωfin, |v| ≥ 1, there exists
ξ ∈ Ωfin, |ξ| ≤ τt, such that

P(uξv) ≥ e−ctP(u)P(v). (2.1)

(Note that we take |ξ| ≤ τt and not |ξ| = τt; this is crucial).

In order to refine some of the results (see Theorem 2.13), we will sometimes also assume

Upper decoupling (UD). For all t ≥ 1, all u ∈ Ωt and all v ∈ Ωfin, |v| ≥ 1,

sup
ξ∈Ωτt

P(uξv) ≤ ectP(u
)
P(v
)
. (2.2)

Some of our results involve a pair of measures (P, P̂), where P is as above, and P̂ ∈ Pϕ is another
invariant probability measure subject to the following absolute continuity condition:

Pt � P̂t for all t ≥ 1. (2.3)

Interesting cases include when P̂ is the uniform measure7 on Ω, and when P̂ is obtained from some
transformation of P (see Definition 2.5). This leads to our final assumption that concerns the pair
(P, P̂):

5See for example [LM95]. The notions of subshift and language are not crucial in our study; they will only be used to
discuss how (weak) Gibbs measures on subshifts fit into our assumptions (see Appendix A.3).

6We take the convention that N = {1, 2, 3, . . . } and N0 = N ∪ {0}.
7That is, P̂t(w) = |A|−t for w ∈ Ωt.
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Selective symmetric decoupling (SSD). For all t ≥ 1, all u ∈ Ωt and all v ∈ Ωfin, |v| ≥ 1, there
exists ξ ∈ Ωfin, |ξ| ≤ τt, such that for both P] = P and P] = P̂ we have

e−ctP](u)P](v) ≤ P](uξv) ≤ ectP](u)P](v). (2.4)

(Note that this is the same ξ for both P and P̂).

Remark 2.1. The same ct and τt are used in the different conditions above. This results in no loss of
generality. This is obvious for ct, while for τt the argument is slightly more involved. It is immediate
that for SLD and SSD the sequence τt can always be replaced with a sequence τ ′t ≥ τt. The same is
true of UD, since we have for all ξ ∈ Ωτ ′t

that ξ = ξ′b for some ξ′ ∈ Ωτt and b ∈ Ωfin, and then

P(uξv) = P(uξ′bv) ≤ ectP(u)P(bv) ≤ ectP(u)P(v).

Remark 2.2. SLD is implied by the seemingly weaker condition that∑
ξ∈Ωfin : |ξ|≤τt

P(uξv) ≥ e−c′tP(u)P(v)

for some c′t = o(t). In this case (2.1) is easily shown to hold8 with ct = c′t + log(
∑τt

i=0 |A|i) = o(t).
Similarly, UD implies the seemingly stronger assumption that∑

ξ∈Ωτt

P(uξv) ≤ ec′tP(u)P(v)

if we choose c′t = ct + log(|A|τt) = o(t).

Remark 2.3. Unless τt ≡ 0, SSD does not imply UD, since the upper bound in (2.4) has to be satisfied
only for the “selected” ξ. SSD does, however, imply SLD for both P and P̂, with the additional
information that we can choose the same ξ for both P and P̂. On the other hand, in order to have SSD,
it is enough to have UD for both P and P̂ as well as SLD for both P and P̂ with the same ξ (in general
ct and τt have to be increased, see Lemma A.1).

Remark 2.4. The measure P is not assumed to be ergodic. One can show, however, that it is ergodic if,
for example, SLD holds with supt τt <∞ and supt ct <∞ (see Lemma A.2).

One special case of interest is when P̂ is related to P by a transformation defined as follows.

Definition 2.5. For each t ≥ 1, let θt : Ωt → Ωt be an involution. Assume that the sequence
Θ = (θt)t≥1 is such that one of the following holds for some involution u : A → A:

1. θt(w1, w2, . . . , wt) = (u(w1), u(w2), . . . , u(wt)) for each t ≥ 1, w ∈ Ωt,

2. θt(w1, w2, . . . , wt) = (u(wt), u(wt−1), . . . , u(w1)) for each t ≥ 1, w ∈ Ωt.

For each Q ∈ Pϕ(Ω), we denote by ΘQ the invariant measure on Ω obtained by extending the family9

of marginals ((ΘQ)t)t≥1, where (ΘQ)t = Qt ◦ θt.
8We use that for any finite set A,

∑
x∈A f(x) ≤ |A|maxx∈A f(x).

9One easily shows that both conditions imply that
∑
a∈AQt+1 ◦ θt+1(wa) =

∑
a∈AQt+1 ◦ θt+1(aw) = Qt ◦ θt(w),

which, by Kolmogorov’s extension theorem, guarantees that such an invariant extension exists.
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We shall see below that when P̂ = ΘP for some Θ as above, the FT rate function satisfies the celebrated
Fluctuation Relation [ECM93, ES94, GC95b, GC95a, Gal95].

Remark 2.6. By the absolute continuity assumption (2.3), in order for the choice P̂ = ΘP to be
allowed, Θ and P must be so that Pt � (ΘP)t for all t. Since θt is an involution (and hence a bijection),
the support of Pt and that of (ΘP)t (as subsets of Ωt) have the same cardinality, and hence P̂ = ΘP
implies that Pt and P̂t are equivalent for all t.

We finish with several comments on the relation between the decoupling assumptions described in this
section and those to be found in the literature.

• Our decoupling assumptions are related to those in [Pfi02, Definition 3.2] (restricted to one
dimension). In view of Remark 2.1, the upper decoupling assumption is the same. Our SLD
condition is weaker than the lower decoupling condition in [Pfi02], as we allow |ξ| ≤ τt instead
of |ξ| = τt. This weaker condition covers some important classes of measures (see the examples
below), which are not covered by any result in the literature, as far as we are aware. The Ruelle–
Lanford estimates, which are done in the spirit of [Pfi02], are noticeably complicated by the fact
that we allow |ξ| ≤ τt in the SLD condition.

• The main feature of our SLD assumption, i.e., allowing |ξ| ≤ τt, is reminiscent of some variants
of the specification property for subshifts of Ω, which allow for similar “flexibility” (see for
example [PS03, PS05, Tho12, PS18]). Specification properties are conditions on the structure
of the subshift (viewed as a metric space in itself), not on measures defined on it. We shall
discuss Gibbs states and (weak) Gibbs measures whose supports satisfy such “flexible” forms of
specification property in Examples 2.20, 2.22 and in Appendix A.3.

• A property similar to SLD (with τt and ct independent of t) was observed to hold for some
products of matrices in [Fen09, Proposition 2.8], and some parts of our construction are similar
to [Fen09]. See Example 2.24 below.

• To the best of our knowledge, the only assumptions similar to SSD to be found in the literature
are in [BJPP17], with ct and τt not allowed to depend on t (see Assumptions (C) and (D) therein,
and Example 2.25 below).

2.3 Main results

We endow Rd with the Euclidian structure and denote by |·| and (·, ·) the corresponding norm and
inner product. Given a function f : Ω→ Rd, we write ‖f‖ := supx∈Ω |f(x)| and introduce

Stf(ω) =

t−1∑
s=0

f(ϕs(ω)).

Let us recall that in the standard LDP terminology, a rate function is always assumed to be lower
semicontinuous, while a good rate function has, in addition, compact level sets. The next result follows
from Propositions 4.2 and 4.3 below.

Theorem 2.7 (Level-1 LDP). Assume SLD, and let f ∈ C(Ω,Rd).

1. For all α ∈ Rd, the limit

qf (α) = lim
t→∞

1

t
log
〈
e(α,Stf),P

〉
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exists, is finite, convex, and the mapping α 7→ qf (α) is ‖f‖-Lipschitz.

2. The sequence of random variables 1
tStf satisfies the LDP with a good convex rate function If ,

in the sense that for every open set O ⊂ Rd and every closed set Γ ⊂ Rd,

lim inf
t→∞

1

t
logP

(
1

t
Stf ∈ O

)
≥ − inf

x∈O
If (x), (2.5)

lim sup
t→∞

1

t
logP

(
1

t
Stf ∈ Γ

)
≤ − inf

x∈Γ
If (x). (2.6)

Moreover, If is the Fenchel–Legendre transform of qf , i.e.,

If (x) = sup
α∈Rd

((α, x)− qf (α)).

We define the entropy production observable over the time interval [1, t] by10

σt = log
dPt
dP̂t

, (2.7)

which is Ft-measurable and well defined Pt-almost surely since Pt � P̂t. The next result follows from
Propositions 5.1 and 5.2.

Theorem 2.8 (LDP for entropy production). Assume SSD.

1. The limit11

q(α) := lim
t→∞

1

t
log 〈eασt ,P〉 (2.8)

exists and takes value in (−∞,∞]. The function q(α) is lower semicontinuous and convex. We
have q(0) = 0 and q(−1) ≤ 0, so that q is non-positive (and hence finite) on [−1, 0].

2. The random variable 1
tσt satisfies the LDP with a convex rate function I in the sense that for

every open set O ⊂ R and every closed set Γ ⊂ R,

lim inf
t→∞

1

t
logP

(
1

t
σt ∈ O

)
≥ − inf

s∈O
I(s), (2.9)

lim sup
t→∞

1

t
logP

(
1

t
σt ∈ Γ

)
≤ − inf

s∈Γ
I(s). (2.10)

Moreover, I is the Fenchel–Legendre transform q∗ of q, i.e.,

I(s) = q∗(s) = sup
α∈R

(αs− q(α)), s ∈ R. (2.11)

3. If q(α) is finite in a neighborhood of 0, then I is a good rate function.

10The argument of the logarithm may vanish. However, this does not cause any problem, since the set of points for which
this is the case has P-measure zero.

11Note that the sign of α in (2.8) is different from that in (1.1). See Remark 2.9.
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4. If P̂ = ΘP for some Θ as in Definition 2.5,12 then q satisfies the symmetry

q(−α) = q(α− 1), α ∈ R, (2.12)

and I satisfies the Fluctuation Relation (also known as the Gallavotti–Cohen symmetry)

I(−s) = I(s) + s, s ∈ R. (2.13)

Remark 2.9. In the physics literature, it is more common to work with e(α) = q(−α) as in (1.1).
Then (2.11) and (2.12) read respectively

I(s) = − inf
α∈R

(αs+ e(α)), s ∈ R,

e(α) = e(1− α), α ∈ R.
This is relevant for the applications to hypothesis testing that are discussed in Section 2.4.

The following remark gives a sufficient condition for q(α) to be finite for all α ∈ R.

Remark 2.10. Assume that, in addition to SSD, we have for all t ≥ 1, all u ∈ Ωt and all v ∈ Ωfin,
|v| ≥ 1, that both P] = P and P] = P̂ satisfy

P](uv) ≥ e−ctP](u)P](v). (2.14)

Let moreover c be the minimum of all the non-zero values achieved by P(a) and P̂(a) for a ∈ A. Then,
for all w ∈ Ω+

t , we find P](w) ≥ e−(t−1)c1P](w1) · · ·P](wt) ≥ e−t(c1−log c). As a consequence, we
find that supt≥1 supw∈Ω+

t
|t−1σt| <∞, which implies in particular that q(α) is finite for all α ∈ R.

Remark 2.11. If P̂ is the uniform measure, then 1
tσt = 1

t logPt + log |A|. Assuming SSD (note that
(2.4) trivially holds for P̂), Parts 1-2 of the theorem above apply. We then have

r(α) := lim
t→∞

1

t
log
〈
eα log Pt ,P

〉
= q(α)− α log |A|,

and r inherits the properties of existence, convexity and lower semicontinuity of q. Moreover, 1
t logPt

satisfies the LDP with convex rate function J(s) = I(s+ log |A|), which can be identified with the
Fenchel–Legendre transform of r. Part 3 extends in an obvious way to J and r. In order to apply the
discussion of Remark 2.10, it suffices to verify (2.14) for P, since (2.14) is trivially satisfied for the
uniform measure P̂. Note also that r is related to the Renyi entropy of P, since

r(α) = lim
t→∞

1

t
log
〈
eα log Pt ,P

〉
= lim

t→∞

1

t
log

∑
w∈Ω+

t

(P(w))1+α. (2.15)

Remark 2.12. By the Shannon–McMillan–Breimann (SMB) theorem,13 the limit

H(ω) := − lim
t→∞

1

t
logPt(ω[1,t])

exists P-almost surely and in L1(P), H ◦ϕ = H , and
∫

ΩHdP = h(P), where h(P) is the Kolmogorov–
Sinai entropy of P. Thus, in the case when P̂ is the uniform measure, Theorem 2.8 provides the LDP
counterpart to the SMB theorem, and establishes the result that was originally intended for the fourth
instalment in the series of papers initiated by [BJPP17].

12The SSD assumption of the theorem is still in force.
13For this result no assumptions are needed; the SMB theorem holds for any P ∈ Pϕ(Ω).
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We now turn to the Level-3 LDP. For ω ∈ Ω, the sequence of empirical measures is defined by

µt(ω) :=
1

t

t−1∑
s=0

δϕs(ω) ∈ P(Ω).

We also recall that the relative entropy of two probability measures Q and Q′ on a measurable
space (X,F) is given by

Ent(Q′ |Q) =


∫
X

log
(dQ′

dQ

)
dQ′ if Q′ � Q,

+∞ otherwise.
(2.16)

In what follows, we always assume thatP(Ω) is endowed with the weak topology and the corresponding
Borel σ-algebra. The next result follows from Propositions 4.2, 6.1, 6.3, and 6.4.

Theorem 2.13 (Level-3 LDP). Assume SLD.

1. For all f ∈ C(Ω,R), the limit

Q(f) = lim
t→∞

1

t
log
〈
eStf ,P

〉
(2.17)

exists, and Q is convex and 1-Lipschitz.

2. The random variable µt satisfies the LDP on the space P(Ω) with some good14 convex rate
function I, i.e., for every open set O ⊂ P(Ω), and every closed set Γ ⊂ P(Ω),

lim inf
t→∞

1

t
logP (µt ∈ O) ≥ − inf

Q∈O
I(Q), (2.18)

lim sup
t→∞

1

t
logP (µt ∈ Γ) ≤ − inf

Q∈Γ
I(Q). (2.19)

Moreover, the rate function is given by

I(Q) = sup
f∈C(Ω,R)

(
〈f,Q〉 −Q(f)

)
, (2.20)

and satisfies I(Q) = +∞ for Q ∈ P(Ω) \ Pϕ(Ω).

3. Assuming UD (in addition to SLD), we have for any Q ∈ Pϕ(Ω) that

I(Q) = lim
t→∞

1

t
Ent(Qt|Pt), (2.21)

and I is an affine function of Q ∈ Pϕ(Ω).

4. Assume again UD and SLD. Assume moreover that P̂ = ΘP for some Θ as in Definition 2.5.
Then, for any Q ∈ Pϕ(Ω) such that (ΘQ)t and Qt are equivalent for all t, I(Q) < +∞, and
I(ΘQ) < +∞, the following Level-3 fluctuation relation holds:

I(ΘQ)− I(Q) = lim
t→∞

1

t
〈σt,Q〉. (2.22)

14Notice that goodness follows from lower semicontinuity since P(Ω) is compact.
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Remark 2.14. Note that in general, the identification (2.21) is not possible for Q ∈ P(Ω) \ Pϕ(Ω);
for such measures the left-hand side is infinite, but the right-hand side need not be.

Remark 2.15. The right-hand side of (2.22) is interpreted as the mean entropy production of the
pair (P, P̂) w.r.t. Q. For a discussion of the Level-3 fluctuation relation (2.22) we refer the reader to
[CJPS17, CJPS18].

Remark 2.16. The Level-1 LDP of Theorem 2.7 can of course be retrieved from the Level-3 LDP by
using the contraction principle. In our proofs, however, the Level-1 LDP is established first, and then the
Level-3 LDP is proved independently (although the two proofs have many common points). A natural
question is whether, as in [CJPS17], the LDP for entropy production can be retrieved by “approximate”
contraction from the Level 3, and if then (2.13) follows from (2.22). We are not aware of a way of
doing so at the level of generality of SSD, as σt may be highly “non-additive” (see Example 2.23). A
contraction argument along the lines of [CJPS17] is, however, possible if SSD holds with τt ≡ 0, since
in this case, in the terminology of [CJPS17], σt is asymptotically additive.

Remark 2.17. Although the work [BJPP17] was focused on the LDP for entropy production for pairs
of probability measures P and ΘP obtained from repeated quantum measurement processes, with Θ as
in Case 2 of Definition 2.5, the method of proof extends to the general setting of this paper and yields
the following: (a) Theorems 2.7 and 2.13 hold15 assuming UD and SLD with τt and ct that do not
depend on t; (b) A local version of Theorem 2.8 holds assuming SSD and UD (for both P and P̂) with
ct and τt that do not depend on t; (c) Theorem 2.8 holds assuming SSD with τt ≡ 0 and with ct that
does not depend on t. In this context, see Example 2.23.

2.4 Hypothesis testing

An important application of Theorem 2.8 concerns asymptotic hypothesis testing of the pairs of
measures (Pt, P̂t) as t → ∞. The discussion of this point is nearly identical to the one presented in
Section 2.9 of [BJPP17] (see also [CJPS17, CJPS18, CJN+18]), and we shall only briefly comment on
a few changes that are needed due to the generality of our setting.

Unless P̂ = ΘP, the function e(α) = q(−α) that controls the Chernoff and Hoeffding error exponents
does not need to satisfy the symmetry e(α) = e(1 − α). In this case the upper and lower Chernoff
exponents c and c satisfy16

c = c = min
α∈[0,1]

e(α).

The formula for the Hoeffding error exponents (Theorem 2.13 in [BJPP17]) remains unchanged. We
also remark that although the analysis of the Chernoff and Hoeffding error exponents presented in
[JOPS12] (and used in [BJPP17]) required e(α) to be differentiable on (0, 1), this assumption was used
only through the application of the induced local LDP for the entropy production.17 If the required
LDP is established by other means that require only the existence of e(α), as is the case in Theorem 2.8,
the analysis of [JOPS12] carries through without changes; see [CJN+18] for details.

The interpretation of all three types of exponents (Stein, Chernoff, Hoeffding) in terms of hypothesis
testing and support separation of the pairs (Pt, P̂t) as t → ∞ as presented in [BJPP17] remains

15By adapting the proof of [BJPP17, Theorem 2.5] to the case where σn is replaced by Snf for any function f depending
on finitely many variables, one verifies the assumptions of [Kif90, Theorem 2.1], which yield the Level-3 LDP.

16If the symmetry holds, as in [BJPP17], then obviously c = c = e(1/2).
17The local LDP followed by an application of the Gärtner–Ellis theorem.
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unchanged. Obviously, the support separation is linked to the emergence of the arrow of time only in
Case 2 of Definition 2.5.

2.5 Examples

We start with five examples where our results apply, but for which the conclusions are well known
and have been reached in the literature by other means. We believe however that in all these cases the
Ruelle–Lanford functions method presented here offers a different perspective on the resulting LDPs.

Example 2.18. Bernoulli measures. Let P be a probability measure on A, and define18 the measure
P by Pt(w) =

∏t
i=1 P (wi), w ∈ Ωt. Then obviously UD and SLD are satisfied (with τt ≡ 0 and

ct ≡ 0). If P̂ is defined similarly for some probability measure P̂ on A, then SSD holds (τt ≡ 0 and
ct ≡ 0), so that all the results are true provided that P � P̂ .

Example 2.19. Irreducible Markov processes. Let P ∈ Pϕ(Ω) be a Markov process. Then UD
holds. Assume further that it is irreducible (i.e., for all a, b ∈ A, there exists ξ(a,b) ∈ Ωfin such that
P(aξ(a,b)b) > 0). Then SLD holds. If, in addition, P̂ ∈ Pϕ(Ω) is another Markov process such that
P2 � P̂2 (hence P̂ is also irreducible), then SSD holds. See Lemma A.3 for the proof of these claims.
Note that no aperiodicity condition is required; if the Markov process P is irreducible and aperiodic,
then (2.1) also holds with the condition |ξ| ≤ τt strengthened to |ξ| = τt.

The next example consists of (weak) Gibbs measures, which have been studied extensively, and
for which the LDPs and FR have been obtained via thermodynamic formalism (see for example
[You90, Var12, VZ15, PS18, CJPS18, CJPS17]).

Example 2.20. Gibbs and weak Gibbs measures on subshifts. Assume that the subshift Ω+ satisfies
the following weak specification property:19 for all u, v ∈ Ω+

fin, there exists ξ ∈ Ω+
fin, |ξ| ≤ τ|u| such

that uξv ∈ Ω+
fin. Assume moreover that P is a Gibbs measure for some potential f ∈ C(Ω+), i.e., that

for some p ∈ R, d ≥ 0 and all ω ∈ Ω+,

e−d+Stf(ω)−tp ≤ Pt(ω1, . . . , ωt) ≤ ed+Stf(ω)−tp. (2.23)

Then it is easy to realize that UD and SLD are satisfied with τt as in the above specification property
and ct = 3d + τt‖f − p‖. Moreover, SSD is satisfied if one of the following conditions holds: (a)
P̂ = ΘP with Θ as in Definition 2.5 and θt(Ω+

t ) = Ω+
t ; (b) P̂ is also a Gibbs measure (i.e., satisfies

(2.23) for some f̂ and p̂, and all ω in the support Ω+ of P). More generally, we say that P is a weak
Gibbs measure if (2.23) holds with d replaced by dt = o(t). In this case, the decoupling assumptions
above do not hold in general.20 We show in Appendix A.3 that our results can easily be adapted to this
case.

An interesting special case of Example 2.20 is:

Example 2.21. β-shifts. Consider the β-shift for some β > 1 (see [PS05] and references therein). The
weak specification property described in Example 2.20 is satisfied for Lebesgue-almost all β > 1 (see

18See [Lan73, Section A.4] for a pedagogical exposition of this case.
19A typical example would be a subshift of {0, 1, 2}N where each occurrence of the word 01n0 is mandatorily followed by

the word 2b
√
nc0. Then the weak specification property is satisfied with τt = b

√
t+ 2c.

20As discussed in Appendix A.3, our decoupling assumptions are not comparable with the weak Gibbs property.



EXAMPLES 14

the discussion after Corollary 5.1 in [PS05]; the quantity defined in equation (5.9) therein plays the
role of τt), and hence for such β’s our results apply to any (weak) Gibbs measure.

We next turn to Gibbs states. Such measures satisfy at the same time our decoupling assumptions and
the weak Gibbs condition.

Example 2.22. Gibbs states in 1D. Let P∗ be an invariant Gibbs state (in the Dobrushin–Lanford–
Ruelle sense, see for example [Rue04, vFS93, EKW94, LPS95]) for some absolutely summable
interaction on the full two-sided shiftAZ. Then the marginal P of P∗ on the one-sided shiftAN satisfies
UD and SLD with τt ≡ 0 [LPS95, Lemma 2.9]. If one considers also hard-core interactions, i.e., if P∗
is an invariant Gibbs state on a subshift M of AZ, then the proof can be adapted provided M satisfies
the following condition:21 for all η, ω ∈M , and all t ≥ 1, there exists η′ ∈M such that ω[1,t] appears
in η′[1,t+τt], and such that ηi = η′i for all i ∈ Z \ [1, t + τt]. The discussion of SSD in this setup is
similar to the (weak) Gibbs case discussed in Appendix A.3.

The LDPs and FR for Gibbs states have also been obtained using thermodynamic formalism [EKW94,
FO88, OP88, CJPS17, CJPS18], and the proofs therein do not require P to be ϕ-invariant. The condition
on M spelled out in Example 2.22 seems to be slightly more general than those found in the literature
on Gibbs states.

We now turn to examples which genuinely require the full generality of our assumptions.

Example 2.23. A class of hidden Markov chains. In Appendix A.2 we describe a prototypical pair
of hidden Markov chains, which satisfies SSD with τt ≡ 1 and supt ct < ∞, and for which q(α)
displays different types of singularities. Depending on the parameters of the model, one can have that:

• q(α) is finite but not differentiable everywhere on R;

• there exists α∗ ≥ 0 such that q(α) is finite (and even analytic) on (−∞, α∗) and infinite on
(α∗,∞), with either

– limα↑α∗ q(α) = q(α∗) = +∞;

– q(α∗) <∞ and q′(α−∗ ) = +∞;22 or

– q(α∗) <∞ and q′(α−∗ ) <∞.

This leads to situations where either or both [CJPS17] and [BJPP17] fail to apply, or to give the
global LDP in Theorem 2.8. This example illustrates how “non-additive” (or “non-extensive” in
physical terms) σt can be under our assumptions, in the sense that the sequence (t−1σt(ω))t≥1 may be
unbounded for some ω ∈ Ω. A closely related, and physically relevant, example of rotational quantum
instrument will be discussed in [BCJP18].

The following example arises naturally in multifractal analysis, see [OT06, OT10].

Example 2.24. Matrix product probability measures. Let M : A → MN (R) be a map taking
values in the vector space of real N ×N matrices that satisfies the following assumptions:

(A1) The matrix elements of M(a) are non-negative for all a ∈ A.

21This condition is slightly more “flexible” than Condition D in [Rue04, Section 4.1] in the sense that the position
where ω[1,t] appears in η′[1,t+τt] may depend on ω (for fixed t).

22Here and below q′(α−∗ ) denotes the left-derivative of q at α∗.
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(A2) The matrix S =
∑

a∈AM(a) and its transpose ST satisfy

Sv = λv, STw = λw

for some λ > 0 and vectors v, w ∈ RN with strictly positive entries.

For each t ≥ 1 we define a probability measure Pt on Ωt by

Pt(ω1, · · · , ωt) =
1

λt
(w,M(ω1) · · ·M(ωt)v) .

One easily verifies that there exists a unique P ∈ Pϕ(Ω) whose family of marginals is given by (Pt)t≥1.
We shall call such P the matrix product measure associated with the triple (M,v,w). We have:

1. UD holds for P with τt = 0, and supt ct <∞.

2. If the entries of M(a) are strictly positive for all a ∈ A, then SLD holds with τt = 0 and
supt ct <∞.

3. If for one a ∈ A all the entries of M(a) are strictly positive, then SLD holds with τt = 1 and
supt ct <∞ (by taking ξ = a in (2.1)).

4. Suppose that for all a ∈ A some entries of M(a) are vanishing. If the matrix S is irreducible,
i.e., for some r ∈ N the matrix (I + S)r has strictly positive entries (here I denotes the identity
matrix), then SLD holds with τt ≡ r and supt ct <∞. Note that if S is irreducible, then (A2)
automatically holds and P is ergodic. It is easy to construct examples of M for which (A1) and
(A2) hold, S is not irreducible, and SLD fails.

5. Let M̂ : A → MN (R) be another map satisfying (A1) and (A2), and let P̂ be the induced
probability measure. If the matrix

∑
a∈AM(a)⊗ M̂(a) acting on RN ⊗RN is irreducible, then

SSD holds for the pair (P, P̂) with τt and ct that do not depend on t (by an adaptation of the
proof of Proposition 2.6 in [BJPP17]; see also [BCJP18]).

6. If Θ is as in Definition 2.5 and P̂ = ΘP, then in Case 1 (of Definition 2.5), the measure P̂ is the
matrix product measure associated with (M̂, v, w), where M̂(a) = M(u(a)), and in Case 2 the
measure P̂ corresponds to (M̂, w, v) (note the order of w and v), where M̂(a) = MT (u(a)).

7. The quantity q(α) in (2.8) is finite for all α. Indeed, since all the non-zero entries of the matrices
at hand are bounded below by some constant c > 0, the integrand in (2.8) increases at most
exponentially in t on the support of P.

For reasons of space we postpone the detailed discussion of various concrete examples of matrix
product probability measures to [BCJP18].

As a final example, we recall here the setup of the quantum instruments studied [BJPP17], as these were
our initial motivation. We note that any matrix product measure can also be obtained by a well-chosen
positive instrument (see [BCJP18]).

Example 2.25. Positive instruments. LetH be a finite-dimensional complex Hilbert space and B(H)
the vector space of all linear maps A : H → H equipped with inner product (A,B) = tr(A∗B). Let
Φ : A → B(B(H)) be a map satisfying the following assumptions:

(B1) The map Φ(a) is positive23 for all a ∈ A.
23Ψ ∈ B(B(H)) is positive if Ψ(X) ≥ 0 for any X ≥ 0.
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(B2) The map S =
∑

a∈AΦ(a) and its adjoint S∗ satisfy

Sν = λν, S∗ρ = λρ

for some λ > 0 and strictly positive ν, ρ ∈ B(H).

For each t ≥ 1 we define a probability measure Pt on Ωt by

Pt(ω1, · · · , ωt) =
1

λttr(ρν)
tr(ρ(Φ(ω1) ◦ · · · ◦ Φ(ωt)[ν])).

One easily verifies that there exists unique P ∈ Pϕ(Ω) whose family of marginals is given by (Pt)t≥1.
We shall call such P the positive instrument process associated with the positive instrument (Φ, ν, ρ).
If Φ(a) is completely positive24 for all a ∈ A, ν = I is the identity map, and λ = 1, then (Φ, ρ)
is called a quantum instrument and P describes the statistics of the repeated quantum measurement
process generated by (Φ, ρ); see [BJPP17] for additional information and references regarding quantum
instruments and induced processes.

We have:

1. UD holds for P with supt ct <∞ [BJPP17, Lemma 3.4].

2. If Φ(a) is positivity improving25 for all a ∈ A, then the SLD holds with τt = 0 and supt ct <∞.

3. If for one a ∈ A the map Φ(a) is positivity improving, then SLD holds with τt = 1, (by taking
ξ = a in 2.1), and supt ct <∞.

4. Suppose that none of the Φ(a)’s is positivity improving. If the map S is irreducible, i.e., for
some r ∈ N the map (ı+ S)r is positivity improving26 (ı ∈ B(B(H)) denotes the identity map),
then SLD holds with supt τt < ∞ and supt ct < ∞. We remark that if S is irreducible, then
(A2) automatically holds and P is ergodic.

5. Let Φ̂ : A → B(B(H)) be another map satisfying (A1) and (A2), and let P̂ be the induced
positive instrument process. If the map

∑
a∈AΦ(a) ⊗ Φ̂(a) acting on B(H) ⊗ B(H) is irre-

ducible, then SSD holds for the pair (P, P̂) with τt and ct that do not depend on t; see [BJPP17,
Proposition 2.6].27

6. If Θ is as in 2.5 and P̂ = ΘP, then in Case 1 the measure P̂ is the positive instrument process
associated with (Φ̂, ν, ρ), where Φ̂(a) = Φ(u(a)). In Case 2, P̂ is the positive instrument process
associated with (Φ̂, ρ, ν), where Φ̂(a) = Φ∗(u(a)).

7. Unlike for products of matrices, we do not have in general that q(α) <∞ for all α ∈ R. See the
rotational instruments in [BCJP18].

Again, for details and discussion of concrete examples we refer the reader to [BCJP18].
24Ψ ∈ B(B(H)) is completely positive for all k ≥ 1 the map idk ⊗ Ψ ∈ B(Ck×k ⊗ B(H)) is positive, where

idk : Ck×k → Ck×k is the identity.
25Ψ ∈ B(B(H)) is positivity improving if Ψ(X) > 0 for any non-zero X ≥ 0.
26See [EHK78, Section 2.1].
27It is easy to realize that Assumption (C) in [BCJP18] together with UD imply SSD, see also [BCJP18].
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3 General constructions and abstract LDP

We start with some further notation and conventions that will be used throughout the paper. A function f
on Ω is Ft-measurable if and only if it depends only on the variables ω1, . . . , ωt of Ω. We identify the
space of Ft-measurable functions and the space28 C(Ωt) in the obvious way, and for such functions we
write f(ω) and f(ω1, . . . , ωt) interchangeably. The space Cfin(Ω) consisting of all functions which are
Ft-measurable for some t is dense in C(Ω).

By this identification, any function f ∈ C(Ωt) is associated with a Ft-measurable random variable
on (Ω,B,P). Conversely, any Ft-measurable real-valued random variable f on (Ω,B,P) is associated
with a function f ∈ C(Ω+

t ), and can be extended to a function in C(Ωt) by defining f(w) arbitrarily
for w ∈ Ωt \ Ω+

t . We note that with this notation, 〈f,P〉 =
∑

w∈Ω+
t
f(w)P(w). These considerations

extend to Rd-valued functions, and the corresponding spaces are denoted by C(Ω,Rd) and Cfin(Ω,Rd).

Following these conventions, the quantity σt defined in (2.7) can be expressed as

σt(w) = log
Pt(w)

P̂t(w)
, w ∈ Ω+

t , (3.1)

which is well defined since Pt � P̂t.

3.1 Construction of ψn,t

For any pair of integers t, n with t ≥ n ≥ 1, we define

N = N(t, n) := 2

⌊
t

2(n+ τn)

⌋
and t′ = t′(t, n) := Nn ≤ t, (3.2)

where τn is the integer defined in Section 2.2. Observe that N is even. An important inequality
following from the definition of t′ is

t

1 + τn/n
− 2n ≤ t′(t, n) ≤ t, (3.3)

which implies that

lim
n→∞

lim sup
t→∞

∣∣∣∣ t′(t, n)

t
− 1

∣∣∣∣ ≤ lim
n→∞

lim sup
t→∞

(
2n

t
+
τn
n

1

1 + τn/n

)
= 0. (3.4)

For each n, we define the decoupled measure P(n) = (Pn)×N (which is ϕn-invariant, but not ϕ-
invariant). The projections of P(n) are given, if t = mn+ j with 0 ≤ j < n, by

P(n)
t (w) =

(
m−1∏
k=0

Pn(w[kn+1,(k+1)n])

)
Pj(w[mn+1,t]), (3.5)

where the last term is 1 if j = 0. We also define

Λt′ = (Ω+
n )N = {w ∈ Ωt′ : Pn(w[kn+1,(k+1)n]) > 0, k = 0, 1, . . . , N − 1}, (3.6)

28Since Ωt is endowed with the discrete topology, all functions on Ωt are continuous.
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which is the support of P(n)
t′ . Note that obviously Ω+

t′ ⊂ Λt′ .

The main result of this subsection is the following proposition that provides a way to compare the two
discrete probability spaces (Ωt′ ,P

(n)
t′ ) and (Ωt,Pt).

Proposition 3.1. Assume SLD. Then there exists a mapping ψn,t : Ωt′ → Ωt such that the following
holds.

1. There exists a function g(n, t) such that

P(n)
t′ ◦ ψ

−1
n,t ≤ eg(n,t) Pt, (3.7)

lim
n→∞

lim sup
t→∞

1

t
g(n, t) = 0. (3.8)

2. Assume furthermore SSD. Then ψn,t can be chosen so that, in addition to the above,

lim
n→∞

lim sup
t→∞

1

t
sup
w∈Λt′

∣∣∣∣∣σt(ψn,t(w))−
N−1∑
k=0

σn(w[kn+1,(k+1)n])

∣∣∣∣∣ = 0. (3.9)

Remark 3.2. It follows from (3.7) (see also (3.10)) that ψn,t(Λt′) ⊂ Ω+
t . In particular, all the quantities

in (3.9) are well defined (see (3.1)). Note that the map ψn,t is in general neither injective nor surjective.
The function g(n, t) will contain two contributions: one coming from the ratio Pt(ψn,t(w))/P(n)

t′ (w),
and one coming from the maximal number of pointsw ∈ Ωt′ which share the same image ψn,t(w) ∈ Ωt.

Remark 3.3. For further reference, we make the immediate observation that (3.7) is equivalent to the
fact that for all A ⊂ Ωt′ ,

P(n)
t′ (A) ≤ eg(n,t)Pt(ψn,t(A)), (3.10)

and to the fact that for each function h : Ωt → [0,∞) we have∑
w∈Ωt′

h(ψn,t(w))P(n)
t′ (w) ≤ eg(n,t)

∑
w∈Ωt

h(w)Pt(w). (3.11)

Remark 3.4. The structure of ψn,t here is very similar to a construction used in Section 2 of [Fen09]
in the context of products of matrices.

We start with two technical lemmas.

Lemma 3.5. There exists a constant C such that the following holds. For all t, k ∈ N and all v ∈ Ωt,
there exists b ∈ Ωk such that

P(bv) ≥ P(v)e−Ck. (3.12)

Assuming SSD, b can be chosen so that, in addition to the above,

P̂(bv) ≥ P̂(v)e−Ck. (3.13)

Proof. The first statement holds with C = log |A|, since for all v ∈ Ωt we have

P(v) =
∑
b∈Ωk

P(bv) ≤ |A|k max
b∈Ωk

P(bv).
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The second statement is less trivial because (3.12) and (3.13) have to hold for the same b. Fix a symbol
a such that P1(a)P̂1(a) > 0 (which is possible by the absolute continuity condition (2.3)). We claim
that the result holds with C = c1 − log(P1(a) ∧ P̂1(a)). Assume first that k = 1. Then for all v ∈ Ωt,
there exists |ξ| ≤ τ1 such that

P](aξv) ≥ e−c1P](a)P](v) ≥ e−CP](v)

for both P] = P and P] = P̂. Now, let b = a if |ξ| = 0, and b = ξ1 otherwise. We then have

P](bv) ≥ P](aξv) ≥ e−CP](v),

which shows that both (3.12) and (3.13) hold in the case k = 1. The general statement follows by
induction on k. 2

The following lemma is immediate.

Lemma 3.6. Let (X1, P1) and (X2, P2) be two discrete probability spaces (with the discrete σ-algebra).
Let ψ : X1 → X2 be a mapping which is at most r-to-one, and assume that P1(ω) ≤ cP2(ψ(ω)) for
all ω ∈ X1. Then

P1 ◦ ψ−1 ≤ crP2. (3.14)

We can now prove the main result of this subsection.

Proof of Proposition 3.1. The map ψn,t : Ωt′ → Ωt is constructed as follows. For w ∈ Ωt′ , we write
w = w1w2 . . . wN with wi ∈ Ωn, and define

ψn,t(w) := bw1ξ1w2ξ2 . . . wN−1ξN−1wN (3.15)

for some ξi, b ∈ Ωfin to be chosen below that will satisfy |ξi| ≤ τn and

|b| = δ := t− t′ −
N−1∑
i=1

|ξi|

(which may be zero), so that |ψn,t(w)| = t. Observe that

t− t′ ≥ δ ≥ t−N(n+ τn) ≥ 0. (3.16)

Using SLD, we choose first |ξN−1| ≤ τn such that

P
(
wN−1ξN−1wN

)
≥ e−cnP

(
wN−1

)
P
(
wN
)
.

Then we choose |ξN−2| ≤ τn such that

P
(
wN−2ξN−2wN−1ξN−1wN

)
≥ e−cnP

(
wN−2

)
P
(
wN−1ξN−1wN

)
≥ e−2cnP

(
wN−2

)
P
(
wN−1

)
P
(
wN
)
.

Continuing this process, we choose ξN−3, . . . , ξ1 such that

P
(
w1ξ1w2ξ2 . . . wN−1ξN−1wN

)
≥ e−(N−1)cnP

(
w1
)
P
(
w2
)
· · ·P

(
wN
)

= e−(N−1)cnP(n)(w).
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Finally, if δ ≥ 1, we choose b ∈ Ωδ so that (3.12) holds with v = w1ξ1w2ξ2 . . . wN−1ξN−1wN and
k = δ, and thus

P(ψn,t(w)) ≥ e−(N−1)cn−CδP(n)(w).

If δ = 0, we choose b as the empty word, and the above also holds. Next, (3.16) implies that

(N − 1)cn + Cδ ≤ (N − 1)cn + (t− t′)C =: g1(n, t),

and so

P(ψn,t(w)) ≥ e−g1(n,t)P(n)(w). (3.17)

The mapping ψn,t is not injective. In order to retrieve w ∈ Ωt′ from ψn,t(w), it suffices to know
the length of ξ1, . . . , ξN−1, and there are at most (τn + 1)N−1 possibilities. Thus, ψn,t is at most
(τn + 1)N−1-to-one. By Lemma 3.6, we obtain (3.7) with

g(n, t) = g1(n, t) + (N − 1) log(τn + 1). (3.18)

To finish the proof of Part 1, observe that

g(n, t)

t
≤ cn

n
+ C

t′ − t
t

+
log(τn + 1)

n
,

which by (3.4), shows that (3.8) also holds.

To prove Part 2 of the proposition, assume SSD, and let w ∈ Λt′ . We then proceed exactly as above.
By SSD one can choose ξ1, . . . , ξN−1 such that

e−(N−1)cnP]
(
w1
)
P]
(
w2
)
· · ·P]

(
wN
)
≤ P]

(
w1ξ1w2ξ2 . . . wN−1ξN−1wN

)
≤ e(N−1)cnP]

(
w1
)
P]
(
w2
)
· · ·P]

(
wN
)

for both P] = P and P] = P̂. Note that all quantities here are positive, since w ∈ Λt′ implies, by
definition, that all the wi are in the support of Pn, and hence in that of P̂n by (2.3).

Defining δ as above and choosing b ∈ Ωδ as in Lemma 3.5 (with b = κ if δ = 0), we obtain that ψn,t(w)
defined by (3.15) satisfies

e−(N−1)cn−CδP]
(
w1
)
· · ·P]

(
wN
)
≤ P](ψn,t(w)) ≤ e(N−1)cnP]

(
w1
)
· · ·P]

(
wN
)
.

Recalling definition of σt and σn and using the inequality

(N − 1)cn ≤ (N − 1)cn + Cδ ≤ g1(n, t) ≤ g(n, t),

we finally obtain ∣∣∣∣∣σt(ψn,t(w))−
N∑
k=1

σn(wk)

∣∣∣∣∣ ≤ 2g(n, t), (3.19)

which implies (3.9). This completes the proof of Proposition 3.1. 2



RUELLE–LANFORD FUNCTIONS 21

3.2 Ruelle–Lanford functions

Let X be a locally convex Hausdorff topological vector space. Throughout, we denote by Nx the set of
open neighborhoods of x ∈ X and endow X with its Borel σ-algebra.

Given a sequence (zt)t≥1 of X-valued random variables on (Ω,B,P), we define the following two
set-increasing functions on the Borel sets of X:

s(A) := lim inf
t→∞

1

t
logP

(
1

t
zt ∈ A

)
,

s(A) := lim sup
t→∞

1

t
logP

(
1

t
zt ∈ A

)
.

(3.20)

Definition 3.7. If for all x ∈ X we have

inf
G∈Nx

s(G) = inf
G∈Nx

s(G), (3.21)

then the quantity s(x) defined by the two expressions in (3.21) is called the Ruelle–Lanford function.

When defined, the function s is upper semicontinuous. Indeed, for all x ∈ X and ε > 0, there exists
G ∈ Nx such that s(G) ≤ s(x) + ε, and for each x′ ∈ G, we have s(x′) ≤ s(G) ≤ s(x) + ε.

We now give sufficient conditions for the Ruelle–Lanford function to exist.

Definition 3.8. We say that (zt)t≥1 is admissible if for all x1, x2 ∈ X , and for every neighborhood G
of x := 1

2x1 + 1
2x2, there exist G1 ∈ Nx1 and G2 ∈ Nx2 such that

s(G) ≥ 1

2
s(G1) +

1

2
s(G2). (3.22)

Proposition 3.9. Let (zt)t≥1 be admissible. Then (3.21) holds for all x, so that the Ruelle–Lanford
function s is well defined. Moreover, 1

t zt satisfies the weak LDP with convex rate function −s, in the
sense that for every open set O ⊂ X ,

s(O) ≥ sup
x∈O

s(x) (3.23)

and that for every compact set Γ ⊂ X ,

s(Γ) ≤ sup
x∈Γ

s(x). (3.24)

If, in addition, the laws of 1
t zt are exponentially tight, then −s is a good rate function, and 1

t zt satisfies
the LDP, i.e., (3.24) holds for any closed set Γ ⊂ X .

Proof. For the reader’s convenience, we include a complete proof, although this is a classical result (see
[Pfi02, Proposition 3.5] or [DZ00, Lemmas 4.1.11 and 4.1.21]). First, the special case x = x1 = x2 in
(3.22) immediately implies that the two infima in (3.21) are equal, so that s is well defined. Next, if
x = 1

2x1 + 1
2x2, then (3.22) yields s(x) ≥ 1

2(s(x1) + s(x2)). Since s is upper semicontinuous, this
inequality implies that s is concave (by a bisection method).

We now turn to the LDP. First, (3.23) is immediate. Indeed, for any open set O ⊂ X and every x ∈ O
we have O ∈ Nx, so that s(O) ≥ s(x). Since this holds for all x ∈ O, we obtain (3.23).

The bound (3.24) is more involved. Let Γ be closed, and let ε > 0. It suffices to prove (3.24) in the
following two cases.
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• Case 1: the distribution of 1
t zt is exponentially tight. Then, there exists a compact set K such

that s(Kc) ≤ −1/ε. We let then G0 = Γ ∩Kc. Thus, for each x ∈ G0, we have s(x) ≤ −1/ε.

• Case 2: Γ is compact. Then we let G0 = ∅.
Observe that in both cases Γ \G0 is compact. For each x ∈ Γ \G0, there exists an open neighborhood
Gx of x such that s(Gx) ≤ s(x) + ε ≤ supy∈Γ s(y) + ε. Now, {Gx : x ∈ Γ \G0} is a cover of Γ \G0,
and by compactness one can extract a finite subcover {Gi : i = 1, . . . , n}. Since Γ ⊂

⋃n
i=0Gi, one

has

s(Γ) ≤ lim sup
t→∞

1

t
log

(
n∑
i=0

P
(zt
t
∈ Gi

))
≤ max

i=0,...,n
s(Gi) ≤ max(−1/ε, sup

x∈Γ
s(x) + ε).

Sending ε→ 0 completes the proof of (3.24).

Finally, we show that exponential tightness implies the goodness of the rate function I := −s (see for
example [DZ00, Lemma 1.2.18]). Let a ∈ R, and let La = {x ∈ X : I(x) ≤ a} be the corresponding
level set (which is closed by lower semicontinuity of I). Assuming exponential tightness, there is a
compact set K such that s(Kc) < −a, and applying (3.23) to O = Kc yields infx∈Kc I(x) > a. Thus,
La ⊂ K, and hence La is compact. 2

3.3 Compatible observables

In this subsection we assume SLD, so that ψn,t is well defined and Part 1 of Proposition 3.1 holds. In
this subsection N = N(t, n) and t′ = t′(t, n) are as in (3.2) and Λt′ is as in (3.6).

Definition 3.10. LetX = Rd and let (zt)t≥1 be a sequence ofX-valued random variables on (Ω,B,P).
We say that (zt)t≥1 is ψ-compatible if zt is Ft-measurable for each t, and the function

h(n, t) :=
1

t
sup
w∈Λt′

∣∣∣∣∣zt(ψn,t(w))−
N−1∑
k=0

zn(w[kn+1,(k+1)n])

∣∣∣∣∣
satisfies

lim
n→∞

lim sup
t→∞

h(n, t) = 0. (3.25)

Proposition 3.11. Let (zt)t≥1 be ψ-compatible. Then the following holds.

1. For all x = 1
2x1 + 1

2x2 ∈ Rd and 0 < ε < ε′, we have

s(B(x, ε′)) ≥ 1

2
s(B(x1, ε)) +

1

2
s(B(x2, ε)).

In particular (zt)t≥1 is admissible, and the conclusions of Proposition 3.9 hold.

2. There exists a sequence (γt)t≥1 with γt → 0 such that for all ε > 0, all t ≥ 1 and all x ∈ Rd,29

1

t
logP

(zt
t
∈ B(x, ε)

)
≤ γt + sup

y∈B(x,ε+(1+|x|)γt)
s(y), (3.26)

where s is defined as in Proposition 3.9.
29Note that the bound is uniform in both t and x. This will be crucial in the proof of Proposition 5.2 below.
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Proof. We shall prove that there exists a sequence (γt)t≥1 with γt → 0 such that for all ε > 0, all t ≥ 1
and all x = 1

2x1 + 1
2x2 ∈ Rd, we have

1

2t
logP

(zt
t
∈ B(x1, ε)

)
+

1

2t
logP

(zt
t
∈ B(x2, ε)

)
≤ s(B(x, ε+ (1 + |x|)γt)) + γt. (3.27)

This relation yields both Part 1 and Part 2 of the proposition. Part 1 follows by taking the limit t→∞
and using that, for fixed x, we have

(1 + |x|)γt ≤ ε′ − ε
for t large enough. For Part 2, we take x1 = x2 = x in (3.27), and by (3.24) we obtain (3.26) with the
ball B(x, ε+ (1 + |x|)γt) replaced by its closure in the right-hand side. By taking γt slightly larger,
we then obtain (3.26).

To prove (3.27), let x = 1
2x1 + 1

2x2 ∈ Rd and ε > 0. In the following, j(k) = 1 if k is odd, j(k) = 2
if k is even, and we write Ik = [kn+ 1, (k + 1)n]. By assumption, for any w ∈ Λt′ ,∣∣∣∣1t zt(ψn,t(w))− x

∣∣∣∣ ≤
∣∣∣∣∣1t

N−1∑
k=0

zn(wIk)− x

∣∣∣∣∣+ h(n, t)

≤

∣∣∣∣∣nt
N−1∑
k=0

(
zn(wIk)

n
− x
)∣∣∣∣∣+ h(n, t) + |x|

(
1− t′

t

)

=

∣∣∣∣∣nt
N−1∑
k=0

(
zn(wIk)

n
− xj(k)

)∣∣∣∣∣+ h(n, t) + |x|
(

1− t′

t

)
,

where the last equality holds because N is even and x = 1
2x1 + 1

2x2. Using further that nt ≤
1
N leads to∣∣∣∣1t zt(ψn,t(w))− x

∣∣∣∣ ≤ 1

N

N−1∑
k=0

∣∣∣∣zn(wIk)

n
− xj(k)

∣∣∣∣+ h(n, t) + |x|
(

1− t′

t

)
.

Let un = n−1 + lim supt→∞max
(
h(n, t), 1− t′

t

)
. By (3.4) and (3.25) we have un → 0. In addition,

for each fixed n, there exists t0(n) such that for all t ≥ t0(n),∣∣∣∣1t zt(ψn,t(w))− x
∣∣∣∣ ≤ 1

N

N−1∑
k=0

∣∣∣∣zn(wIk)

n
− xj(k)

∣∣∣∣+ (1 + |x|)un,

and hence

ψn,t

(
N−1⋂
k=0

{
w ∈ Λt′ :

1

n
zn(wIk) ∈ B(xj(k), ε)

})
⊂
{
w ∈ Ω+

t :
1

t
zt(w) ∈ B′

}
,

where B′ = B(x, ε+ (1 + |x|)un). Using (3.10) and translation invariance, for all t ≥ t0(n) we derive

P
(zt
t
∈ B′

)
≥ Pt

(
ψn,t

(
N−1⋂
k=0

{
w ∈ Λt′ :

1

n
zn(wIk) ∈ B(xj(k), ε)

}))

≥ e−g(n,t)P(n)
t′

(
N−1⋂
k=0

{
w ∈ Λt′ :

1

n
zn(wIk) ∈ B(xj(k), ε)

})

= e−g(n,t)
(
Pn
(zn
n
∈ B(x1, ε)

))N
2
(
Pn
(zn
n
∈ B(x2, ε)

))N
2
.
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Using also that Nt ≤
1
n , and sending t→∞, we obtain

s(B(x, ε+ (1 + |x|)un)) ≥ 1

2n
logP

(zn
n
∈ B(x1, ε)

)
+

1

2n
logP

(zn
n
∈ B(x2, ε)

)
− u′n,

where u′n = lim supt→∞
g(n,t)
t . By (3.8) we have u′n → 0. Defining γn = max(un, u

′
n) completes the

proof of (3.27). 2

Lemma 3.12. Let (zt)t≥1 be ψ-compatible. Then, for all α ∈ Rd, the limit

q(α) := lim
t→∞

1

t
log
〈
e(α,zt),P

〉
(3.28)

exists and takes value in (−∞,∞]. Moreover, the function q(α) is convex and lower semicontinuous.

Proof. Let h(n, t) be as in Definition 3.10. Consider

At(α) =
〈
e(α,zt),P

〉
.

For each finite t, the map α 7→ At(α) is continuous. Recall that by definition of ψ-compatibility, zn is
Fn-measurable. Thus, by invariance and (3.11),

(An(α))N =
∑
w∈Λt′

exp

{N−1∑
k=0

(
α, zn(w[kn+1,(k+1)n])

)}
P(n)
t′ (w)

≤ e|α|th(n,t)
∑
w∈Λt′

e(α,zt(ψn,t(w)))P(n)
t′ (w)

≤ e|α|th(n,t)+g(n,t)
∑
w∈Ω+

t

e(α,zt(w))Pt(w)

= e|α|th(n,t)+g(n,t)At(α).

It follows that
1

t
logAt(α) ≥ N

t
logAn(α)− |α|h(n, t)− g(n, t)

t
=

1

n

t′

t
logAn(α)− |α|h(n, t)− g(n, t)

t
.

By (3.8), (3.4) and (3.25), there exists δn → 0 such that

lim inf
t→∞

1

t
logAt(α) ≥ 1

n
(1 + δn) logAn(α)− (1 + |α|)δn . (3.29)

Taking now the lim sup as n→∞ yields

lim inf
t→∞

1

t
logAt(α) ≥ lim sup

n→∞

1

n
logAn(α),

and so q(α) exists. Combining this with (3.29), we derive

q(α) = sup
n≥1

(
1

n
(1 + δn) logAn(α)− (1 + |α|)δn

)
.

It follows that q(α) > −∞, and since the right-hand-side is a supremum over a family of continuous
functions (with respect to α), we also derive that q(α) is lower semicontinuous. Finally, it follows from
Hölder’s inequality that the functions 1

t logAt(α) are convex and, hence, so is their limit q(α). 2
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4 Level-1 LDP

In this section we assume again SLD. Thus, Part 1 of Proposition 3.1 holds, and again N = N(t, n)
and t′ = t′(t, n) are as in (3.2).

Lemma 4.1. Let f ∈ C(Ωr,Rd), and let zt := St−r+1f . Then, (zt)t≥1 is ψ-compatible. (We take the
convention that Sjf = 0 if j ≤ 0).

Proof. Clearly zt is Ft-measurable. Recall that by its definition (3.15), ψn,t is expressed as

ψn,t(w) = bw[1,n]ξ
1w[n+1,2n]ξ

2 . . . ξN−1w[(N−1)n+1,Nn], w ∈ Ωt′ .

For n ≥ r and t large enough, we have

h(n, t) =
1

t
sup
w∈Λt′

∣∣∣∣∣zt(ψn,t(w))−
N−1∑
k=0

zn(w[kn+1,(k+1)n])

∣∣∣∣∣
=

1

t
sup
w∈Λt′

∣∣∣∣∣
t−r∑
s=0

f
(
ϕs(ψn,t(w)

)
−
N−1∑
k=0

n−r∑
s=0

f
(
ϕs(w[kn+1,(k+1)n])

)∣∣∣∣∣
≤ ‖f‖

t
(t− r + 1−N(n− r + 1)) ≤ ‖f‖(t− t′ +Nr)

t
≤ ‖f‖

(
1− t′

t
+
r

n

)
,

where the first inequality follows from the observation that all the terms of the iterated sum are also
present in the first sum. By (3.4), it follows that (3.25) holds, and so (zt)t≥1 is ψ-compatible. 2

Proposition 4.2. For all f ∈ C(Ω,Rd) and all α ∈ Rd, the limit

qf (α) := lim
t→∞

1

t
log
〈
e(α,Stf),P

〉
is finite. Moreover, the map (f, α) 7→ qf (α) is convex in both arguments, |α|-Lipschitz with respect
to f , and ‖f‖-Lipschitz with respect to α.

Proof. For each t, the function

(α, f) 7→ 1

t
log
〈
e(α,Stf),P

〉
has the convexity and Lipschitz properties stated in the proposition (convexity follows again from
Hölder’s inequality). By Lemmas 3.12 and 4.1, for every f ∈ C(Ωr,Rd) and α ∈ Rd, the limit

lim
t→∞

1

t
log
〈
e(α,Stf),P

〉
= lim

t→∞

1

t
log
〈
e(α,St+r−1f),P

〉
exists and is finite. Thus, qf (α) exists for all f ∈ Cfin(Ω,Rd). Since Cfin(Ω,Rd) is dense in C(Ω,Rd),
the |α|-Lipschitz continuity in f implies that the limit exists for all f ∈ C(Ω,Rd). The convexity and
Lipschitz properties are preserved in the limit. 2

Proposition 4.3. Let f ∈ C(Ω,Rd) and let zt := Stf . Then, (zt)t≥1 is admissible and the distribution
of 1

t zt is exponentially tight. Thus 1
t zt satisfies the LDP (see (2.5) and (2.6)) with good convex rate

function If , where If is the Fenchel–Legendre transform of qf .
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Proof. We first prove the admissibility claim, with X = Rd. Let x = 1
2x1 + 1

2x2 ∈ Rd and let G ∈ Nx.
Without loss of generality, we assume that G = B(x, ε) for some ε > 0. Since f is continuous, for
δ = ε/6 there exists an integer r ≥ 1 and an Fr-measurable function f̃ such that ‖f − f̃‖ ≤ δ. Define
now z̃t = St−r+1f̃ , which is Ft-measurable. We have∥∥∥∥1

t
zt −

1

t
z̃t

∥∥∥∥ =

∥∥∥∥1

t
Stf −

1

t
St−r+1f̃

∥∥∥∥ ≤ δ +
r − 1

t
‖f‖. (4.1)

By Lemma 4.1, (z̃t)t≥1 is ψ-compatible. Denote by s and s the functions defined in (3.20), and let s̃
and s̃ be the corresponding functions defined for z̃t. As a consequence of Proposition 3.11, we have

s̃(B(x, ε− 2δ)) ≥ s̃(B(x1, ε− 3δ))

2
+
s̃(B(x2, ε− 3δ))

2
. (4.2)

Using (4.1), we obtain that for t large enough,

P
(

1

t
zt ∈ B(x, ε)

)
≥ P

(
1

t
z̃t ∈ B(x, ε− 2δ)

)
,

P
(

1

t
z̃t ∈ B(xi, ε− 3δ)

)
≥ P

(
1

t
zt ∈ B(xi, ε− 5δ)

)
,

which, with (4.2), imply that

s(B(x, ε)) ≥ s(B(x1, ε− 5δ))

2
+
s(B(x2, ε− 5δ))

2
.

Hence, (zt)t≥1 is admissible. The distribution of 1
t zt is compactly supported since ‖1

t zt‖ ≤ ‖f‖, and
hence exponentially tight. Thus, by Proposition 3.9, the LDP holds with good convex rate function If
(which is equal to −s in the notation of Proposition 3.9). We now denote by I∗f the Fenchel–Legendre
transform of If , and by q∗f the Fenchel–Legendre transform of qf .

In order to identify If and q∗f (see [DZ00, Theorem 4.5.10] for a similar argument), we use Varadhan’s
integral theorem and the convexity of If . For α, u ∈ Rd, let φα(u) = (α, u) (which is continuous as a
function of u for fixed α), and let Pt be the distribution of 1

t zt. We have

qf (α) = lim
t→∞

1

t
log

∫
Rd
etφα(u)dPt(u).

Since for any γ > 1 we have qf (γα) <∞ by Proposition 4.2, the conditions of Varadhan’s theorem
(see [DZ00, Theorem 4.3.1] or [DS89, Theorem 2.1.10]) are met, and we obtain qf (α) = I∗f (α). Since
this is true for all α ∈ Rd and since If is convex and continuous (in particular, lower semicontinuous),
we find If = q∗f , which completes the proof. 2

5 LDP for entropy production

5.1 Main results

In this section we assume SSD, so that ψn,t is well defined and Parts 1 and 2 of Proposition 3.1 hold.
In particular, (3.9) shows that (1

tσt)t≥1 is ψ-compatible and hence admissible by Proposition 3.11.
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Proposition 5.1. The limit

q(α) := lim
t→∞

1

t
log 〈eασt ,P〉

exists and takes value in (−∞,∞]. The function q is lower semicontinuous and convex. We have
q(0) = 0 and q(−1) ≤ 0, so that q is non-positive (and hence finite) on [−1, 0].

Proof. Since (1
tσt)t≥1 is admissible, we find by Lemma 3.12 (with d = 1) that q(α) exists, takes value

in (−∞,∞], and is lower semicontinuous and convex. We have obviously q(0) = 0. Moreover,

1

t
log
〈
e−σt ,P

〉
=

1

t
log

∑
w∈Ω+

t

P̂t(w)

Pt(w)
Pt(w) =

1

t
log P̂t(Ω+

t ) ≤ 0,

and so q(−1) ≤ 0. By convexity, q(α) is non-positive (and hence finite) on [−1, 0]. This completes the
proof. 2

In the sequel, we denote by I∗ and q∗ the Fenchel–Legendre transforms of I and q.

Proposition 5.2. The random variable 1
tσt satisfies the LDP (see (2.9) and (2.10)) with a convex rate

function I given by I(s) = q∗(s) for all s ∈ R. Moreover, if q(α) <∞ in a neighborhood of 0, then I
is a good rate function.

Proof. Since (1
tσt)t≥1 is admissible, it satisfies by Proposition 3.9 the weak LDP with convex rate

function I . To strengthen the result to the LDP (i.e., to show that (2.10) is true also for unbounded
Γ), we separate the following two cases (recall that q(α) is finite and non-positive on [−1, 0], and that
q(−1) ≤ 0 = q(0)).

• If q(α) <∞ in a neighborhood of the origin, a standard application of Chebychev’s inequality
shows that the distribution of 1

tσt is exponentially tight, so that the weak LDP is in fact the LDP,
and I is a good rate function.

• If q(α) = ∞ for all α > 0, then we have limx→+∞ q
∗(x) = 0. The identification I = q∗,

which we prove below, implies that limx→+∞ I(x) = 0 (in particular I is not a good rate
function). We now show that the LDP still holds. If Γ is a closed set such that sup Γ = +∞, then
infx∈Γ I(x) = 0, and hence (2.10) is trivial. Assume on the contrary that Γ is a closed set such
that sup Γ <∞ (but possibly inf Γ = −∞). Then, since q(−1) <∞, Chebychev’s inequality
provides the necessary exponential tightness on the negative half-line in order to show (2.10) (by
a minor and standard adaptation of the argument in the proof of Proposition 3.9).

We now turn to the comparison of I and q∗. If q(α) < ∞ for all α ∈ R, we can proceed exactly as
in Proposition 4.3, by using Varadhan’s theorem to obtain that q = I∗, and then the convexity of I to
obtain that I = q∗. However, in the general case, more specific estimates are required in order to show
that q = I∗. We split the proof of this identity into three steps. Steps 1 and 3 are almost identical to
the proof of Varadhan’s theorem (see [DZ00, Theorem 4.3.1] or [DS89, Theorem 2.1.10]), although
our assumptions are slightly different. Step 2, however, is quite specific to our setup (see Remark 5.3
below).
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Step 1: q ≥ I∗. We denote by Pt the distribution of t−1σt on R. For any x, α ∈ R and ε > 0, we have

q(α) ≥ lim inf
t→∞

1

t
log

∫
etαy1ly∈B(x,ε)Pt(dy)

≥ (αx− |α|ε) + lim inf
t→∞

1

t
logPt(B(x, ε))

≥ (αx− |α|ε)− inf
y∈B(x,ε)

I(y) ≥ αx− |α|ε− I(x).

Letting ε→ 0, we get q(α) ≥ αx− I(x). Since α and x are arbitrary, we obtain q ≥ I∗.
Step 2: Tail estimates. Let

α− = lim
x→−∞

I(x)

x
, α+ = lim

x→+∞

I(x)

x
.

By convexity the two limits exist, and since I is non-negative we have α− ∈ [−∞, 0] and α+ ∈ [0,∞].
Moreover, since 0 ≥ q(−1) ≥ I∗(−1) = supx∈R(−x− I(x)), we actually have α− ∈ [−∞,−1], and
in particular α− < α+. Let α ∈ (α−, α+), and set δ = 1

2 min(1, |α − α−|, |α − α+|). Then there
exists c > 0 such that

I(x) ≥ αx+ δ|x| − c for all x ∈ R. (5.1)

Using this and (3.26) we find

1

t
logPt

(
(k − 1, k + 1)

)
≤ γt − inf

y∈B(k,1+(1+|k|)γt)
I(y)

≤ −αk − δ|k|+ c′ + c′′|k|γt,

where γt → 0, and the constants c′, c′′ are independent of t and k. It follows that, for all t large enough,

Pt
(
(k − 1, k + 1)

)
≤ exp

((
−αk − δ

2 |k|+ c′
)
t
)
,

whence there exists C > 0, depending only on α, such that for all K > 0,

RK := lim sup
t→∞

1

t
log

∫
|x|>K

eαtxPt(dx) ≤ −Kδ

2
+ C. (5.2)

Step 3: q ≤ I∗. If α /∈ [α−, α+], we clearly have I∗(α) = +∞ ≥ q(α). It therefore remains to
show that q(α) ≤ I∗(α) for all α ∈ [α−, α+]. Since both I∗ and q are convex, lower semicontinuous
functions, it is enough to consider α ∈ (α−, α+). We now fix α ∈ (α−, α+), ε > 0 and K > 0. For
all x ∈ [−K,K], there exists an open neighborhood Gx such that

inf
y∈Gx

I(y) ≥ (I(x)− ε) ∧ ε−1, sup
y∈Gx

αy ≤ αx+ ε.

We extract a finite subcover {Gx1 , . . . , Gxn} of [−K,K] and write

lim sup
t→∞

1

t
log

∫
Gxi

eαtyPt(dy) ≤ lim sup
t→∞

1

t
log
(
eαtxi+εtPt(Gxi)

)
≤ αxi + ε− (I(xi)− ε) ∧ ε−1

= max
(
αxi − I(xi) + 2ε, αxi + ε− ε−1

)
≤ max

(
I∗(α) + 2ε, |α|K + ε− ε−1

)
.
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It follows that

q(α) ≤ lim sup
t→∞

1

t
log

(∫
|x|>K

eαtxPt(dx) +

n∑
i=1

∫
Gxi

eαtxPt(dx)

)
≤ max

{
RK , I

∗(α) + 2ε, |α|K + ε− ε−1
}
.

Sending ε→ 0 shows that q(α) ≤ max(RK , I
∗(α)). Finally, sending K →∞ and using (5.2) yields

q(α) ≤ I∗(α), which completes the proof. 2

Remark 5.3. The tail estimates in Step 2 above are equivalent to the statement that q(α) < ∞ for
all α ∈ (α−, α+), which is obviously a necessary condition in order to have q = I∗ . The uniform
bound (3.26) is crucial in Step 2. An instructive example of what can go wrong without it is given by
the family of distributions dPt

dx = (1− e−t2)
√
t/πe−tx

2
+ 1

2e
−t2(δt(x) + δ−t(x)), which satisfies the

LDP with rate function I(x) = x2. Here α± = ±∞ while

q(α) = lim
t→∞

1

t
log

∫
etαxPt(dx) = α2/4 +∞1l|α|>1.

One now easily checks that q and I∗ coincide only on [−1, 1], and that I and q∗ coincide only on
[−1/2, 1/2].

Lemma 5.4. If P̂ = ΘP with Θ as in Definition 2.5, then q satisfies

q(−α) = q(α− 1), α ∈ R, (5.3)

and I satisfies the Gallavotti–Cohen symmetry

I(−s) = I(s) + s, s ∈ R. (5.4)

Proof. Recalling that θt = θ−1
t and that θt leaves Ω+

t invariant, we find〈
e−ασt ,P

〉
=
∑
w∈Ω+

t

P1−α
t (w)P̂αt (w) =

∑
w∈Ω+

t

P1−α
t (θt(w))P̂αt (θt(w))

=
∑
w∈Ω+

t

P̂1−α
t (w)Pαt (w) =

〈
e(α−1)σt ,P

〉
,

which yields (5.3). Although one can derive (5.4) from (5.3) and the identity I = q∗, we provide here a
direct derivation based on the LDP and the following transient fluctuation relation (see [CJPS17] and
references therein): using that σt ◦ θt = −σt, we find

Pt
(

1

t
σt = s

)
=

∑
w∈Ω+

t :σt(w)=ts

Pt(w) =
∑

w∈Ω+
t :σt(w)=ts

etsP̂t(w)

=
∑

w∈Ω+
t :σt(θt(w))=ts

etsP̂t(θt(w)) =
∑

w∈Ω+
t :σt(w)=−ts

etsPt(w)

= etsPt
(

1

t
σt = −s

)
.
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From this we obtain that, for all ε > 0 and s ∈ R,∣∣∣∣lim inf
t→∞

1

t
logPt

(
1

t
σt ∈ B(s, ε)

)
− lim inf

t→∞

1

t
logPt

(
1

t
σt ∈ B(−s, ε)

)
− s
∣∣∣∣ ≤ ε. (5.5)

By the construction of the rate function I , sending ε → 0 gives | − I(s) + I(−s) − s| = 0, which
is (5.4). 2

6 Level-3 LDP

6.1 Main result

In this section, we assume SLD and prove Theorem 2.13. For technical reasons (in fact, in order to
invert a Fenchel–Legendre transform in the proof of Proposition 6.1 below), we consider a slightly
more general situation, viewing µt(ω) := 1

t

∑t−1
s=0 δϕs(ω) as an element of the space X ≡ M(Ω) of

signed Borel measures on Ω. We endowM(Ω) with the weak-? topology with respect to the natural
pairing30

〈f, ν〉 =

∫
fdν, ν ∈M(Ω), f ∈ C(Ω).

Recall that C(Ω) is endowed with the topology of uniform convergence. With these topologies, the
spacesM(Ω) and C(Ω) are the continuous dual of each other (with the natural identification). The
induced topology on P(Ω) is the weak topology that we have considered so far.

We shall show that for every open set O ⊂M(Ω) and every closed set Γ ⊂M(Ω),

lim inf
t→∞

1

t
logP (µt ∈ O) ≥ − inf

ν∈O
I(ν), (6.1)

lim sup
t→∞

1

t
logP (µt ∈ Γ) ≤ − inf

ν∈Γ
I(ν), (6.2)

where I is given by (2.20) on P(Ω), and where I(ν) = +∞ onM(Ω) \ P(Ω). Since µt(ω) ∈ P(Ω)
for all ω, this will immediately imply the LDP on P(Ω) in Theorem 2.13.

For f ∈ C(Ω) let

Q(f) = lim
t→∞

1

t
log
〈
eStf ,P

〉
, (6.3)

which is finite, convex, and 1-Lipschitz by Proposition 4.2 (in the special case d = 1, α = 1).

Proposition 6.1. The random variable µt satisfies the LDP with respect to the weak-? topology
onM(Ω) for some good rate function I (see (6.1) and (6.2)). Moreover, I is the Fenchel–Legendre
transform of Q, i.e., for all ν ∈M(Ω),

I(ν) = sup
f∈C(Ω,R)

(
〈f, ν〉 −Q(f)

)
. (6.4)

Finally, I(ν) = +∞ for all ν ∈M(Ω) \ Pϕ(Ω).
30We shall reserve the symbols P,Q for the elements of P(Ω) and denote by µ, ν the elements ofM(Ω).
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Proof. We set zt := tµt, and we define s and s as in (3.20). We first show that (zt)t≥1 is admissible.
For every measure ν ∈M(Ω), consider the local basis of neighborhoods

G(ν, f, ε) = {µ ∈M(Ω) : 〈f, µ〉 ∈ B(〈f, ν〉, ε)} (6.5)

where f ∈ C(Ω,Rd) for some d ≥ 1, and B(r, ε) ⊂ Rd is the open ball of radius ε centered at r. We
have immediately

µt(ω) ∈ G(ν, f, ε) ⇐⇒ 1

t
Stf(ω) ∈ B(〈f, ν〉, ε). (6.6)

Fix now ν = 1
2ν1 + 1

2ν2 ∈M(Ω), and consider a neighborhood G(ν, f, ε) of ν. Let x = 1
2x1 + 1

2x2

with xi = 〈f, νi〉. Since 1
tStf is admissible by Proposition 4.3, there exists ε′ such that

s(G(ν, f, ε)) = lim inf
t→∞

1

t
logP

(
1

t
Stf ∈ B(x, ε)

)
≥ lim sup

t→∞

1

2t
logP

(
1

t
Stf ∈ B(x1, ε

′)

)
+ lim sup

t→∞

1

2t
logP

(
1

t
Stf ∈ B(x2, ε

′)

)
=

1

2
s(G(ν1, f, ε

′)) +
1

2
s(G(ν2, f, ε

′)).

This implies that (tµt)t≥1 is admissible. Moreover, since µt belongs to the compact space P(Ω), the
distribution of µt is trivially exponentially tight, so that by Proposition 3.9, µt satisfies the LDP with
good convex rate function I defined by

I(ν) = − inf
G∈Nν

s(G) = − inf
G∈Nν

s(G).

We now show that I(ν) = +∞ when ν /∈ Pϕ(Ω). Since µt ∈ P(Ω), and since P(Ω) is closed, one
immediately obtains I(ν) = +∞ if ν /∈ P(Ω). Now, if ν ∈ P(Ω) \ Pϕ(Ω), one can find a function
f ∈ C(Ω) such that 〈f−f◦ϕ, ν〉 = 1. Then,G = {µ ∈M(Ω) : |〈f−f◦ϕ, µ〉−〈f−f◦ϕ, ν〉| < 1/2}
is an open neighborhood of ν, and for all µ ∈ Gwe have 〈f−f◦ϕ, µ〉 > 1/2. However, by construction
we have

〈f − f ◦ ϕ, µt(ω)〉 =
1

t
(f(ω)− f ◦ ϕt(ω)) ≤ 2

t
‖f‖,

which is eventually < 1/2. Thus, P(µt ∈ G) = 0 for all t large enough, and

I(ν) ≥ − lim inf
t→∞

1

t
logP(µt ∈ G) = +∞.

Following the same ideas as in Proposition 4.3 (see also [DZ00, Theorem 4.5.10] and [Pfi02]), we now
identify I and Q∗ using Varadhan’s integral theorem and the convexity of I. For fixed f ∈ C(Ω), let
φf (ν) = 〈f, ν〉, which is a continuous function onM(Ω). Let Pt be the distribution of µt. We have

Q(f) = lim
t→∞

1

t
log

∫
M(Ω)

etφf (ν)dPt(ν).

Since for any γ > 1 we have Q(γf) <∞ (or more simply, using that Pt is supported on the compact
set P(Ω)), we can apply Varadhan’s theorem, and obtain31

Q(f) = I∗(f) = sup
ν∈M

(〈f, ν〉 − I(ν)).

31Recall that C(Ω) is the dual ofM(Ω) with the weak-? topology, so I∗ is naturally defined on C(Ω).
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Since this is true for all f ∈ C(Ω), and since I is convex and lower semicontinuous, we find that
I = Q∗, which is (6.4) (see [Brø64, Theorem 3.10] or [DZ00, Lemma 4.5.8] for variants of the duality
principle between convex conjugate functions that apply in the present setup). 2

6.2 Alternative expression for the rate function

We now derive, assuming also UD, the alternative expression for the rate function I given in Proposi-
tion 6.1, which will imply in particular that I is affine on Pϕ(Ω).

Given Q ∈ P(Ω) and t ≥ 1, consider the relative entropy (recall (2.16))

Ent(Qt|Pt) = ςt(Q)− ht(Q),

where we set, with the usual convention that 0 log 0 = 0,

ςt(Q) =


−
∑
w∈Ωt

Qt(w) logPt(w) if Qt � Pt,

+∞ otherwise,

ht(Q) = −
∑
w∈Ωt

Qt(w) logQt(w).

For Q ∈ Pϕ(Ω), we have

lim
t→∞

1

t
ht(Q) = h(Q),

where h(Q) is the Kolmogorov–Sinai entropy of Q with respect to ϕ. The limit exists, is finite, and
the mapping h : Pϕ(Ω)→ [0,∞) is upper semicontinuous and affine.32 For completeness, a proof of
these elementary properties of the Kolmogorov–Sinai entropy is provided in Lemma A.4.

We first need a technical lemma.

Lemma 6.2. Assume UD. Let f, g be two non-negative random variables on (Ω,B,P) such that f is
Fn-measurable and g is Fr-measurable. Then〈

f · (g ◦ ϕn+τn),P
〉
≤ ecn+τn log |A| 〈f,P〉 〈g,P〉 .

Proof. Recalling the conventions in the beginning of Section 3, we obtain by UD〈
f · (g ◦ ϕn+τn),P

〉
=

∑
uξv∈Ω+

n+τn+r

f(u)g(v)P(uξv)

≤
∑

uξv∈Ω+
n+τn+r

f(u)g(v)ecnP(u)P(v)

≤
∑
ξ∈Ωτn

ecn 〈f,P〉 〈g,P〉 ,

which implies the claim, since |Ωτn | = |A|τn . (The factor involving A would not be needed with the
alternative UD assumption mentioned in Remark 2.2.) 2

32See Corollary 4.3.14, Corollary 4.3.17 and the remark following it in the book [KH95].
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Proposition 6.3. Suppose that UD is satisfied.33 Then the limit

ς(Q) = lim
t→∞

1

t
ςt(Q) (6.7)

exists for any measure Q ∈ Pϕ(Ω), and the mapping ς : Pϕ(Ω) → [0,∞] is lower semicontinuous.
Moreover, for any Q ∈ Pϕ(Ω), we have

I(Q) = ς(Q)− h(Q) = lim
t→∞

1

t
Ent(Qt|Pt), (6.8)

and I is an affine function of Q ∈ Pϕ(Ω).

Proof. We first prove the existence and lower semicontinuity of the limit (6.7) by using a classical
subadditivity argument. For each pair of integers t, n with t ≥ n+ τn, we let M = bt/(n+ τn)c. By
using UD M − 1 times, we find for all w ∈ Ω+

t

logPt(w) ≤ logP(n+τn)M (w[1,(n+τn)M ]) ≤
M−1∑
k=0

logPn(w[k(n+τn)+1,k(n+τn)+n]) + (M − 1)cn,

where both sides may be −∞. Integrating this inequality with respect to −t−1Q and using the
translation invariance of Q yields

1

t
ςt(Q) ≥ M

t
ςn(Q)− (M − 1)cn

t
≥
(

1

n+ τn
− 1

t

)
ςn(Q)− cn

n+ τn
,

where we have also used that ςn(Q) ≥ 0. Sending now t→∞ yields

lim inf
t→∞

1

t
ςt(Q) ≥ n

n+ τn

(
1

n
ςn(Q)− cn

n

)
.

Taking the lim sup as n→∞ shows that the limit ς(Q) exists (but can be infinite). We then find that

ς(Q) = sup
n≥1

n

n+ τn

(
1

n
ςn(Q)− cn

n

)
, (6.9)

and thus, since Q 7→ ςn(Q) is continuous for all n, we obtain that ς is lower semicontinuous.

We now fix Q ∈ Pϕ(Ω) and establish (6.8). The second equality in (6.8) follows from the definitions,
and we need to show that I(Q) = L(Q) := limt→∞

1
tEnt(Qt|Pt).

We eliminate first the trivial case where there is t0 ≥ 1 such that Qt0 is not absolutely continuous
with respect to Pt0 . Then Ent(Qt|Pt) = ∞ for all t ≥ t0, and thus L(Q) = ∞. Let us choose
w ∈ Ωt0 such that Qt0(w) > 0 = Pt0(w). For any integer n ≥ 1, let fn(ω) = 1lω[1,t]=w. Observe that
〈fn,Q〉 = nQt(w) and that Q(fn) = 0, since Stfn vanishes on the support of P. Thus, using (6.4), we
see that

I(Q) ≥ 〈fn,Q〉 −Q(fn) = nQ(w) for all n ≥ 1,

so that I(Q) =∞.

33Although SLD is a standing assumption in this section, observe that this proposition does not rely on it provided that we
define I by (6.4). This proposition does not rely on the validity of the LDP for µt either.
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Suppose now that Qt � Pt for all t ≥ 1. We shall prove first that L(Q) ≥ I(Q). Let f ∈ Cfin(Ω) be
Fr-measurable for some r ≥ 1, and let

At =
〈
eStf ,P

〉
.

By Jensen’s inequality and invariance of Q, we have

logAt = log
〈
eStf ,P

〉
= log

∫
Σt+r−1

eStf
dPt+r−1

dQt+r−1
dQt+r−1

≥
∫

Σt+r−1

(
Stf − log

dQt+r−1

dPt+r−1

)
dQt+r−1

= t〈f,Q〉 − Ent(Qt+r−1|Pt+r−1),

where Σt is the support of Qt. Dividing by t and sending t→∞ shows that L(Q) ≥ 〈f,Q〉 −Q(f).
Since f ∈ Cfin(Ω) is arbitrary, and Cfin(Ω) is dense C(Ω) and Q is Lipschitz, we find

L(Q) ≥ sup
f∈Cfin(Ω)

(〈f,Q〉 −Q(f)) = sup
f∈C(Ω)

(〈f,Q〉 −Q(f)) = I(Q).

It remains to prove that L(Q) ≤ I(Q). Fix two integers n,M ≥ 1 and let t = n′M where n′ = τn + n.
Consider the Fn-measurable function f = 1

n′ log Qn
Pn . This function is well defined on the support

of Qn (and, hence, on the support of Pn), and we define it by −∞ on the complement. Note that

Ent(Qn|Pn) = n′〈f,Q〉. (6.10)

We have (see Figure 1) the decomposition

Stf =
n′−1∑
s=0

f (M)
s , f (M)

s (ω) =
M−1∑
k=0

f(ω[kn′+s+1,kn′+s+n]). (6.11)

Using Hölder’s inequality and translation invariance leads to

〈
eStf ,P

〉
≤

n′−1∏
s=0

〈
en
′f

(M)
s ,P

〉1/n′
=
〈
en
′f

(M)
0 ,P

〉
.

Using then Lemma 6.2 recursively M − 1 times and translation invariance, we obtain〈
eStf ,P

〉
≤ e(M−1)dn

〈
en
′f ,P

〉M
= e(M−1)dn

〈
Qn

Pn
,P
〉M

= e(M−1)dn
(
Qn(Ω+

n )
)M ≤ e(M−1)dn ,

where dn = cn + τn log |A| = o(n). Thus,

1

t
logAt ≤

(M − 1)dn
t

≤ dn
n′
,

whence Q(f) ≤ dn
n′ . Combining this with (6.10), we derive

1

n
Ent(Qn|Pn) =

n′

n
〈f,Q〉 ≤ n′

n
(〈f,Q〉 −Q(f)) +

dn
n
≤ n′

n
I(Q) +

dn
n
.

Passing to the limit as n → ∞ shows that L(Q) ≤ I(Q), and (6.8) follows. Finally, since both
Q 7→ h(Q) and Q 7→ ς(Q) are affine, we obtain from (6.8) that so is I. 2
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ω1 ω2 ω3 ωt

f
(4)
0

f
(4)
1

f
(4)
2

f
(4)
3

f
(4)
4

Figure 1: Illustration of (6.11) in the case n = 3, τn = 2, M = 4

6.3 Level-3 fluctuation relation

Proposition 6.4. Assume UD34 and that P̂ = ΘP with Θ as in Definition 2.5. Then, for any Q ∈ Pϕ(Ω)
such that (ΘQ)t and Qt are equivalent for all t, I(Q) < +∞, and I(ΘQ) < +∞, we have

I(ΘQ) = I(Q) + ep(Q), (6.12)

where we set ep(Q) = ς(ΘQ)− ς(Q). Moreover,

ep(Q) = lim
t→∞

1

t
〈σt,Q〉. (6.13)

Proof. UD and Proposition 6.3 imply

I(Q) = ς(Q)− h(Q), I(ΘQ) = ς(ΘQ)− h(ΘQ). (6.14)

Since θt is a bijection, we see that

ht(Q) = −
∑
w∈Ωt

Qt(w) logQt(w) = −
∑
w∈Ωt

Qt

(
θt(w)

)
logQt

(
θt(w)

)
= ht(ΘQ).

It follows that h(ΘQ) = h(Q). Combining this with (6.14), we arrive at (6.12). We now prove
(6.13). As was already observed in the proof of Proposition 6.3, the conditions I(Q) < +∞, and
I(ΘQ) < +∞ imply that Qt � Pt and (ΘQ)t � Pt for all t. We remark that

〈σt,Q〉 = −
〈

log
Qt

Pt
,Qt

〉
+

〈
log

Qt

P̂t
,Qt

〉
= −

〈
log

Qt

Pt
,Qt

〉
+

〈
log

(ΘQ)t
Pt

, (ΘQ)t

〉
= −Ent(Qt|Pt) + Ent((ΘQ)t|Pt).

Dividing this relation by t, passing to the limit as t→∞, and using (6.8), we obtain

lim
t→∞

1

t
〈σt,Q〉 = I(ΘQ)− I(Q).

Comparing this with (6.12), we arrive at the required relation (6.13). 2

34The same remark as in Proposition 6.3 applies: although it is a standing assumption in this section, SLD is not necessary
in this proposition if we simply define I by (6.4).
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A Appendix

A.1 Technical results

We first prove two lemmas justifying Remarks 2.3 and 2.4.

Lemma A.1. Assume that UD holds for both P and P̂, and that SLD holds for both P and P̂ in the
sense that for all t ≥ 1, all u ∈ Ωt and all v ∈ Ωfin, |v| ≥ 1, there exists |ξ| ≤ τt such that for both
P] = P and P] = P̂,

e−ctP](u)P](v) ≤ P](uξv). (A.1)

Then selective symmetric decoupling holds (for some larger τt and ct).

Proof. Let u ∈ Ωt and v ∈ Ωfin. Then, by Lemma 3.5, there exists b ∈ Ωτt such that P](v) ≥
P](bv) ≥ P](v)e−Cτt . By assumption there is |ξ| ≤ τt such that

P](uξbv) ≥ e−ctP](u)P](bv) ≥ e−ct−CτtP](u)P](v).

Let then ξ′ = ξb. By UD, we have

P](uξ′v) ≤ ectP](u)P](ξ′[τt+1,|ξ′|]v) ≤ ectP](u)P](v).

(Note that ξ′[τt+1,|ξ′|] may be the empty word.) Thus,

e−ct−CτtP](u)P](v) ≤ P](uξ′v) ≤ ectP](u)P](v).

Since |ξ′| ≤ 2τt, SSD holds with τt and ct replaced with the sequences 2τt and ct + Cτt, which are
also o(t). 2

Turning to Remark 2.4, we now give a sufficient condition for P to be ergodic (which is fulfilled, in
particular, if SLD holds with supt τt <∞ and supt ct <∞).

Lemma A.2. Assume the following form of lower decoupling: there exist c > 0 and k ∈ N0 such that
for all t ≥ 1, all u ∈ Ωt and all v ∈ Ωfin, |v| ≥ 1,∑

ξ∈Ωfin
τt−k≤|ξ|≤τt

P(uξv) ≥ e−cP(u)P(v). (A.2)

Then P is ergodic.

Proof. Consider first two cylinder sets C1 and C2 given by Ci = {ω ∈ Ω | ω[1,r] ∈ Ci} for some r ≥ 1
and sets Ci ⊂ Ωr, i = 1, 2. Observe that, by assumption,

τt∑
j=τt−k

P(C1 ∩ ϕ−r−jC2) =

τt∑
j=τt−k

∑
u∈C1

∑
v∈C2

∑
ξ∈Ωj

P(uξv)

≥ e−c
∑
u∈C1

∑
v∈C2

P(u)P(v) = e−c P(C1)P(C2).
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Thus, there exists t ∈ [r + τt − k, r + τt] such that

P(C1 ∩ ϕ−tC2) ≥ C P(C1)P(C2),

where C = e−c/(k + 1) > 0. Since any Borel set in Ω can be approximated by cylinder sets (and the
constant C is independent of the choice of Ci), it follows that P is ergodic. The details are as follows.
Assume B ⊂ Ω is an invariant Borel set (i.e., P(B4ϕ−1B) = 0),35 and let ε > 0. We can find two
cylinder sets C1, C2 that approximate B and Bc, in the sense that P(Bc4C1) + P(B4C2) ≤ ε. Then,

0 = sup
t≥0

P(Bc ∩ ϕ−tB) ≥ sup
t≥0

P(C1 ∩ ϕ−tC2)− ε

≥ C P(C1)P(C2)− ε ≥ C(P(Bc)− ε)(P(B)− ε)− ε
≥ C P(Bc)P(B)− (2C + 1)ε.

Since ε was arbitrary, we have P(Bc)P(B) = 0, so that P(B) ∈ {0, 1}. This completes the proof. 2

The next lemma proves the properties of irreducible Markov processes mentioned in Example 2.19.

Lemma A.3. Let P ∈ Pϕ(Ω) be a Markov process. Then UD holds. Assume further that it is
irreducible (i.e., for all a, b ∈ A, there exists ξ(a,b) ∈ Ωfin such that P(aξ(a,b)b) > 0). Then SLD holds.
If, in addition, P̂ ∈ Pϕ(Ω) is another Markov process such that P2 � P̂2, then SSD holds.

Proof. Since P is Markov and shift-invariant, we have

P(w) = P1(w1)P (w1;w2)P (w2;w3) · · ·P (wt−1;wt), w ∈ Ωt, (A.3)

for some transition matrix (P (a; b))a,b∈A.

UD. We show that UD holds with τt = 0 and

ct = − min
a∈A:P1(a)>0

logP1(a). (A.4)

Indeed, given u ∈ Ωt and v ∈ Ωfin such that P1(v1) > 0, we have

P(uv) =
P (ut; v1)

P1(v1)
P(u)P(v) ≤ ectP(u)P(v).

If P1(v1) = 0, then by invariance P(uv) = 0 ≤ ectP(u)P(v), so that UD is proved.

SLD. Assume now that the process is irreducible. This implies that P1(a) > 0 for all a ∈ A. Let
τ = maxa,b∈A |ξ(a,b)|. Given two words u ∈ Ωt and v ∈ Ωfin, |v| ≥ 1, let ξ = ξ(ut,v1). Then either
|ξ| = 0, in which case

P(uv) =
P (ut; v1)

P1(v1)
P(u)P(v), (A.5)

or k := |ξ(ut,v1)| ≥ 1, in which case

P(uξv) =
P (ut; ξ1)P(ξ)P (ξk; v1)

P1(ξ1)P1(v1)
P(u)P(v). (A.6)

35The symmetric difference A4B of two sets A and B is defined as (A \B) ∪ (B \A).
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The factors in front of P(u)P(v) on the right-hand sides of (A.5) and (A.6) are positive and depend
only on ut and v1. We obtain a lower bound by taking the minimum over all possible values of ut
and v1. This implies that SLD holds with τt = τ and some ct independent of t.

SSD. Assume finally that P̂ is another Markov process such that P2 � P̂2. Then by the Markov property
we have that Pt � P̂t for all t, so P̂ is irreducible, and one can choose the same ξ(a,b) as for P (i.e., we
have both P(aξ(a,b)b) > 0 and P̂(aξ(a,b)b) > 0). Considerations similar to the above imply that SSD
holds. 2

Finally, for the reader’s convenience, we prove some well-known properties of the Kolmogorov–Sinai
entropy that are used in the proof of Proposition 6.3 (see for example Section 4.3 of [KH95]).

Lemma A.4. For all Q ∈ Pϕ(Ω), the limit

h(Q) = lim
t→∞

1

t
ht(Q) (A.7)

exists, is finite, and the mapping h : Pϕ(Ω)→ [0,∞) is upper semicontinuous and affine.

Proof. First, it follows from ϕ-invariance and the inequality log x ≤ x− 1 that

ht+t′(Q)− ht(Q)− ht′(Q) =
∑
w∈Ωt

∑
w′∈Ωt′

Q(ww′) log
Q(w)Q(w′)

Q(ww′)
≤ 0.

By subadditivity, the limit (A.7) exists, is finite, and h(Q) = inft≥1
1
tht(Q). Moreover, as an infimum

over a family of continuous functions, h is upper semicontinuous. That h is affine will follow
immediately from the following relation: for all Q(1),Q(2) ∈ Pϕ(Ω), and all p1 ∈ (0, 1), p2 = 1− p1,
we have ∑

i=1,2

piht
(
Q(i)

)
≤ ht

∑
i=1,2

piQ(i)

 ≤ ∑
i=1,2

piht
(
Q(i)

)
−
∑
i=1,2

pi log pi. (A.8)

To complete the proof, we now establish (A.8). The first inequality follows from the concavity of
x 7→ f(x) := −x log x. Indeed, we have

∑
i=1,2

piht
(
Q(i)

)
=
∑
w∈Ωt

∑
i=1,2

pif
(
Q(i)(w)

)
≤
∑
w∈Ωt

f

∑
i=1,2

piQ(i)(w)

 = ht

∑
i=1,2

piQ(i)

 .

For the second inequality, we observe that

ht

∑
i=1,2

piQ(i)

 = −
∑
w∈Ωt

∑
i=1,2

piQ(i)(w) log

∑
j=1,2

pjQ(j)(w)


≤ −

∑
w∈Ωt

∑
i=1,2

piQ(i)(w) log
(
piQ(i)(w)

)
= −

∑
i=1,2

pi
∑
w∈Ωt

Q(i)(w) log
(
Q(i)(w)

)
−
∑
i=1,2

pi log pi
∑
w∈Ωt

Q(i)(w)

=
∑
i=1,2

piht
(
Q(i)

)
−
∑
i=1,2

pi log pi.

The proof is complete. 2
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A.2 Hidden Markov chain example

In the section we discuss the hidden Markov chain of Example 2.23. For reasons of space, we only
outline the main steps of the analysis; the details are easy to fill.

Let (γ(n))n≥0 be a sequence of non-negative numbers such that γ(0) = 0 and γ(n+ 1) ≥ γ(n) + ε
for all n and some ε > 0. We consider a countable Markov chain with states 0, 1, 2, . . . such that from
each state n ≥ 0, we move either to n+ 1 with probability g(n+ 1) := eγ(n)−γ(n+1) or we move to 0
with probability 1− g(n+ 1) (see Figure 2).

0 1 2 3 4

g(1) g(2) g(3)

1− g(1) . . .

Figure 2: Illustration of the Markov chain.

This Markov chain admits a unique invariant measure, and we denote by Q the corresponding Markov
process on {0, 1, · · · }N. Note that

Q1(k) = Z−1e−γ(k), Z =

∞∑
n=0

e−γ(n).

Let A = {a, b} and let Ψ : {0, 1, · · · }N → AN be defined by Ψ(ω1, ω2, . . . ) = (ψ(ω1), ψ(ω2), . . . ),
where ψ(0) = a and ψ(n) = b for all n ≥ 1. Our main object of interest is the invariant probability
measure on Ω = AN defined by P = Q ◦Ψ−1. The following holds:

• The measure P has full support, and for any words u and v we have

P(uav) = P(ua)P(av)/P1(a). (A.9)

Moreover, P is reversible in the sense that Pt(w1 . . . wt) = Pt(wt · · ·w1) for all t ≥ 1 and w ∈ Ωt.

• Let us set

pt(w) =
Pt+2(awa)

P1(a)
, w ∈ Ωt,

with the convention p0(κ) = P2(aa)/P1(a) = 1− g(1), where κ is the empty word. Then

p|u|+|v|+1(uav) = p|u|(u)p|v|(v) for all u, v ∈ Ωfin.

• The quantities Pt+1(bta), Pt+1(abt) and Pt(bt) are bounded above and below by some constant
(independent of t) times e−γ(t). More generally, the quantities Pt+1(aw), Pt+1(wa) and pt(w) are
bounded above and below by a constant (independent of t and w ∈ Ωt) times Pt(w).

• P satisfies SLD with τt ≡ 1 and supt ct <∞ (by taking ξ = a in (2.1)).

• P satisfies UD with τt ≡ 0 and ct = c+supm≥0[γ(m)+γ(t)−γ(m+ t)] for some c > 0, provided
that (γ(n))n≥0 is such that ct = o(t).
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We assume now that P̂ is constructed in the same way, with γ̂(n) satisfying the same conditions as
γ(n). We define p̂t in the same way as pt. Then the following holds:

• The pair (P, P̂) satisfies SSD with τt = 1 and supt ct <∞ (by taking ξ = a in (2.4)).

• The entropic pressure q(α) defined in (2.8) can be written as

q(α) = lim
t→∞

1

t
log

∑
w∈Ωt

ζt,α(w),

where the function ζt,α(w) := e(α+1) log pt(w)−α log p̂t(w) defined for t ≥ 0 and w ∈ Ωt satisfies the
relation

ζ|u|+|v|+1,α(uav) = ζ|u|,α(u)ζ|v|,α(v).

• We have q(α) = − log ρ(α), where ρ(α) is the radius of convergence of the power series

Rα(x) =
∑
t≥0

rt(α)xt, rt(α) =
∑
w∈Ωt

ζt,α(w).

• Let us set
Uα(x) =

∑
t≥0

ut(α)xt, ut(α) = ζt,α(bt),

and observe that

ut(α) = (1− g(t+ 1))α+1(1− ĝ(t+ 1))
)−α

e−(α+1)γ(t)+αγ̂(t),

where 1− g(t+ 1) and 1− ĝ(t+ 1) are bounded from above by one and from below by a constant
c > 0 uniformly in t. The radius of convergence of Uα is

κ(α) = lim inf
t→∞

exp((α+ 1)t−1γ(t)− αt−1γ̂(t)).

• By sorting the words w ∈ Ωt according to the position of the first occurrence of a (if there is one),
we get the renewal equation

rt(α) =

t−1∑
k=0

uk(α)rt−1−k(α) + ut(α).

This relation translates into the algebraic equation Rα(x) = xRα(x)Uα(x) + Uα(x), so that

Rα(x) =
Uα(x)

1− xUα(x)
.

The power series defined above have strictly positive coefficients for all α. They are strictly increasing
functions of x ≥ 0, and jointly lower semicontinuous in α ∈ R and x ≥ 0. As already discussed, the
quantity of interest is the radius of convergence ρ(α) of Rα. For each fixed α, we are in one of the
following two cases:

(a) There exists x > 0 such that xUα(x) = 1, and in this case ρ(α) = x.

(b) xUα(x) < 1 for all 0 ≤ x ≤ κ(α), in which case ρ(α) = κ(α).



HIDDEN MARKOV CHAIN EXAMPLE 41

In both cases, we have ρ(α) = sup{x ≥ 0 : xUα(x) ≤ 1}. In case (a), ρ′(α) can be obtained by
differentiating the relation ρ(α)Uα(ρ(α)) ≡ 1, and we obtain

ρ′(α) = −
∑

n≥0 ∂αun(α)ρn+1(α)∑
n≥0 un(α)(n+ 1)ρn(α)

. (A.10)

In case (b), we simply have ρ′(α) = κ′(α). (Of course these relations hold only if the corresponding
quantities are well defined, and if α is not at a transition point between the two cases.)

Different situations can occur depending on the concrete choice of γ(n) and γ̂(n). We now briefly
discuss six interesting cases. We do not give any proofs, as these examples are easily understood by
substituting the relevant values in the formulas for κ(α) and ρ(α) (and their derivative). The interested
reader may wish to investigate the matter further by trying other expressions for γ(n) and γ̂(n).

Example 1. Let γ(n) = n and γ̂(n) = n2. We have κ(α) = +∞ for α < 0, κ(0) = e, and κ(α) = 0
for α > 0. For α ≤ 0 we are in case (a), and it follows from the identity ρ(α)Uα(ρα) ≡ 1 that
ρ(α), and hence q(α), are analytic on (−∞, 0). We know already that q(0) = 0. When α > 0,
we have ρ(α) = κ(α) = 0, and hence we are in case (b) with q(α) = +∞.36 Evaluating the
quantity (A.10) in the limit α ↑ 0 and ρ(α) ↓ ρ(0) = 1 shows that 0 > ρ′(0−) > −∞. Since
q′(α) = − d

dα log ρ(α) = −ρ′(α)
ρ(α) , we conclude that q′(0−) is finite (numerical evaluation gives

q′(0−) = 0.3294...). See Figure 3a.37

Example 2. By replacing n2 with exp(2n) in Example 1, we obtain the same results except that now
q′(0−) = +∞. See Figure 3b.

Example 3. Let γ(n) = n+cn2 and γ̂(n) = n2 for c ∈ (0, 1). An analysis similar to that of Example 1
shows that q(α) is infinite for α > α∗ := c/(1− c), and finite for α ≤ α∗. The case c = 1/2, α∗ = 1
is represented in Figure 3c.

Example 4. Let γ(n) = cn2 and γ̂(n) = n2 + n3/2 for c ∈ (0, 1). For α < α∗ := c/(1− c) we are
in case (a), while for α ≥ α∗ we are in case (b) with κ(α) = 0 and q(α) = +∞. The function q(α)
increases continuously to +∞ when α ↑ α∗. The case c = 1/2 is plotted in Figure 3d.

Example 5. Let γ(n) = n and γ̂(n) = 2n− 2 log(1 + n/2). In this case, κ(α) = exp(1− α). One
shows that there exists α∗ > 1 (numerical evaluation gives α∗ = 1.1305...) such that we are in case (a)
if α ≤ α∗, and in case (b) if α > α∗. By evaluating (A.10) as α ↑ α∗, ρ(α) ↓ ρ(α∗) = κ(α∗) and
comparing with κ′(α∗), one shows that q(α) is not differentiable at α∗. See Figure 4.

Example 6. Take now γ(0) = 0, γ(1) = 0.01, γ(n) = n + 5 log(1 + n/5) for n ≥ 2, and
γ̂(n) = 10 + 2n + 5 log(1 + n/5) for all n ≥ 0. Here again, κ(α) = exp(1 − α). Explicit
computations show that κ(α)Uα(κ(α)) < 1 on some interval I = (−0.6418 . . . ,−0.2042 . . . ) and
κ(α)Uα(κ(α)) ∈ (1,+∞] outside of the closure of I (the numerical values in the definition of γ(n)
and γ̂(n) were chosen to ensure the existence of such an interval). Then for α ∈ I we are in case (b),
and for α /∈ I we are in case (a). It follows that q(α) is analytic everywhere except at the boundaries

36The fact that q(α) is infinite when α > 0 also follows from the observation that in the sum
∑
w∈Ωt

eασt(w)Pt(w), the

contribution of w = bt grows like e−(α+1)t+αt2 .
37A bisection method was used to find ρ(α) = sup{x ≥ 0 : xUα(x) ≤ 1}. After that the entropic pressure was obtained

by computing q(α) = − log ρ(α).
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(a) Example 1
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(d) Example 4

Figure 3: Entropic pressure for Examples 1-4. The lines are interrupted where q(α) jumps to +∞.

of I . Explicit computations using (A.10) show that q is not differentiable at those boundaries. See
Figure 5.

We note here that in all the examples except the last, both P and P̂ satisfy UD with τt ≡ 0 and
supt ct <∞. In the last example, both measures satisfy UD with supt ct =∞ and ct = o(t).

In order to make direct comparison with the results of [BJPP17] and [CJPS17], we need the following
construction.

Remark A.5. Given the pair (P, P̂) constructed in this section, one can define a new pair of measures
(P, P̂) on A N, with the product alphabet A = A×A, such that (P, P̂) are related by an involution
as in Definition 2.5. For any word (u, v) ∈ A t = At × At, define P(u, v) = P(u)P̂(v), and set
P̂(u, v) = P(θt(u, v)) where38 θt(u, v) = (v, u). It is easy to show that the pair (P, P̂) satisfies
SSD (with ξ = (a, a) ∈ A ) and that the entropic pressure Q of (P, P̂) is

Q(α) = q(α) + q(−α− 1), (A.11)

where q is the entropic pressure of (P, P̂). Note that Q satisfies the symmetry (2.12).

Consider now the pairs of measures (P, P̂) constructed from the pairs (P, P̂) in the above six examples.
We finish with a brief comment how the results of [CJPS17] and [BJPP17] fail to apply or to provide

38Since P and P̂ are reversible, one could as well define θt(u, v) = (vt, . . . , v1, ut, . . . , u1). This means that both cases
of Definition 2.5 are actually covered.
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Figure 4: Entropic pressure and ρ(α) in Example 5.
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Figure 5: Entropic pressure and ρ(α) in Example 6.

the global LDP for t−1σt in Theorem 2.8. We remark that in the first five cases the measures P and
P̂ satisfy UD with τt ≡ 0 and supt ct < ∞, while in the last case, both measures satisfy UD with
supt ct =∞ and ct = o(t).

• The results of [BJPP17] apply to the pairs (P, P̂) of Examples 1–5 above, and give a local
LDP for in the interval (Q′(−1+),Q′(0−)). Only in Example 2 is this interval equal to R (see
(A.11)), and hence in this case [BJPP17] gives the full LDP. Example 6 cannot be handled by
the method of [BJPP17], because it does not satisfy UD with supt ct < ∞. Note also that in
Example 6, Q is not differentiable in (−1, 0), unlike in the situation of [BJPP17].

• As mentioned in [CJPS17, Example 0.15], if the sequence (Gn)n≥1 ⊂ C(Ω) defined by Gn =
log Pn

39 is asymptotically additive (see the definition and characterizations in [CJPS17]), then
[CJPS17, Theorem 4.5] applies, and provides the global LDP for t−1σt. This is the case of
Examples 5 and 6 above. Examples 1–4 clearly cannot be handled by [CJPS17], as there the
entropic pressure is always finite.

A.3 Weak Gibbs measures

LDPs for weak Gibbs measures (on shift spaces and more general dynamical systems) have been
abundantly studied; see for example [Com09, Var12, VZ15, PS18, CJPS17] and the references therein.
The weak Gibbs condition and our decoupling assumptions are essentially incomparable (see below).
We show here that given a weak Gibbs measure supported on a subshift satisfying a suitable specification

39Pn is defined as the marginal of P on the first n coordinates of A N.
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property, one can still construct a map ψn,t satisfying the conclusions of Proposition 3.1. As our results
use SLD and SSD only through the conclusions of Proposition 3.1, they remain valid for weak Gibbs
measures.

We first introduce the notion of weak Gibbs measure on a subshift. The measure P can be viewed
as an invariant measure for the dynamical system (Ω+, ϕ). Recall that Ω+ = suppP was defined in
Section 2.1. In this setup the following two conditions are natural. We again assume that τt = o(t).

Weak specification property (WSP). For40 all t ≥ 1, all u ∈ Ω+
t , and all v ∈ Ω+

fin, there exists
ξ ∈ Ω+

fin satisfying |ξ| ≤ τt such that uξv ∈ Ω+
fin.

Weak Gibbs condition (WGC). The measure P is weak Gibbs41 with respect to some potential
f ∈ C(Ω+); i.e., there exists a real number p (called pressure) and a real sequence (dt)t≥1

such that dt = o(t), and for all ω ∈ Ω+ and all t ≥ 1,

e−dt+Stf(ω)−tp ≤ Pt(ω1, . . . , ωt) ≤ edt+Stf(ω)−tp.

Measures satisfying WGC with supt≥1 dt <∞ are called Gibbs measures (see Example 2.20). Without
loss of generality, we shall assume that p = 0 (by replacing f with f − p if necessary).

Note that WSP is a condition on the structure of the set Ω+, while WGC is a condition42 on P. Once
the set Ω+ is fixed, WGC implies a strong lower bound on the probability of the “allowed” words:

Pt(w) ≥ e−Ct, t ≥ 1, w ∈ Ω+
t , (A.12)

where C = ‖f‖+ supt≥1 dt/t. Our decoupling assumptions are different in philosophy, as they are
formulated at the level of measures only. They compare to WSP and WGC as follows.

• As mentioned in Example 2.20, if WSP holds and P is a Gibbs measure (i.e., WGC holds
with supt≥1 dt < ∞), then the UD and SLD assumptions are satisfied. On the contrary, if
supt≥1 dt = ∞, then WSP and WGC do not imply any of our decoupling assumptions in
general.

• SLD implies WSP.

• Even put together, SLD and UD do not imply WGC in general, as (A.12) may fail. Indeed, SLD
ensures that there is one ξ ∈ Ωfin, |ξ| ≤ τt such that P(uξv) ≥ e−ctP(u)P(v), and says nothing
about P(uξ′v) for ξ′ 6= ξ. See Example 2.23 and Appendix A.2.

We now establish an analogue of Proposition 3.1 for WSP and WGC. Here, n, t, t′, N , P(n) and Λt′ are
as in Section 3.1.

Proposition A.6. Assume WSP and WGC. Then there exists a mapping ψn,t : Ωt′ → Ωt such that the
following holds.

1. We have
P(n)
t′ ◦ ψ

−1
n,t ≤ eg(n,t) Pt, with lim

n→∞
lim sup
t→∞

1

t
g(n, t) = 0. (A.13)

40For similar and weaker forms of specification properties and related results, see for example [PS05, PS03, Tho12, KLO16]
41All the considerations in this section can be adapted with minor technical changes to the case where the potential is

asymptotically additive. For definitions, see for example [CJPS17] and references therein.
42From the point of view of dynamical systems, one is first given a subshift Ω+ satisfying WSP, and then one introduces

(weak) Gibbs measures on it.
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2. Let P̂ ∈ Pϕ(Ω), and assume one of the following: (a) P̂ = ΘP with Θ as in Definition 2.5, and
θt(Ω

+
t ) = Ω+

t , or (b) there exists d′t = o(t) and f̂ ∈ C(Ω) such that for all ω ∈ Ω+,43

e−d
′
t+Stf̂(ω) ≤ P̂t(ω1, . . . , ωt) ≤ ed

′
t+Stf̂(ω). (A.14)

Then ψn,t can be chosen so that, in addition to (A.13),

lim
n→∞

lim sup
t→∞

1

t
sup
w∈Λt′

∣∣∣∣∣σt(ψn,t(w))−
N−1∑
k=0

σn(w[kn+1,(k+1)n])

∣∣∣∣∣ = 0, (A.15)

and there exists c > 0 such that

|σt(w)| ≤ ct, t ≥ 1, w ∈ Ω+
t . (A.16)

Proof. We first prove 1. For each w ∈ Ωt′ , we write w = w1w2 . . . wN with wi ∈ Ωn. Setting

ψn,t(w) := bw1ξ1w2ξ2 . . . wN−1ξN−1wN ∈ Ωt (A.17)

for some suitable ξi ∈ Ωn satisfying |ξi| ≤ τn for all i, we shall prove that

P(ψn,t(w)) ≥ e−g1(n,t)P(n)(w), with lim
n→∞

lim sup
t→∞

1

t
g1(n, t) = 0. (A.18)

Then, the conclusion of Part 1 follows from the same combinatorial argument as in Proposition 3.1 (see
the discussion after (3.17)). In order to prove (A.18), we assume that wi ∈ Ω+

n for all i (equivalently,
that w ∈ Λt′), as the result is trivial otherwise. By following the same strategy as in Proposition 3.1,
using WSP instead of SLD, we can choose ξ1, . . . , ξ

N−1 and b such that ψn,t(w) ∈ Ω+
t . Next, let

ω ∈ Ω+ be such that ω[1,t] = ψn,t(w). By WGC,

Pt(ψn,t(w)) ≥ eStf(ω)−dt ≥ e−g1(n,t)
N∏
i=1

Pn(wi), (A.19)

where g1(n, t) = dt+Ndn+ ((N −1)τn+ t− t′)‖f‖. The relations N ≤ t/n and (3.4) imply (A.18),
which completes the proof of Part 1.

We now prove Part 2. By combining (A.19) with the corresponding upper bound, we obtain

lim
n→∞

lim sup
t→∞

1

t
sup
w∈Λt′

∣∣∣logPt(ψn,t(w))− logP(n)
t′ (w)

∣∣∣ = 0. (A.20)

Assume first that P̂ satisfies (b). By (A.14), the relation (A.20) also holds with P replaced with
P̂, and (A.15) immediately follows. Moreover, by WGC and (A.14), we obtain (A.16) with c =
‖f − f̂‖+ supt≥1(dt + d′t)/t.

Assume now that P̂ satisfies (a). Let w ∈ Λt′ . Then ψn,t(w) ∈ Ω+
t , and θt(ψn,t(w)) ∈ Ω+

t . Hence
there exists ω̂ ∈ Ω+ such that ω̂[1,t] = θt(ψn,t(w)). Since P̂t(ψn,t(w)) = Pt(θt(ψn,t(w))), we obtain
by WGC that

e−dt+Stf(ω̂) ≤ P̂t(ω1, . . . , ωt) ≤ edt+Stf(ω̂).

43Note that no requirement is made for ω /∈ Ω+.
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This and WGC imply (A.16) with c = 2‖f‖+2 supt≥1 dt/t. Using the notation (A.17), and introducing
b̂ = θ|b|(b), ξ̂i = θ|ξi|(ξ

i), ŵi = θn(wi), we have either θt(ψn,t(w)) = b̂ŵ1ξ̂1 . . . ξ̂N−1ŵN or
θt(ψn,t(w)) = ŵN ξ̂N−1 . . . ξ̂1ŵ1b̂ (see Definition 2.5). Computations similar to (A.19) show that
(A.20) also holds with P replaced with P̂, so that (A.15) again follows. 2

By using Proposition A.6 instead Proposition 3.1, our results apply as follows.

• All the conclusions of Theorem 2.7 are valid under WSP and WGC.

• All the conclusions of Theorem 2.8 are valid under WSP, WGC, and the assumptions in Part 2 of
Proposition A.6. The finiteness of q(α) for all α ∈ R follows from (A.16).

• All the conclusions of Theorem 2.13 are valid under WSP and WGC. The estimates requiring
UD in Proposition 6.3 can easily be adapted by using the following consequence of WGC: for all
w1, w2, . . . , wN ∈ Ωn and all ξ1, ξ2, . . . , ξN−1 ∈ Ωτn , we have

PNn+(N−1)τn(w1ξ1w2ξ2 · · ·wN−1ξN−1wn) ≤ eh(n,t)
N∏
i=1

Pn(wi),

where the function h(n, t) := dNn+(N−1)τn +Ndn + (N − 1)τn‖f‖ satisfies

lim
n→∞

lim sup
t→∞

t−1h(n, t) = 0.
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