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Abstract. Data in Astrophysics are very often structured with the rela-
tional data model. One particularity is that every value is a real number
and comes with an associated error measure, leading to a numerical in-
terval [value − error, value + error]. Such Astrophysics databases can
be seen as interval-based numerical databases.
Classical data mining approach, specifically those related to integrity
constraints, are likely to produce useless results on such databases, as
the strict equality is very unlikely to give meaningful results.
In this paper, we revisit a well-known problem, based on unary inclu-
sion dependency discovery, to match the particularities of Astrophysics
Databases. We propose to discover injective mapping between attributes
of a source relation and a target relation. At first, we define two notions
of inclusion between intervals. Then, we adapt a condensed representa-
tion proposed in [15] allowing to find a mapping function between the
source and the target. The proposition has been implemented and sev-
eral experiments have been conducted on both real-life and synthetic
databases.

1 Introduction

Astrophysics is known to generate huge amount of data in large experiments,
as for example with the Large Synoptic Survey Telescope (LSST1), a wide-field
survey reflecting telescope in Chile. The camera is expected to take over 500,000
pictures per year, leading to more than 60 petabytes of data at the end of
1 https://www.lsst.org



d u g r i z err_u err_g err_r err_i err_z
t1 : 23.37 24.52 23.42 24.27 20.76 0.52 0.52 0.43 0.73 0.21
t2 : 18.44 16.33 15.48 15.20 15.07 0.01 0.01 0.01 0.02 0.01
t3 : 23.77 22.85 23.39 22.41 22.60 0.77 0.16 0.41 0.29 0.76
t4 : 22.72 20.88 19.51 18.79 18.41 0.43 0.03 0.01 0.01 0.03
t5 : 22.48 21.82 21.38 21.17 21.25 0.24 0.07 0.06 0.07 0.29
t6 : 24.04 20.99 19.68 19.10 18.84 0.77 0.03 0.01 0.01 0.03

Fig. 1: Example of astrophysics database

the project. After a long image processing process, relevant data are stored in
specialized Relational Database Management Systems (RDBMS). Since every
value comes with its associated error measure, it can be seen as a numerical
interval [value − error, value + error]. Then, such Astrophysics databases are
interval-based numerical databases and look like the data given in Figure 1. u
and erru (resp. g, r, i, z) are the magnitude (flux in log scale) and corresponding
error of an astrophysical object measured through a passband color filter named
u (resp. g, r, i, z). The u, g, r, i, z color filters slice the visible spectrum in five
similar size bins. For each attribute that contains a magnitude parameter, there
is an associated error measure attribute (e.g. u and err_u).

Classical data mining approach, specifically those related to integrity con-
straints like functional dependencies (FD), conditional FD or inclusion depen-
dencies (IND), are likely to produce useless results on such databases. The
particularities of interval-based databases impose peculiar problems to the asso-
ciated discovery problems.

In this paper, we revisit a well-known problem, the discovery of unary inclu-
sion dependency discovery, to match the particularities of Astrophysics Databases.
Due to the nature of the data in use, the proposed solution has to be changed
with respect to existing approaches [15,16].
More precisely, we propose to discover injective mapping between attributes of
a source relation and a target relation. In order to solve the problem of dis-
covering such mappings, we adapt the problem of discovering unary inclusion
dependencies for interval-based databases. With respect to the application do-
main in Astrophysics, we do not claim that such mappings solve real problems
for astrophysicists, even if some applications could benefit from it. The problem
studied in this paper should be thought as a first step, opening many opportu-
nities to address others related problems, more challenging and interesting for
astrophysicists.

Let us consider two interval-based relations s and t over relation schema S
and T respectively. As usual, attributes of a relation r over R are denoted by
sch(R).

Problem statement

Given a source s and a target t such that |sch(S)| ≤ |sch(T )|, find a
mapping f from sch(S) to sch(T ) such that (1) f is injective (f(A) =



f(B) ⇒ A = B) and (2) for every attribute A ∈ sch(R), the values of
A in s and the values of f(A) in t should be as similar as possible, i.e.
some forms of inclusion dependencies should exist between them.

To deal with this problem, we propose a contribution based on the following
three-step process:

– First, we define two types of membership of an interval into a collection of
intervals. The first one is based on the classical inclusion between intervals
while the second one is defined on the so-called canonical representation of
a collection of intervals.

– Second, we extend the work of [15] and build a condensed representation of
an interval-based numerical database as a binary relation (or transactional
database where transactions are values and items are attributes). At the
end, we discover a set of approximate unary inclusion dependencies from the
source to the target.

– Finally, we propose a method to find an injective mapping, which is equiv-
alent to the minimum weight matching in an weighted bipartite graph, re-
solved with the Hungarian algorithm [12] in this paper.

The proposition has been implemented and several experiments have been
conducted on both real-life and synthetic databases. Even if the overall com-
plexity of the studied problem remains polynomial, the overhead with respect to
classical databases turns out to be rather low. The main lesson we have learned
from this work is that many contributions in pattern mining could be revisited
in order to deal with interval-based numerical databases.

To the best of our knowledge, this is the first contribution dealing with the
discovery of integrity constraints in interval-based numerical databases.

Paper Organization . The remaining part of the paper is organized as follows:
Section 2 gives preliminaries of the paper. Section 3 adapts the condensed repre-
sentation of [15] to interval-based databases. Section 4 introduces details about
the discovery of approximate unary inclusion dependencies. Section 5 describes
the main algorithm SR2TR providing an injective mapping between a source
and a target relations, and the results of experiments. Section 7 concludes the
paper and gives some perspectives to this work.

2 Preliminaries

Basic database notions are given here, more details can be found for example
in [14]. We restrict our attention to interval-based numerical databases only.

Let U be a set of attributes and D the possible intervals over real numbers. A
relation symbol is generally denoted by R and its schema by sch(R), sch(R) ⊆ U .
When clear from context, we shall use R instead of sch(R). Each attribute has
a domain, included in D. A tuple over R is an element of the cartesian product
D|R|. An interval-based numerical relation (or simply relation) r over R is a set



of tuples over R. An interval-based numerical database d (or simply database)
over a set of relation symbol {R1, . . . , Rn} is a set of n interval-based relations
{r1, . . . , rn}, ri defined over Ri for i = 1..n.

Given a relation r over R and A ∈ R, the active domain of A in r is de-
noted by ADOM(A, r). The active domain of r is denoted by ADOM(r) =⋃
A∈RADOM(A, r). The projection of a tuple t on an attribute set X ⊆ R

is denoted by t[X]. The projection of a relation r onto a set of attributes X,
denoted by πX(r), is defined by πX(r) = {t[X]|t ∈ r}.

Let I, J be two intervals of D. We note min(I) (resp. max(I)) the minimum
(resp. maximum) value of I. I is contained in J , denoted by I ⊆ J , if min(J) ≤
min(I) ≤ max(I) ≤ max(J).

Let I be a collection of intervals of D. The union of I is the minimal number
of intervals covering I. Since its union is unique, it represents a canonical form
of I, and will be denoted by cano(I). More formally, cano(I) can be defined by
induction as follows:

cano(I) = I if for all J1, J2 ∈ I, J1 ∩ J2 = ∅
= cano(I \ {J1, J2}) ∪ {J3}) otherwise with J1, J2 ∈ I, J1 ∩ J2 6= ∅ and

J3 = [min(min(J1),min(J2)),max(max(J1),max(J2))]

I is said to be connected if |cano(I)| = 1.

We now introduce the classical syntax and semantics of unary inclusion depen-
dencies between relation symbols R and S.

Definition 1. An unary inclusion dependency (UIND) from R to S is a state-
ment of the form R[A] ⊆ S[B], where A ∈ R, B ∈ S.

Definition 2. Let d = {r, s} be a database over {R,S}. An unary inclusion
dependency R[A] ⊆ S[B] is satisfied in d, denoted by d |= R[A] ⊆ S[B], iff for
all u ∈ r, there is v ∈ s such that u[A] = v[B] or equivalently πA(r) ⊆ πB(s).

Example 1. Let r0 be a classical relation over R (see Figure 2).

r0 A B C D
t1 0 1 1 2
t2 1 2 2 1
t3 2 1 1 0

Fig. 2: A toy relation r0

Several classical UINDs are satisfied in {r0}, for instance R[A] ⊆ R[D] and
R[B] ⊆ R[C].



When working with intervals, the strict equality "=" used in the definition of the
satisfaction of an UIND is likely to produce unsatisfying results. For instance,
in Figure 3, the relation r1 has no satisfied UINDs.

r1 A B C
t1 : [0,0.5] [0,1] [0,1.5]
t2 : [1,1.5] [1,2] [3,3.5]
t3 : [2,3] [1.5,4] [2,3]

Fig. 3: A toy interval-based relation r1

This leads to introducing different UIND satisfaction on intervals.
We define two kinds of satisfied UINDs over interval-based numerical database:
classical satisfaction based on interval inclusion over collection of intervals and
canonical satisfaction based on interval inclusion over the canonical representa-
tion of collection of intervals.
Let d = {r, s} be an interval-based numerical database over {R,S}.

Definition 3. An UIND R[A] ⊆ S[B] is classically satisfied in d, denoted by
d |=1 R[A] ⊆ S[B], iff for all u ∈ r, there is v ∈ s such that u[A] ⊆ v[B].
An UIND R[A] ⊆ S[B] is canonically satisfied in d, denoted by d |=2 R[A] ⊆
S[B], iff for all u ∈ r, there is v ∈ cano(ADOM(B, s)) such that u[A] ⊆ v.

We will note d |=λ R[A] ⊆ S[B] to refer to both of them.

Example 2. In the relation r1 of figure 3, for the satisfaction, we have an UIND
r0 |= A ⊆1 B as [0, 0.5] ⊆ [0, 1], [1, 1.5] ⊆ [1, 2] and [2, 3] ⊆ [1.5, 4]. For the
second one, r0 |= A ⊆2 B as [0, 0.5] ⊆ [0, 4], [1, 1.5] ⊆ [0, 4] and [2, 3] ⊆ [0, 4].

We also need to define when a given interval belongs to a collection of intervals.
Let I be an interval and I a collection of intervals.
I is classically included in I, denoted by I ⊆1 I, if there exists I ′ ∈ I such that
I ⊆ I ′. I is canonically included in I, denoted by I ⊆2 I if I ⊆1 cano(I).

3 Condensed representation for interval-based relations

We now extend the contribution for discovering UINDs in databases [15] to
interval-based numerical databases. This is, up to our knowledge, the best ap-
proach for discovering UINDs. It relies on a preprocessing to get a condensed
representation from the initial database.
Now, we define a condensed representation for UIND discovery.

Definition 4. The condensed representation of an interval-based numerical
relation r, denoted by CR⊆λ

(r), is defined by:

CR⊆λ
(r) = {(I,X) | I ∈ ADOM(r), X = {A ∈ R | I⊆λADOM(A, r)}}



Condensed representations from the two defined satisfactions can be different.
We denote CR⊆1

(r) and CR⊆2
(r) the condensed representations for ⊆1 and ⊆2

respectively.

Example 3. The condensed representations CR⊆1
(r1) and CR⊆2

(r1) of the re-
lation r1 (see Figure 3).

CR⊆1(r1)

[0,0.5] ABC
[1,1.5] ABC
[2,3] ABC
[0,1] BC
[1,2] B
[1.5,4] B
[0,1.5] C
[3,3.5] BC

CR⊆2(r1)

[0,0.5] ABC
[1,1.5] ABC
[2,3] ABC
[0,1] BC
[1,2] B
[1.5,4] B
[0,1.5] BC
[3,3.5] BC

Fig. 4: Condensed representations of r1 for both semantics

Given a set of relations r1, r2, ..., rn, its condensed representation is defined by
as:

CR⊆λ
(r1, r2, ..., rn) =

⋃
i=1..n

CR⊆λ
(ri).

Definition 5. The support of an attribute set X ⊆ R in CR⊆λ
(r), denoted by

sup(X,CR⊆λ
(r)), is defined by:

sup(X,CR⊆λ
(r)) = |{(i, Y ) ∈ CR⊆λ

(r)|X ⊆ Y }|

Definition 6. The closure of an attribute A ∈ sch(R) with respect to CR⊆λ
(r),

denoted by A+
CR⊆λ

(r), is defined as:

A+
CR⊆λ

(r) =
⋂

(i,X)∈CR⊆λ
(r)

{X|A ∈ X}

Example 4. In Figure 4, for CR⊆1
(r1) we have that sup({A}, CR⊆1

(r1)) = 3,
sup({A,B}, CR⊆1

(r1)) = 3 and A+
CR⊆1

(r1)
= {A,B,C}, C+

CR⊆1
(r1)

= {C}.
As for CR⊆2(r1), sup({B,C}, CR⊆2(r1)) = 6, sup({C}, CR⊆2(r1)) = 6 and
C+
CR⊆2

(r1)
= {B,C}.



4 Unary Inclusion Dependencies Discovery in a single
interval-based relation

To alleviate the notations, we consider a single relation only, i.e. UIND of the
form r |=λ R[A] ⊆ R[B]. Let r be a relation over R and A,B ∈ R.
We first give a technical lemma which relates the definition of r |=2 A ⊆ B to
the canonical representation of the intervals of A in r.

Lemma 1. r |=2 A ⊆ B ⇐⇒ ∀I ∈ cano(ADOM(A, r)),∃J ∈ cano(ADOM(B, r)),
I ⊆ J

Proof. (=⇒) Suppose not. Assume, to the contrary that there exists I ′ ∈
cano(ADOM(A, r)), such that for all J ∈ cano(ADOM(B, r)), I ′ 6⊆ J .
Let I ⊆ ADOM(A, r) be the maximal collection of intervals such that cano(I) =
{I ′}.
By definition, r |=2 A ⊆ B implies that for all I ∈ ADOM(A, r), there exists
J ∈ cano(ADOM(B, r)) such that I ⊆ J .
If |I| = 1, then we have a contradiction and the result follows.
Assume |I| > 1. The collection I can be divided into n > 1 disjoint non-empty
collections of intervals {I1, I2,..,In} such that there exist n different associated
intervals {J1, J2, .., Jn} ∈ cano(ADOM(B, r)) such that for all I ∈ Iλ, I ⊆ Jλ,
λ ∈ {1, 2, .., n}.
Since |cano(I)| = 1, for every Iλ ∈ {I1, I2,..,In}, there exists Iλ′ ∈ {I1,
I2,..,In}, λ 6= λ′ such that there exists I0 ∈ Iλ, K0 ∈ Iλ′ such that I0 ∩K0 6= ∅.
But I0 ⊆ Jλ, K0 ⊆ Jλ′ , then Jλ∩Jλ′ 6= ∅. Contradiction as Jλ, Jλ′ are supposed
to be non-intersecting.
(⇐=)
Let I ′ ∈ ADOM(A, r). Then there exists I ∈ cano(ADOM(A, r)) such that I ′ ⊆
I. Since for all I ∈ cano(ADOM(A, r)), there exists J ∈ cano(ADOM(B, r))
such that I ⊆ J , it follows that I ′ ⊆ J . Thus r |=2 A ⊆ B.

Intuitively, the main result of the paper states that every inclusion of the form
A ⊆ B that holds in r turns out to be equivalent to a closure computation on
the associated condensed representation.
We can now give the main result of the paper.

Theorem 1.
r |=λ A ⊆ B ⇐⇒ B ∈ A+

CR⊆λ
(r)

Proof. We consider the two UIND satisfactions presented before:

1. r |=1 A ⊆ B ⇐⇒ B ∈ A+
CR⊆1

(r)

(=⇒)
Let (I ′, X) ∈ CR⊆1

(r) such thatA ∈ X. Then, there exists I ∈ ADOM(A, r)
such that I ′ ⊆ I. Or r |=1 A ⊆ B implies that there exists J ∈ ADOM(B, r)
such that I ⊆ J . It follows that I ′ ⊆ J , and thus B ∈ X. Then B ∈
A+
CR⊆1

(r).



(⇐=)
B ∈ A+

CR⊆1
(r) ⇐⇒ for all (I,X) ∈ CR⊆1

(r), if A ∈ X then B ∈ X. For all
I ∈ ADOM(A, r), there exists a pair (I,X) ∈ CR⊆1(r) such that A ∈ X.
Thus, B ∈ X also holds, i.e. there exists J ∈ ADOM(B, r) such that I ⊆ J .
Thus r |=1 A ⊆ B.

2. r |=2 A ⊆ B ⇐⇒ B ∈ A+
CR⊆2

(r)

(=⇒)
Let (I ′, X) ∈ CR⊆2

(r) such thatA ∈ X. Then, there exists I ∈ cano(ADOM(A, r))
such that I ′ ⊆ I. Based on lemma 1, r |=2 A ⊆ B implies that there exists
J ∈ cano(ADOM(B, r)) such that I ⊆ J . It follows that I ′ ⊆ J , and thus
B ∈ X. Then B ∈ A+

CR⊆1
(r).

(⇐=)
For all I ′ ∈ ADOM(A, r), there exists a pair (I,X) ∈ CR⊆2(r) such
that A ∈ X and I ′ ⊆ I. Thus, B ∈ X also holds, i.e. there exists
J ∈ ADOM(B, r) such that I ⊆ J . It follows that I ′ ⊆ J .
Thus r |=2 A ⊆ B.

From previous theorem, the discovery of UIND is based on the following property,
based on support counting in the condensed representation.

Property 1.

B ∈ A+
CR⊆λ

(r) ⇐⇒ sup({A,B}, CR⊆λ
(r)) = sup({A}, CR⊆λ

(r)).

Proof. B ∈ A+
CR⊆λ

(r) ⇐⇒ for all (I,X) ∈ CR⊆λ
(r), if A ∈ X then B ∈ X.

Equivalently, the support of {A} and {A,B} are the same in CR⊆λ
(r), i.e.

sup({A,B}, CR⊆λ
(r)) = sup({A}, CR⊆λ

(r)).

5 Approximate unary IND between two interval-based
relations

Within this setting, an unary IND A⊆λB may be still unsatisfied in a relation
due to a few counter-examples. As a result, we introduce an approximation
measure to extract approximate unary inclusion dependencies from a relation.
This approximation will be calculated based on the support of attributes’ sets.
The error measure related to the correspondence between two attributes, denoted
error can be defined using the support of attribute sets as follows:

Definition 7. Let r be a relation over R and A,B ∈ R.

error(r |=λ A ⊆ B) = 1− sup({A,B}, CR⊆λ
(r))

sup({A}, CR⊆λ
(r))

Given two relations r over R and s over S, we are interested in finding the
approximative unary inclusion dependencies from single attributes of R with



respect to singles attributes of S. From now on, we consider the relation r as a
source relation and s as a target relation.
Based on the previous definition we can build a matrix of error measures, such
that each element of the matrix is represented as the value of the error measure
between a single attribute from R and a single attribute of S.

Example 5. Let r2, s2 be two toy relations:

r2 A B C
t1 : [0,0.5] [0,1] [0,1]
t2 : [1,1.5] [1,2] [3,3.5]
t3 : [2,3] [1.5,4] [2,3]

s2 D E F G
t1 : [0,1.5] [1,2] [1.6,1.8] [2,3]
t2 : [0,1.5] [1,2] [3.1,4] [2,3]
t3 : [0,1.5] [0,1] [0,0.5] [1,2]
t4 : [2,3.5] [2,3] [0,0.5] [1,2]
t5 : [2,3.5] [1,2] [0,0.5] [1,2]

Fig. 5: Toy relations r2 and s2

Based on the condensed representation CR⊆1
(r2, s2), we build a matrix of error

measures error({r2, s2} |=1 X ⊆ Y ) with X as attribute over r2 and Y as
attribute over s2:

CR⊆1(r2, s2)

[0,0.5] ABCDEF
[1,1.5] ABDEG
[2,3] ABCDEG
[0,1] BCDE
[1,2] BEG
[1.5,4] B
[3,3.5] BCD
[0,1.5] D
[2,3.5] BD
[1.6,1.8] BEFG
[3.1,4] BF

error({r2, s2} |=1 X ⊆ Y ) D E F G
A 0.000 0.000 0.667 0.333
B 0.400 0.400 0.700 0.600
C 0.000 0.250 0.750 0.750

Fig. 6: The condensed representation of r2 and s2 and the associated matrix of error
measures

As we search to find the most appropriate injective matching function between
two schema relations, given the matrix of error measures, we can reformulate
this problem as follows:

Given an error matrix between two schema relations R and S, find the
best matching with the minimum error between R and S.



This problem is in fact an assignment problem [12] which consists of find-
ing a maximum weight matching in a weighted bipartite graph. Hungarian
Algorithm [11] is one of the algorithms that can solve the assignment problem.
There are other algorithms that include adaptations as the Simplex Algorithm
and the Auction Algorithm [2]. The assignment problem is a special case of the
transportation problem [10], which is a variation of minimum cost maximum
flow problem [1].

6 Scalable algorithms

We propose a polynomial algorithm called SR2TR, which provides an injective
mapping based on the discovery of a set of approximate unary INDs from a
source relation r over R to a target relation s over S.

Algorithm 1 (SR2TR) Mapping from Source Relation to Target Relation
Input: two relations: r over R and s over S
Output: A mapping function f from R to S
1: CR = Preprocessing(r, s)
2: M = MEM(CR)
3: f = FindMatching(M)
4: return f .

Algorithm 1 can be summarized as follows:

1. Process the condensed representation CR(r, s) - Preprocessing(r,s);

2. Build the matrix of error measures M based on CR(r, s) - MEM(CR);

3. Find the minimum weight matching in the weighted bipartite graph con-
structed from M - FindMatching(M).

Two other algorithms are provided: Algorithm 2 for the Preprocessing function
(line 1 of Algorithm 1) and Algorithm 3 for the MEM function (line 2 of Al-
gorithm 1). The FindMatching function (line 3, Algorithm 3) corresponds to
the minimum weight matching in a weighted bipartite graph. From the matrix of
error measures M , we have implemented the Hungarian Algorithm, not detailed
here.



Algorithm 2 (Preprocessing) Computing the condensed representation of r∪ s
Input: Two relations r over R and s over S
Output: Condensed representation CR(r, s)
1: CR=∅
2: for all I ∈ ADOM(r) ∪ADOM(s) do
3: BR = ∅
4: for all A ∈ R ∪ S do
5: if check_inclusion(I, ADOM(A, r ∪ s)) = true then
6: BR[A] = true
7: else
8: BR[A] = false
9: end if
10: end for
11: CR.add(BR)
12: end for
13: return CR

For each interval I ∈ ADOM(r) ∪ ADOM(s), we search all single attributes
A ∈ R∪S for which I is included in ADOM(A, r∪ s) (line 5). Then we update
the binary relation BR accordingly, which is afterwards added to CR. As the
set ADOM(A, r∪s) is a set of intervals, from which we can construct an interval
tree for each single attribute in R ∪ S, so that check_inclusion is logarithmic
in the size of the r and s.

Algorithm 3 (MEM) Compute the matrix of error measures
Input: Condensed representation CR(r, s)
Output: The matrix of error measures between R and S
1: init(M)
2: for all A ∈ R do
3: for all (I,X) ∈ CR(r, s) where A ∈ X do
4: sup1[A] = sup1[A] + 1
5: for all B ∈ S where B ∈ X do
6: sup2[A][B] = sup2[A][B] + 1
7: end for
8: end for
9: end for
10: for all A ∈ R and B ∈ S do
11: M [A][B] = 1.0− sup2[A][B]/sup1[A]
12: end for
13: return M

Based on the condensed representation CR(r, s), we form the matrix of error
measures M of size |R| ∗ |S|. Line 1, M is initialized and filled with zeros in the
init(M) function. At this point we create two arrays, sup1 and sup2, referring



to the support of size 1 and 2 of R∪S. Then, we search through all the elements
of CR and we update step by step the support accordingly (lines 4, 6). Lines
10-11, we fill the matrix M, such that the value of an element M [A][B] of the
matrix is equal to 1− sup({A,B})

sup({A}) , where A ∈ R and B ∈ S.

Complexity analysis of SR2TR Let n = |R|, m = |S|, a = |r|, b = |s|. The
theoretical complexity is in O((n ∗ a + m ∗ b) ∗ (n ∗ log(a) + m ∗ log(b)) + P )
where P is the complexity of the matching algorithm. In case of the Hungarian
Algorithm, its complexity would be (n+m)4, which can be reduced to (n+m)3

[4,8,9,13].

7 Experimental Results

We implemented the previous algorithms in C++ and conducted experiments
to determine its effectiveness. We used datasets provided by astrophysicists of
IN2P3 and synthetic databases to check the scalability of the algorithm. Our
experiments were run using a machine with an Intel Core i7-4712MQ (2.3 GHz)
CPU and 12GB of memory. We focused on the classical UIND definition, referred
to as ⊆1. The results with canonical UIND, referred to as ⊆2, being quite similar
are not discussed.
The IN2P3 dataset is composed of two databases with 11 single attributes each.
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Fig. 7: Real-life astrophysics database

With respect to the number of tuples of the two databases, we obtained accept-
able execution times (see Figure 7), linear in the size of the data.
To test the scalability of our technique with regard to the response time and the
memory usage, we created 4 tests realized on synthetic datasets. The datasets
are composed of floating numbers in the interval [0,5000] and with an error
measure in the interval [0,1].



The first test considers a target relation of 100000 tuples, 20 attributes in each
relation schema and a varying number of tuples in the source relation (see Figure
8). We can observe a polynomial behavior on experimental results both in
response time and memory usage.

The second test considers a source relation of 1000 tuples, 20 attributes in each
relation schema and a varying number of tuples in the target relation (see Figure
9). In both the response time and memory usage we recognize a linear behavior.

The following test considers a target schema relation with 100 single attributes,
100 tuples in each relation and a varying number of single attributes in the source
schema relation (see Figure 10). We observe a linear behavior on experimental
results both in response time and memory usage.

The last test considers a source relation with 10 single attributes, and 100 tuples
in each relation and a varying number of single attributes in the target schema
relation (see Figure 11). A polynomial behavior can be observed both in response
time and memory usage.
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Fig. 8: Varying the number of tuples in the source relation
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Fig. 9: Varying of the number of tuples in the target relation
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Fig. 10: Varying the number of single attributes in the source schema relation
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Fig. 11: Varying the number of single attributes in the target schema relation



8 Conclusion

We have addressed the problem of finding an injective mapping between at-
tributes from a source relation to a target relation in an interval-based numerical
databases. The proposition is mainly based on the work of [15] on the discovery
of approximate unary inclusion dependencies. We implemented the contribu-
tions and tested on both real life and synthetic databases. Dealing with intervals
instead of classical values turns out to feasible in practice for this polynomial
problem, and requires mainly to think about notions such as the membership of
an interval into a collection of intervals.
Many perspectives do exist for this work: First, the Astrophysics setting of this
paper offers opportunities to extend the contributions made in this paper to real
Astrophysics problems. More joint works are needed to better understand the
needs of each other. Second, many pattern mining problems can be revisited for
interval-based numerical databases. For example, the discovery of conditional
functional dependencies could be revisited [6] as well as the discovery of editing
rules [7,5] for data cleaning, a main concern in Astrophysics.
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