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Abstract. The spectral reflectance of an object surface provides the
valuable information about its characteristics. Reflectance reconstruc-
tion is based on certain assumptions. One of these assumptions is that
the same illumination is used for system calibration and the image acqui-
sition. We propose multispectral constancy through spectral adaptation
transform, which transforms the sensor data acquired under an unknown
illumination to a generic illuminant-independent space, similar to the
computational color constancy. Spectral reflectance is then estimated by
using a generic linear calibration. Results of reflectance reconstruction
using the proposed concept show that this concept is efficient, but highly
sensitive to the accuracy of illuminant estimation.

Keywords: Reflectance reconstruction, multispectral constancy, illumi-
nant estimation, spectral adaptation transform

1 Introduction

Spectral imaging (SI) refers to the acquisition of image data at specific intervals
in the electromagnetic spectrum by the use of spectral filters. Color images con-
tain three channels while a spectral image consists of more than three channels.
SI was originally developed for remote sensing applications [1]. With advance-
ment in sensor technology, use of SI for indoor scene acquisition under controlled
conditions has also increased. The advantage of SI is the ability to acquire more
spectral information of a scene, which can be used for spectral reflectance recon-
struction [2] of the object’s surfaces. One of the limitations associated with SI is
the need of system calibration for the imaging environment when performing the
spectral reconstruction [3]. A system being calibrated for one type of conditions
needs to be re-calibrated if it has to be used in another imaging environment. One
of the major limitation is the need for having the same illuminant for spectral
reconstruction system’s calibration and the image acquisition. This limitation is
a major challenge and hurdle for the use of SI in outdoor environments.

In this paper, we introduce the concept of multispectral constancy for SI.
We define multispectral constancy similarly to the color constancy [4] but in
higher spectral dimension. By multispectral constancy, we refer to representation
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of imaged surfaces without the effect of scene illuminant. In other words, the
surfaces appear as if they are taken under a canonical illuminant. To achieve
multispectral constancy, we introduce a spectral adaptation transform (SAT).
The closest concept to SAT in the literature is defined as spectral adaptation,
being applied on spectra by Fairchild [5], while we generalize it to the sensor
measurements. By attaining multispectral constancy, SI can be used for any
illuminant without the requirement of re-calibration when imaging environment
is changed.

This paper is organised as follows. Section 2 formalises the problem of spec-
tral acquisition, including the calibration and spectral reconstruction as a linear
problem. We propose to add a term to the usual calibration, which discard the il-
lumination changes. Section 3 defines our simulation and experimental protocol.
Results are analyzed in Section 4 before we conclude.

2 Spectral Adaptation Transform

In the context of a simplified imaging model, a pixel being captured in the
imaging system at a location (i, j), is the combination of spectral reflectance
of the surface R(i, j)(λ), spectral power distribution of illuminant E(λ) and
spectral sensitivity of the nth spectral filter mn(λ). This formation for the visible
wavelength spectrum ω is defined in Eq. 1.

Fn(i, j) =

∫
ω

R(i, j)(λ)E(λ)mn(λ)dλ (1)

In practice, we can formulate a discrete version of Eq. 1 as F = REM, where
M = {m1(λ),m2(λ), ...,mN (λ)} and N is the total number of filters.

Here we consider two cases of image acquisition. One is with a canonical
illumination Ec and the other case is when an unknown illuminant Eill is used.
We present both cases in parallel in Equation 2.

Fill = REillM ; Fc = REcM (2)

To perform the spectral reflectance estimation R̂ from the imaged data in
both of the above mentioned cases, we can apply a generalized inverse, noticed
+, as in Equation 3.

R̂ = FillM
+E+

ill ; R̂ = FcM
+E+

c (3)

For the reconstruction of spectral reflectance, knowledge of illumination is re-
quired. There are many methods to estimate the sensor sensitivity M for a given
camera [6] [7]. However, it is not an easy task to measure the scene illuminant
every time along with the image acquisition.

The spectral reconstruction is performed by training a calibration matrix
W = M+E+ [8]. This calibration is specific for a given illumination Ec. By using
the calibration matrix W, the equations for spectral reflectance reconstruction
become R̂ = Fill.Will and R̂ = Fc.Wc for both cases, respectively. We propose
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to transform the acquired image Fill into a canonical representation Fc. In this
way, Wc can be used for the spectral reconstruction from a multispectral image,
being taken under any illumination. We call this concept as the multispectral
constancy. It is achieved through SAT. This transformation is in the form of a
diagonal matrix ASAT and is applied as,

Fc = ASATFill. (4)

In Eq. 4, SAT being applied to the acquired spectral data enables the estimation
of reflectance spectra from an image being taken under any illuminant and can
be used as,

R̂ = WcASATFill (5)

With the use of SAT as in Eq. 5, the requirement of having same illuminant
for spectral reconstruction system’s calibration and the image acquisition, is
no longer required since the acquired spectral image is transformed before the
estimation of spectra. Obtaining ASAT and W are explained in Sections 3.3 and
3.4, respectively.

3 Simulation

3.1 Simulation pipeline

Figure 1 shows the pipeline of experimental framework for the spectral recon-
struction, based on multispectral constancy. This pipeline consists of sensor
simulation, acquisition of spectral data, SAT, spectral reconstruction and the
evaluation of results. These blocks are explained in the following sections.

3.2 Sensor

To implement and validate the proposed idea of multispectral constancy, we
use reflectance data in the wavelength range R = {400nm, 410nm..., 720nm},
from the GretagMacbeth ColorChecker [9]. We apply equi-Gaussian filters [10]
for simulation of the spectral filters and use 8 filters in the experiments. By
increasing the number of filters, more noise is introduced in the image which
effects the spectral reconstruction. This effect was observed by Wang et al. [8].
Radiance data is created by using the illuminants E and D65 and then the
simulated sensors are used to acquire the multispectral data.

3.3 Multispectral constancy through SAT

In order to achieve multispectral constancy, SAT is applied to the spectral image
after the estimation of illuminant in the sensor domain as in Eq. 5. For estimation
of the illuminant in spectral images of natural scenes, we propose using the Max-
Spectral Algorithm and the Spectral Gray-Edge Algorithm. These algorithms are
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extensions of Max-RGB Algorithm [11] and the Gray-Edge Algorithm [12][13].
The extension of these algorithms from color to spectral is discussed in detail
in [14]. Once the illuminant is estimated, then we propose to apply the SAT
in form of a diagonal correction to the acquired data, so that it appears as if
being taken under a canonical illuminant. Such a diagonal transform for color
images was initially proposed by Von Kries [15]. We extend this transform into
the spectral domain. For N number of channels, SAT is defined as in Eq. 6.

F c
1

F c
2
...
F c
N

 =


K1 0 . . . 0
0 K2 . . . 0
...

...
. . .

...
0 0 . . . KN

 .


Fu
1

Fu
2
...
Fu
N

 (6)

Here, Fu
n is the pixel of nth channel, taken under an unknown illuminant while

Fc
n is the transformed images so that it appears to be taken under a canonical

illuminant. Kn is the correction parameter for the channel n which is obtained
from the illuminant estimation [14].

3.4 Spectral reflectance reconstruction

As explained in Section 2, a training matrix is required for the spectral recon-
struction from camera data. This matrix W is called the calibration matrix.
It is obtained by using measured reflectance spectra Rt and the acquisition of
radiance images Ft, using the same camera. We use reflectance data from the
GretagMacbeth ColorChecker [9] for Rt and the acquisition of Ft.

There are many methods being proposed for spectral reconstruction. We use
linear methods to keep the proposed system simple and robust. Those linear
methods include the linear least square regression, principal component analy-
sis [16] and Wiener estimation [17]. We checked the performance of these three
methods and got similar results. For this paper, we decide to use Wiener esti-
mation because it is robust to noise and fulfills the criteria of being linear. It is
defined as in Eq. 7.

W = FtF
T
t (RtE)t((RtE)FtF

T
t (RtE)T +A)+ (7)

Here, A is the term used for additive noise.
One of the major shortcoming of the linear methods for spectral reconstruc-

tion is the assumption that the same illuminant is used for system’s calibration
and acquisition of data. We are interested in the development of a spectral re-
construction system which do not require the same illuminant for system’s cal-
ibration and the data acquisition. This can be achieved through the illuminant
estimation in spectral images and then applying SAT to the acquired data as in
Eq. 5. The matrix W is obtained by using the training reflectance spectra and
radiance with the canonical illuminant Ec (we use illuminant E). This matrix
is used for the spectral reconstruction from the spectral data being taken under
any lighting conditions.
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To check the validity of our proposed idea, we perform experiments on the
measured reflectance data of Macbeth ColorChecker for spectral reflectance re-
construction. Those results are provided in Section 4.

3.5 Evaluation

For evaluation of the performance of spectral reconstruction R̂, we compare the
results with measured spectra R through root mean square error (RMSE) and
Goodness of fit coefficient (GFC) as in Eq. 8 and 9 respectively.

RMSE =

√
1

N

∑
|R− R̂| (8)

GFC =
‖
∑

R.R̂‖

‖
∑

R2‖
1
2 .‖

∑
R̂

2
‖

1
2

(9)

Besides that, we also provide spectral reconstruction results for the reflectance
patches of the Macbeth ColorChecker in the form of graphs so that the overall
performance of spectral reconstruction can be visually analyzed.

4 Results

In this section we evaluate the validity of our proposed idea of multispectral con-
stancy through SAT. We also investigate the influence of illuminant estimation
on the results of spectral reconstruction. We use three different noisy estimates
of illuminant for testing the proposed framework to assess the influence of erro-
neous illuminant estimation.

For training of matrix W, 24 patches of Macbeth ColorChecker are used
within the visible wavelength range (400-720 nm). For spectral reconstruction,
we use different scenarios which are given in Table 1.

For testing the influence of error in the illuminant estimation, we use three
different noisy estimates. Angular error (∆A) is calculated in term of radians
between the original illuminant e and the estimated illuminant ê as

∆A = arccos
e.ê

‖e‖.‖ê‖
(10)

We use three different noisy estimates of illuminant with ∆A of 0.0210, 0.1647
and 0.3658 radians. For checking the effect of illuminant estimation, we apply
these noisy illuminants in the sensor domain to the acquired spectral image of
Macbeth ColorChecker according to Eq. 6. First we evaluate spectral reconstruc-
tion and then analyze the performance of SAT. Figures 2, 3 and 4 show results
obtained from the 24 reflectance patches of the Macbeth Colorchecker in the
visible spectrum. These results are discussed in the following sections.
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Table 1: Description of the experiments being performed. Adequate calibration of sys-
tem is performed by using the same illuminant. In no correction case, we use different
illuminants and do not apply any correction. In ideal correction, SAT is applied by
assuming efficient estimation of the illuminant while in naive correction, SAT is ap-
plied using the illuminant E, while D65 is used for image acquisition. In next three
experiments, we apply SAT using the three different noisy estimate of illuminants.

Experiment
Illuminant for

training
Illuminant

for SI
SAT

Applied
Illuminant for SAT

Adequate
Calibration

D65 D65 No –

No Correction E D65 No –

Ideal Correction E D65 Yes D65

Naive Correction E D65 Yes E

Noisy estimate 1 E D65 Yes
Estimated illuminant
with ∆A=0.0210 rad

Noisy estimate 2 E D65 Yes
Estimated illuminant
with ∆A=0.1647 rad

Noisy estimate 3 E D65 Yes
Estimated illuminant
with ∆A=0.3658 rad

4.1 Reflectance estimation

With the use of linear method for spectral reconstruction (Wiener estimation
[17]), we evaluate the performance of the algorithm using the adequate calibra-
tion of system. We check the performance with both illuminants E and D65. They
provide similar results. We show results of adequate calibration with illuminant
D65 in Fig. 2, 3 and 4. This is the best reconstruction that can be obtained
with this given number of sensors and sensor configuration. We investigate the
performance of Wiener estimation when different illuminants are used for train-
ing and testing and no SAT is applied. We also perform SAT with illuminant
E in sensor domain and the camera data being acquired with illuminant D65.
We call this as naive correction. With adequate calibration, the best spectral
reconstruction results we could obtain with Wiener estimator, provided an aver-
age RMSE of 0.001 and average GFC of 0.9993 over the 24 patches of Macbeth
ColorChecker. With no correction being applied and using different illuminants
for training and acquisition, average RMSE and GFC were 0.0118 and 0.9898
respectively. To validate the idea of multispectral constancy through SAT, the
error in spectral reconstruction must be low as compared to the error in case of
applying no correction. We evaluate the performance of SAT in Section 4.2.

4.2 SAT performance

Figures 2, 3 and 4, show the spectral reconstruction results from seven different
experiments as given in Table 2. Although exact spectral reconstruction is not
possible with reduced number of bands, Wiener estimation method is still able
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Table 2: RMSE and GFC from spectral reconstruction of 24 patches of the Macbeth
ColorChecker.

Experiment RMSE GFC

Adequate Calibration 0.0011 0.9993

No Correction 0.0118 0.9898

Ideal Correction 0.0081 0.9973

Naive Correction 0.0091 0.9939

Noisy estimate 1 0.0106 0.9955

Noisy estimate 2 0.0128 0.9853

Noisy estimate 3 0.0240 0.9437

to make a close match when the same illuminant E is used for both training and
acquisition. We test SAT by using illuminant E for training the matrix W and
the acquired spectral data from the Macbeth ColorChecker after creation of ra-
diance data with D65 illuminant. SAT is applied to the acquired spectral image
and then spectral reconstruction is performed. It is obvious from the spectral
reconstruction results that the overall accuracy of our proposed framework is
dependant on the accuracy of illuminant estimation. With efficient illuminant
estimation, SAT is almost the same efficient as in the case of adequate calibra-
tion. However, it is interesting to note that although there is overlapping between
the spectral reflectance reconstruction curves in the case of adequate calibration
and ideal correction as seen in Figures 2, 3 and 4, the difference in RMSE and
GFC is not as close as expected (see Table 2). This leads to opening the discus-
sion about efficiency of SAT and the fact that should SAT be optimised as well
in order to get more efficient results. Another problem to be investigated is the
required efficiency of both SAT and the illuminant estimation for applications
like object detection and classification on the basis of their spectral properties.
However, the closeness in result proves that if efficient illuminant estimation is
performed and SAT is applied, we can attain close results as compared with
adequate calibration. Our proposed idea is valid and there is no need to acquire
SPD of the scene illuminant explicitly. The only factor which remains impor-
tant in our proposed idea of multispectral constancy is the efficient estimation
of illuminant in the spectral image.

The dependence of SAT on accuracy of illuminant estimation is clear when
spectral reconstruction is performed after applying SAT using the noisy illumi-
nants. In each case, there is error in the illuminant estimation and this error is
escalated further during the spectral reconstruction. In these cases, the error in
spectral reconstruction is worst from the instance when no correction is applied.
It is interesting to note that even the naive correction is able to perform well,
which makes the role of illuminant estimation as a significant factor for our pro-
posed idea of multispectral constancy through SAT. SAT itself also needs to be
investigated so that an efficient framework for the transformation of acquired
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spectral image into the illuminant free representation (multispectral constancy)
can be achieved.

5 Conclusion

This work formalizes the concept of multispectral constancy, which permits spec-
tral image acquisition, independent of the illumination. Multispectral constancy
is achieved via a spectral adaptation transform, which changes data representa-
tion from the actual sensor domain, towards a canonical one, where calibration
applies.

Simulation results show that a diagonal SAT permits to achieve similar re-
flectance reconstruction than when the samples are acquired under the illumina-
tion being used for calibration. However, when the spectral adaptation transform
is evaluated based on an estimate of illumination, error in illuminant estimates
makes the performance to drop down greatly.

It is still to be investigated that what accuracy is required for the illuminant
estimation to make this concept beneficial. It is also important to recall that
these results are compiled based on simulation without noise during the sensor
data acquisition. Further work shall investigate these directions and define the
limits of using this approach.
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(a) Reflectance patch 1
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(b) Reflectance patch 2
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(c) Reflectance patch 3
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(d) Reflectance patch 4
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(e) Reflectance patch 5
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(f) Reflectance patch 6
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(g) Reflectance patch 7

Wavelength

400 450 500 550 600 650 700

S
p

e
c

tr
a

l 
R

e
fl

e
c

ta
n

c
e

0

0.2

0.4

0.6

0.8

1

(h) Reflectance patch 8
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(i) Reflectance patch 9

Measured Reflectance

Adequate Calibration

No Correction

Ideal Correction

Naive Correction

(j) Legend

Fig. 2: First 9 reflectance patches from Macbeth ColorChecker. In each figure, there
are curves of measured reflectance, spectral reconstruction from adequate calibration,
no correction, ideal correction, naive correction, reflectance reconstruction results after
applying SAT from estimated illuminants having ∆A of 0.0210, 0.1647 and 0.3658,
respectively. Fig. (j) shows the legend.
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(a) Reflectance patch 10
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(b) Reflectance patch 11
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(c) Reflectance patch 12
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(d) Reflectance patch 13
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(e) Reflectance patch 14
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(f) Reflectance patch 15
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(g) Reflectance patch 16
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(h) Reflectance patch 17
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(i) Reflectance patch 18

Measured Reflectance

Adequate Calibration

No Correction

Ideal Correction

Naive Correction

(j) Legend

Fig. 3: Reflectance patches 10-18 from the Macbeth ColorChecker. In each figure, there
are curves of measured reflectance, spectral reconstruction from adequate calibration,
no correction, ideal correction, naive correction, reflectance reconstruction results after
applying SAT from estimated illuminants having ∆A of 0.0210, 0.1647 and 0.3658,
respectively. Fig. (j) shows the legend.



12 Haris Ahmad Khan et al.

Wavelength

400 450 500 550 600 650 700

S
p

e
c

tr
a

l 
R

e
fl

e
c

ta
n

c
e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Reflectance patch 19
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(b) Reflectance patch 20
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(c) Reflectance patch 21
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(d) Reflectance patch 22

Wavelength

400 450 500 550 600 650 700

S
p

e
c

tr
a

l 
R

e
fl

e
c

ta
n

c
e

0

0.2

0.4

0.6

0.8

1

(e) Reflectance patch 23
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(f) Reflectance patch 24

Fig. 4: Reflectance patches 19-24 from the Macbeth ColorChecker.
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