

OPINION ON the safety of cosmetic ingredients HEMA and Di-HEMA Trimethylhexyl Dicarbamate" - Submission I - (Sensitisation only)

U. Bernauer, L. Bodin, L. Celleno, Q. Chaudhry, P.J. Coenraads, M. Dusinska, J. Ezendam, E. Gaffet, C. L. Galli, B. Granum, et al.

► To cite this version:

U. Bernauer, L. Bodin, L. Celleno, Q. Chaudhry, P.J. Coenraads, et al.. OPINION ON the safety of cosmetic ingredients HEMA and Di-HEMA Trimethylhexyl Dicarbamate" - Submission I - (Sensitisation only). 2017. hal-01672529

HAL Id: hal-01672529

<https://hal.science/hal-01672529v1>

Preprint submitted on 26 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1
2
3
4
5
6
7
8
9
10
11
12
13 Scientific Committee on Consumer Safety
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

OPINION ON

the safety of cosmetic ingredients HEMA and Di-HEMA Trimethylhexyl Dicarbamate

Submission I

(Sensitisation only)

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
223100
223101
223102
223103
223104
223105
223106
223107
223108
223109
223110
223111
223112
223113
223114
223115
223116
223117
223118
223119
223120
223121
223122
223123
223124
223125
223126
223127
223128
223129
223130
223131
223132
223133
223134
223135
223136
223137
223138
223139
223140
223141
223142
223143
223144
223145
223146
223147
223148
223149
223150
223151
223152
223153
223154
223155
223156
223157
223158
223159
223160
223161
223162
223163
223164
223165
223166
223167
223168
223169
223170
223171
223172
223173
223174
223175
223176
223177
223178
223179
223180
223181
223182
223183
223184
223185
223186
223187
223188
223189
223190
223191
223192
223193
223194
223195
223196
223197
223198
223199
223200
223201
223202
223203
223204
223205
223206
223207
223208
223209
223210
223211
223212
223213
223214
223215
223216
223217
223218
223219
223220
223221
223222
223223
223224
223225
223226
223227
223228
223229
223230
223231
223232
223233
223234
223235
223236
223237
223238
223239
223240
223241
223242
223243
223244
223245
223246
223247
223248
223249
223250
223251
223252
223253
223254
223255
223256
223257
223258
223259
223260
223261
223262
223263
223264
223265
223266
223267
223268
223269
223270
223271
223272
223273
223274
223275
223276
223277
223278
223279
223280
223281
223282
223283
223284
223285
223286
223287
223288
223289
223290
223291
223292
223293
223294
223295
223296
223297
223298
223299
2232100
2232101
2232102
2232103
2232104
2232105
2232106
2232107
2232108
2232109
2232110
2232111
2232112
2232113
2232114
2232115
2232116
2232117
2232118
2232119
2232120
2232121
2232122
2232123
2232124
2232125
2232126
2232127
2232128
2232129
2232130
2232131
2232132
2232133
2232134
2232135
2232136
2232137
2232138
2232139
2232140
2232141
2232142
2232143
2232144
2232145
2232146
2232147
2232148
2232149
2232150
2232151
2232152
2232153
2232154
2232155
2232156
2232157
2232158
2232159
2232160
2232161
2232162
2232163
2232164
2232165
2232166
2232167
2232168
2232169
2232170
2232171
2232172
2232173
2232174
2232175
2232176
2232177
2232178
2232179
2232180
2232181
2232182
2232183
2232184
2232185
2232186
2232187
2232188
2232189
2232190
2232191
2232192
2232193
2232194
2232195
2232196
2232197
2232198
2232199
2232200
2232201
2232202
2232203
2232204
2232205
2232206
2232207
2232208
2232209
2232210
2232211
2232212
2232213
2232214
2232215
2232216
2232217
2232218
2232219
2232220
2232221
2232222
2232223
2232224
2232225
2232226
2232227
2232228
2232229
22322210
22322211
22322212
22322213
22322214
22322215
22322216
22322217
22322218
22322219
22322220
22322221
22322222
22322223
22322224
22322225
22322226
22322227
22322228
22322229
223222210
223222211
223222212
223222213
223222214
223222215
223222216
223222217
223222218
223222219
223222220
223222221
223222222
223222223
223222224
223222225
223222226
223222227
223222228
223222229
2232222210
2232222211
2232222212
2232222213
2232222214
2232222215
2232222216
2232222217
2232222218
2232222219
2232222220
2232222221
2232222222
2232222223
2232222224
2232222225
2232222226
2232222227
2232222228
2232222229
22322222210
22322222211
22322222212
22322222213
22322222214
22322222215
22322222216
22322222217
22322222218
22322222219
22322222220
22322222221
22322222222
22322222223
22322222224
22322222225
22322222226
22322222227
22322222228
22322222229
223222222210
223222222211
223222222212
223222222213
223222222214
223222222215
223222222216
223222222217
223222222218
223222222219
223222222220
223222222221
223222222222
223222222223
223222222224
223222222225
223222222226
223222222227
223222222228
223222222229
2232222222210
2232222222211
2232222222212
2232222222213
2232222222214
2232222222215
2232222222216
2232222222217
2232222222218
2232222222219
2232222222220
2232222222221
2232222222222
2232222222223
2232222222224
2232222222225
2232222222226
2232222222227
2232222222228
2232222222229
22322222222210
22322222222211
22322222222212
22322222222213
22322222222214
22322222222215
22322222222216
22322222222217
22322222222218
22322222222219
22322222222220
22322222222221
22322222222222
22322222222223
22322222222224
22322222222225
22322222222226
22322222222227
22322222222228
22322222222229
223222222222210
223222222222211
223222222222212
223222222222213
223222222222214
223222222222215
223222222222216
223222222222217
223222222222218
223222222222219
223222222222220
223222222222221
223222222222222
223222222222223
223222222222224
223222222222225
223222222222226
223222222222227
223222222222228
223222222222229
2232222222222210
2232222222222211
2232222222222212
2232222222222213
2232222222222214
2232222222222215
2232222222222216
2232222222222217
2232222222222218
2232222222222219
2232222222222220
2232222222222221
2232222222222222
2232222222222223
2232222222222224
2232222222222225
2232222222222226
2232222222222227
2232222222222228
2232222222222229
22322222222222210
22322222222222211
22322222222222212
22322222222222213
22322222222222214
22322222222222215
22322222222222216
22322222222222217
22322222222222218
22322222222222219
22322222222222220
22322222222222221
22322222222222222
22322222222222223
22322222222222224
22322222222222225
22322222222222226
22322222222222227
22322222222222228
22322222222222229
223222222222222210
223222222222222211
223222222222222212
223222222222222213
223222222222222214
223222222222222215
223222222222222216
223222222222222217
223222222222222218
223222222222222219
223222222222222220
223222222222222221
223222222222222222
223222222222222223
223222222222222224
223222222222222225
223222222222222226
223222222222222227
223222222222222228
223222222222222229
2232222222222222210
2232222222222222211
2232222222222222212
2232222222222222213
2232222222222222214
2232222222222222215
2232222222222222216
2232222222222222217
2232222222222222218
2232222222222222219
2232222222222222220
2232222222222222221
2232222222222222222
2232222222222222223
2232222222222222224
2232222222222222225
2232222222222222226
2232222222222222227
2232222222222222228
2232222222222222229
22322222222222222210
22322222222222222211
22322222222222222212
22322222222222222213
22322222222222222214
22322222222222222215
22322222222222222216
22322222222222222217
22322222222222222218
22322222222222222219
22322222222222222220
22322222222222222221
22322222222222222222
22322222222222222223
22322222222222222224
22322222222222222225
22322222222222222226
22322222222222222227
22322222222222222228
22322222222222222229
223222222222222222210
223222222222222222211
223222222222222222212
223222222222222222213
223222222222222222214
223222222222222222215
223222222222222222216
223222222222222222217
223222222222222222218
223222222222222222219
223222222222222222220
223222222222222222221
223222222222222222222
223222222222222222223
223222222222222222224
223222222222222222225
223222222222222222226
223222222222222222227
223222222222222222228
223222222222222222229
2232222222222222222210
2232222222222222222211
2232222222222222222212
2232222222222222222213
2232222222222222222214
2232222222222222222215
2232222222222222222216
2232222222222222222217
2232222222222222222218
2232222222222222222219
2232222222222222222220
2232222222222222222221
2232222222222222222222
2232222222222222222223
2232222222222222222224
2232222222222222222225
2232222222222222222226
2232222222222222222227
2232222222222222222228
2232222222222222222229
22322222222222222222210
22322222222222222222211
22322222222222222222212
22322222222222222222213
22322222222222222222214
22322222222222222222215
22322222222222222222216
22322222222222222222217
22322222222222222222218
22322222222222222222219
22322222222222222222220
22322222222222222222221
22322222222222222222222
22322222222222222222223
22322222222222222222224
22322222222222222222225
22322222222222222222226
22322222222222222222227
22322222222222222222228
22322222222222222222229
223222222222222222222210
223222222222222222222211
223222222222222222222212
223222222222222222222213
223222222222222222222214
223222222222222222222215
223222222222222222222216
223222222222222222222217
223222222222222222222218
223222222222222222222219
223222222222222222222220
223222222222222222222221
223222222222222222222222
223222222222222222222223
223222222222222222222224
223222222222222222222225
223222222222222222222226
223222222222222222222227
223222222222222222222228
223222222222222222222229
2232222222222222222222210
2232222222222222

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1

2 **About the Scientific Committees**

3 Two independent non-food Scientific Committees provide the Commission with the scientific
4 advice it needs when preparing policy and proposals relating to consumer safety, public
5 health and the environment. The Committees also draw the Commission's attention to the
6 new or emerging problems that may pose an actual or potential threat.

7 These Committees are the Scientific Committee on Consumer Safety (SCCS) and the
8 Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) and are made
9 up of scientists appointed in their personal capacity.

10 In addition, the Commission relies upon the work of the European Food Safety Authority
11 (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention
12 and Control (ECDC) and the European Chemicals Agency (ECHA).

13 **SCCS**

14 The Committee shall provide Opinions on questions concerning health and safety risks
15 (notably chemical, biological, mechanical and other physical risks) of non-food consumer
16 products (for example cosmetic products and their ingredients, toys, textiles, clothing,
17 personal care and household products such as detergents, etc.) and services (for example:
18 tattooing, artificial sun tanning, etc.).

19 **Scientific Committee members**

20 Bernauer Ulrike, Bodin Laurent, Celleno Leonardo, Chaudhry Mohammad Qasim, Coenraads
21 Pieter-Jan, Dusinska Maria, Ezendam Janine, Gaffet Eric, Galli Corrado Lodovico, Granum
22 Berit, Panteri Eirini, Rogiers Vera, Rousselle Christophe, Stępnik Maciej, Vanhaecke Tamara,
23 Wijnhoven Susan

24 **Contact**

25 European Commission
26 Health and Food Safety
27 Directorate C: Public Health, country knowledge, crisis management
28 Unit C2 – Country Knowledge and Scientific Committees
29 Office: HTC 03/073
30 L-2920 Luxembourg
31 SANTE-C2-SCCS@ec.europa.eu

32 © European Union, 2017

33 ISSN ISBN

34 Doi ND

35 The opinions of the Scientific Committees present the views of the independent scientists
36 who are members of the committees. They do not necessarily reflect the views of the
37 European Commission. The opinions are published by the European Commission in their
38 original language only.

39 http://ec.europa.eu/health/scientific_committees/consumer_safety/index_en.htm

40
41
42
43
44
45

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 **ACKNOWLEDGMENTS**

2 SCCS members listed below are acknowledged for their valuable contribution to the
3 finalisation of this Opinion.

4
5 **SCCS Members**

6 Dr U. Bernauer
7 Dr L. Bodin
8 Dr L. Celleno (Rapporteur)
9 Prof. Q. Chaudhry
10 Prof. P.J. Coenraads (Chairperson)
11 Prof. M. Dusinska
12 Dr J. Ezendam
13 Dr E. Gaffet
14 Prof. C. L. Galli
15 Dr B. Granum
16 Prof. E. Panteri
17 Prof. V. Rogiers
18 Dr Ch. Rousselle
19 Dr M. Stepnik
20 Prof. T. Vanhaecke
21 Dr S. Wijnhoven

22
23
24
25
26
27
28
29 All Declarations of Working Group members are available on the following webpage:
30 http://ec.europa.eu/health/scientific_committees/experts/declarations/sccs_en.htm

31
32
33
34 Keywords: SCCS, scientific opinion, cosmetic ingredients, 2-hydroxyethyl methacrylate
35 HEMA (CAS 868-77-9 and EC 212-782-2), Di-HEMA Trimethylhexyl Dicarbamate (CAS
36 41137-60-4 / 72869-86-4 and EC 276-957-5), Regulation 1223/2009

37
38
39
40 Opinion to be cited as: SCCS (Scientific Committee on Consumer Safety), Opinion on the
41 safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl
42 Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only),
43 SCCS/1592/17, 22 December 2017.

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 TABLE OF CONTENTS

2	4. 1. BACKGROUND	5
---	------------------------	---

5	2. TERMS OF REFERENCE.....	5
---	----------------------------	---

6	3. OPINION.....	6
---	-----------------	---

7	3.1 Chemical and Physical Specifications.....	6
---	---	---

8	3.1.1 Chemical identity	6
---	-------------------------------	---

9	3.1.2 Physical form	8
---	---------------------------	---

10	3.1.3 Molecular weight	8
----	------------------------------	---

11	3.1.4 Purity, composition and substance codes.....	8
----	--	---

12	3.1.5 Impurities / accompanying contaminants	8
----	--	---

13	3.1.6 Solubility	8
----	------------------------	---

14	3.1.7 Additional physical and chemical specifications.....	9
----	--	---

15	3.1.8 Homogeneity and Stability	9
----	---------------------------------------	---

16	3.2 Function and uses	11
----	-----------------------------	----

17	3.3 Toxicological evaluation	12
----	------------------------------------	----

19	3.3.1 Acute toxicity	12
----	----------------------------	----

20	3.3.2 Irritation and corrosivity	12
----	--	----

21	3.3.3 Skin sensitisation.....	13
----	-------------------------------	----

22	3.3.4 Dermal / percutaneous absorption.....	14
----	---	----

23	3.3.5 Repeated dose toxicity	15
----	------------------------------------	----

24	3.3.6 Mutagenicity / Genotoxicity	15
----	---	----

25	3.3.7 Carcinogenicity.....	15
----	----------------------------	----

26	3.3.8 Reproductive toxicity	15
----	-----------------------------------	----

27	3.3.9 Toxicokinetics	15
----	----------------------------	----

28	3.3.10 Photo-induced toxicity	15
----	-------------------------------------	----

29	3.3.11 Human data.....	15
----	------------------------	----

30	3.3.12 Discussion	24
----	-------------------------	----

31	4. CONCLUSION	26
----	---------------------	----

33	5. MINORITY OPINION.....	26
----	--------------------------	----

34	6. REFERENCES	27
----	---------------------	----

35		
----	--	--

36		
----	--	--

37		
----	--	--

38		
----	--	--

39		
----	--	--

40		
----	--	--

41		
----	--	--

42		
----	--	--

43		
----	--	--

44		
----	--	--

45		
----	--	--

46		
----	--	--

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1

2 **1. BACKGROUND**

3

4 The cosmetic ingredients HEMA, with chemical name 2-hydroxyethyl methacrylate (CAS
5 868-77-9, EC 212-782-2), and Di-HEMA Trimethylhexyl Dicarbamate, with chemical name
6 7,7,9 (or 7,9,9)-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl
7 bismethacrylate (CAS 41137-60-4/72869-86-4, EC -/276-957-5) are active components of
8 topically applied artificial nail modelling systems cured by ultraviolet (UV) light. The
9 methacrylate ester monomers HEMA and Di-HEMA Trimethylhexyl Dicarbamate are used as
10 film forming ingredients in nail products, where they are consumed within a few seconds to
11 minutes during the polymerization induced by the UV-curing process.

12

13 In August 2014, the Commission was informed of a decision of the Swedish authorities to
14 withdraw and prohibit the sale and delivery of a range of nail polishes, according to Article
15 27 (Safeguard clause) of Regulation (EC) No 1223/2009 on cosmetic products. These
16 products were notified through the RAPEX system, pursuant to Article 12 of Directive
17 2001/95/EC on general product safety, as posing a serious risk to consumers (RAPEX
18 notification A12/1226/14).

19

20 The Swedish authorities consider that the above-mentioned products, which are hardened
21 with the use of a LED lamp after application, constitute a serious risk for consumers as they
22 can lead to contact allergy and result in damage to nails and/or hands. Available scientific
23 evidences suggest that the sensitising potential could be related to the uncured (not fully
24 reacted), unpolymerised reactive monomers HEMA and Di-HEMA Trimethylhexyl
25 Dicarbamate.

26

27 In 2016, the Commission launched a public call for data to retrieve safety information on
28 HEMA, Di-HEMA Trimethylhexyl Dicarbamate and in addition on the class of compounds
29 termed "urethane acrylates".

30

31 Following this call for data, several contributions from Member States' national authorities,
32 clinicians and industry experts have been submitted to the Commission services.

33

34 The two substances Di-HEMA Trimethylhexyl Dicarbamate and HEMA are used as cosmetics
35 ingredients and listed in CosIng, the European Commission database for cosmetic
36 ingredients, while "urethane acrylates" indicates a class of substances that is not registered
37 in CosIng as such. Further clarifications are needed on the specific substances of this class
38 that are used as cosmetic ingredients and that could represent a concern for consumer
39 safety. Therefore the scope of this current safety evaluation is limited to the monomers of
40 HEMA and Di-HEMA Trimethylhexyl Dicarbamate.

41

42 **2. TERMS OF REFERENCE**

43

44 1. *In light of the data provided, does the SCCS consider monomers of HEMA and Di-HEMA
45 Trimethylhexyl Dicarbamate, safe at concentrations of up to 35 % and 99% respectively
46 when used in topically applied UV-cured artificial nail modelling systems?*

47

48 2. *Does the SCCS have any further scientific concerns with regard to the use of HEMA and
49 Di-HEMA Trimethylhexyl Dicarbamate monomers in cosmetic products?*

50

51

52

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 **3. OPINION**

2 **3.1 Chemical and Physical Specifications**

3 **3.1.1 Chemical identity**

4 **3.1.1.1 Primary name and/or INCI name**

5 INCI names: HEMA and Di-HEMA TRIMETHYLHEXYL DICARBAMATE

6 **3.1.1.2 Chemical names**

7 **HEMA**

8 Chemical name: 2-Hydroxyethyl methacrylate

9 IUPAC name: 2-Hydroxyethyl methacrylate

10 **Di-HEMA Trimethylhexyl Dicarbamate**

11 Chemical name: Di-HEMA trimethylhexyl dicarbamate

12 IUPAC name: 11,14-Dioxa-2,9-diazaheptadec-16-enoic Acid, 4,4,6,16-tetramethyl-10,15-dioxo,2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl ester

13 Ref: CosIng

14 **3.1.1.3 Trade names and abbreviations**

15 **HEMA**

16 2-HEMA

17 2-Hydroxyethyl ester, methacrylic acid

18 Ethylene glycol methacrylate

19 HEMA

20 Hydroxyethyl methacrylate

21 **Di-HEMA Trimethylhexyl Dicarbamate**

22 Depositor-Supplied Synonyms:

23 Urethane dimethacrylate

24 2-Propenoic acid, 2-methyl-, 7,7,9(or 7,9,9)-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl ester

25 7,7,9(or 7,9,9)-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl bismethacrylate

26 11,14-Dioxa-2,9-diazaheptadec-16-enoic acid, 4,4,6,16-tetramethyl-10,15-dioxo-, 2-((2-methyl-1-oxo-2-propen-1-yl)oxy)ethyl ester

27 11,14-Dioxa-2,9-diazaheptadec-16-enoic acid, 4,4,6,16-tetramethyl-10,15-dioxo-, 2-((2-methyl-1-oxo-2-propenyl)oxy)ethyl ester

28 11,14-Dioxa-2,9-diazaheptadec-16-enoic acid, 4,4,6,16-tetramethyl-10,15-dioxo-, 2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl ester

29 CCRIS 8223

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

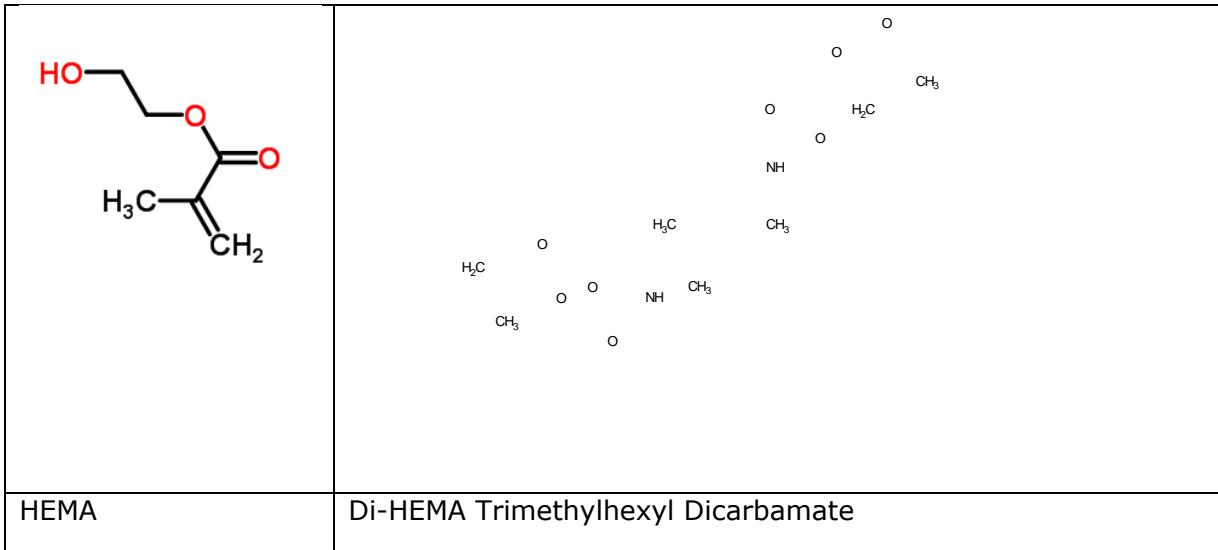
52

53

54

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 MeSH Entry Terms:
2 1,6-di-(methacryloxy-2-ethoxycarbonylamino)-3,5,5-trimethylhexane
3 Lumin-X
4 Opalux
5 UDMA compound
6 urethane dimethacrylate
7 urethane dimethacrylate luting resin
8 urethane-di-methacrylate
9 Visioform


10
11
12 Ref: PubChem: <https://pubchem.ncbi.nlm.nih.gov/compound/170472#section=Synonyms>,
13 CIR, 2005; OECD SIDS, 2001
14
15

16 3.1.1.4 CAS / EC number

17
18 HEMA:
19 CAS: 868-77-9
20 EC: 212-782-2

21
22 Di-HEMA Trimethylhexyl Dicarbamate:
23 CAS: 41137-60-4, 72869-86-4
24 EC: 276-957-5

25 3.1.1.5 Structural formula

28
29 Ref: ChemSpider, PubChem
30
31

32 3.1.1.6 Empirical formula

33
34 Formula HEMA: C₆H₁₀O₃
35 Formula Di-HEMA: C₂₃H₃₈N₂O₈

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 **3.1.2 Physical form**

2 Physical form HEMA: Clear liquid

6 **3.1.3 Molecular weight**

8 Molecular weight HEMA: 130.14 g/mol

9 Molecular weight Di-HEMA: 470.56 g/mol

12 **3.1.4 Purity, composition and substance codes**

14 HEMA:

15 Purity: 97.0 - >99%

18 **SCCS comment**

19 Additional information on the analytical method used to evaluate peak purity is needed.
20 Data on the purity of Di-HEMA Trimethylhexyl Dicarbamate was not provided.

23 **3.1.5 Impurities / accompanying contaminants**

25 HEMA:

26 Diethylene glycol mono-methacrylate: < 2.0%

27 Ethylene glycol di-methacrylate: < 0.2%

28 Water: < 0.04%

29 Methacrylic acid: < 0.04%

30 Ethylene oxide: < 0.001%

31 4-Methoxy phenol (syn. Hydroquinone Methylether (MeHQ)): 40 – 80 ppm (additive for
32 prevention of polymer formation). Noteworthy to mention that in commercial nail products
33 for professional and for non-professional use, the MeHQ content will be at maximum 200
34 ppm and thus in line with the current cosmetics regulation.

36 **SCCS comments**

37 Additional information on the analytical method used for the chemical characterisation of
38 impurities is needed. Data on the impurities of Di-HEMA Trimethylhexyl Dicarbamate have
39 not been provided.

42 **3.1.6 Solubility**

44 HEMA:

45 Water solubility: Miscible with water and soluble in common organic solvents

47 (PubChem reference: Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th
48 ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 622)

50 Di-HEMA Trimethylhexyl Dicarbamate:

51 Soluble in water: 30 mg/L at 37 °C (experimental, ChemIdPlus)

53 Reference: OECD SIDS, 2001; Keystone, 2016

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1

2

3.1.7 Partition coefficient (Log Pow)

4

5 HEMA:

6 Log Pow: measured: 0.42 at 25 °C and pH ≥ 5.9 – ≤ 6.1 (OECD
7 107)

8

9 DI-HEMA Trimethylhexyl Dicarbamate:

10 LogPow = 4.69 (estimated, ChemIdPlus)

11

12

13 3.1.8 Additional physical and chemical specifications

14

15

16 **HEMA**

17 Melting point: -12 °C (experimental, Alfa Aesar, ChemSpider)

18

Boiling point: 250 °C (experimental, Alfa Aesar, ChemSpider)

19

Flash point: 101 °C (experimental, Alfa Aesar, ChemSpider)

20

Density: 1.1±0.1 g/cm³ (predicted, ACD/Labs, ChemSpider)

21

Vapour pressure: 0.2±0.7 mmHg at 25°C (predicted, ACD/Labs, ChemSpider)

22

Viscosity: /

23

pKa: /

24

Refractive index: 1.453 (experimental, Alfa Aesar, ChemSpider)

25

UV_Vis spectrum: /

26

27

28 **Di-HEMA Trimethylhexyl Dicarbamate (Di-HEMA-TMHDC):**

29

Melting point: /

30

Boiling point: 594.3±45.0 °C at 760 mmHg (predicted, ACD/Labs, ChemSpider)

31

Flash point: 313.2±28.7 °C (predicted, ACD/Labs, ChemSpider)

32

Vapour pressure: 0.0±1.7 mmHg at 25°C (predicted, ACD/Labs, ChemSpider)

33

Density: 1.1±0.1 g/cm³ (predicted, ACD/Labs, ChemSpider)

34

Viscosity: /

35

Surface Tension: 37.6±3.0 dyne/cm (predicted, ACD/Labs, ChemSpider)

36

pKa: /

37

Refractive index: 1.479 (predicted, ACD/Labs, ChemSpider)

38

Molar Refractivity: 122.0±0.3 cm³ (predicted, ACD/Labs, ChemSpider)

39

UV_Vis spectrum: /

40

41

Ref: www.chemspider.com

42

43

44 3.1.9 Homogeneity and Stability

45

46

47 **HEMA:**

48

The product is stable

49

50

Ref: Keystone, 2016

51

52

SCCS comment

53

54

55

Additional information on the stability studies (conditions, any stabiliser added, analytical method used to evaluate stability) is not provided. Data on the stability of Di-HEMA Trimethylhexyl Dicarbamate are also not provided.

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1
2
3 **Polymerisation**

4 The polymerization of 22 methacrylates including HEMA was measured in an ethyl
5 methacrylate based system using Differential Scanning Calorimetry (DSC). Maximum peak
6 exotherm and total exotherm were measured as indications for the polymerization process,
7 while the nail enhancement product reacted in the test chamber. Maximum peak exotherm
8 occurs at gelation (gel point) of a curing nail enhancement system. The gelation point is
9 reached when at least 50% of the monomer has reacted and the material has a hardened
10 surface. This process starts immediately and takes 2 to 4 minutes in most commercially
11 available professional monomer-based nail enhancement systems. Changes in gel point
12 time and total exotherm are both directly proportional to the test monomers' reactivity.
13 In the experiment, the Radical® artificial nail monomer/polymer system was modified by
14 adding 5% ethyl methacrylate to establish a normalised baseline to compare reactivity of
15 various test monomers including HEMA. Each of the 22 test monomers were added at a
16 concentration of 5% and 50% (by weight) to the Radical® artificial nail monomer/polymer
17 system.

18 The results show that polymerization of HEMA was fast in general and even faster at a
19 higher concentration (Table 1). This can be considered as an indication of strong reactivity.
20
21

Table 1. Results of differential scanning calorimetry regarding HEMA in nail product

HEMA concentration	5%	50%
Polymerization time	set	2.85 ± 5.0 min
Total exotherm		672.07 ± 4.4 mJ/m ²
		1130.3 ± 6.3 mJ/m ²

22
23 Ref: Creative Nail Design, 2001; Schoon, 1994a + b
24
25
26

Extraction

27 Explorative analytical screening investigations to mimic use conditions are available. The
28 amount of extractable Hydroxyethyl Methacrylate (HEMA) amongst other methacrylates
29 from cured films of UV/LED full coat system, an acrylic and a builder system, applied on a
30 glass slide, was analysed using a 0.1% salt water solution or acetone as extraction solvent.
31 The salt water extracts were analysed by High Performance Liquid Chromatography (HPLC)
32 and the acetone extracts were analysed by Gas Chromatography (GC).
33 The HEMA containing samples were prepared as follows:

34 Preparation of Samples

35 NC6195M: Base coat was applied to a glass slide using a 5 mil drawdown bar and cured for
36 3 minutes in Young Nails UV lamp. The first colour coat was applied to the glass slide using
37 a 10 mil drawdown bar and cured for 3 minutes. The second colour coat was applied to the
38 glass slide using a 15 mil drawdown bar and cured for 3 minutes. The top coat was applied
39 using a 20 mil drawdown bar and then cured for 3 minutes. The surface was then wiped
40 with isopropyl alcohol. The slide was left to sit at room temperature for 72 hours.

41 NC6195N: Base coat was applied to a glass slide using a 5 mil drawdown bar and cured for
42 1 minute in OPI Studio LED lamp. The first colour coat was applied to the glass slide using a
43 10 mil drawdown bar and cured for 1 minute. The second colour coat was applied to the
44 glass slide using a 15 mil drawdown bar and cured for 1 minute. The top coat was applied
45 using a 20 mil drawdown bar and then cured for 1 minute. The surface was then wiped with
46 isopropyl alcohol. The slide was left to sit at room temperature for 72 hours.

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 NC61950-1 & -2: A nail brush was dipped in J2 monomer to wet it. The brush was then
2 dipped into P3 acrylic powder. The wet powder was then applied to a glass slide and left to
3 sit at room temperature for 72 hours. Thereafter, the cured film was scraped off the glass
4 slide and transferred to a glass vial. The weight of the cured film was recorded. The salt
5 water solution was added to one of the duplicate samples and acetone was added to the
6 other. The samples were allowed to extract at room temperature for approximately 24
7 hours. Then, the salt water solution extracts were analysed on an Agilent 1290 HPLC with a
8 diode array detector and the acetone extracts were analysed on an Agilent 6890 GC with an
9 FID detector.

10 All HPLC and GC system suitability requirements were met. The detector response to
11 concentration was linear for the range tested in all standards. The limit of detection (LOD)
12 was 1.0 ppm for both the HPLC and GC analysis.

15 **Table 2. HEMA Extraction Results**

Sample	Light source	Cure Time	Sample Description	Theoretical HEMA Uncured	Extracted HEMA in salt water	Extracted HEMA in Acetone
NC-6195M	UV	3 minute	Full Coat system#	10-25 %	2892 ppm or 0.2892 %	2994 ppm or 0.2994 %
NC-6195N	LED	1 Minute	Full Coat system#	10-25 %	4027 ppm or 0.4027 %	4854 ppm or 0.4854 %
NC-61950-1	N/A	N/A	Acrylic Powder and monomer	1-5 %	3803 ppm or 0.3803 %	N/A
NC-61950-2	N/A	N/A	Acrylic Powder and monomer	1-5 %	4867 ppm or 0.4867 %	N/A

A full coat system includes a base coat, two color coats and a top coat.

N/A = not applicable

17
18 There was no significant difference between the curing time, the light source, the applied
19 product or the extraction medium, when normal analytical variation was considered. Curing
20 for 1 min using LED light resulted in a comparable extractable amount of HEMA compared to
21 3 min curing under UV light. Even following a hardening process without artificial light
22 exposure led to a comparable amount of extractable HEMA.

23
24 In any case the extractable HEMA portions were in the same order of magnitude and ranged
25 between 0.28 % – 0.49 % using salt water and between 0.3 % – 0.49 % with acetone as
26 extraction medium (Reference: Steffier, 2016).

27
28 However, these explorative analytical screening data represent a worst case situation and
29 should therefore not be used for general regulatory purposes, e.g., not to fix specific limit
values.

32 **SCCS comment**

33 Information on the speed and completeness of the polymerisation and extraction of Di-
34 HEMA-TMHDC monomer under use conditions along with information on the concentration
35 and the type of polymerisation inhibitor and polymerisation activator is not provided.
36 Information on various commercial systems used for polymerising HEMA and DiHEMA-
37 TMHDC is also not provided.

38 **3.2 Function and uses**39 From the submission:

40 The HEMA monomer is a methacrylate ester and is used in nail products to form a film. In
41 principle, two major processing systems for nail modelling systems are available, two

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 component powder/liquid systems (self- or light curing) and light-curing single component
2 gel systems (composites). The current and anticipated use concentrations of HEMA are up
3 to 10% in powder/liquid systems and up to 35% in gel systems. The artificial nail modelling
4 systems are used for fingernails- and toenails.

5 HEMA will be consumed rapidly during the polymerisation process (within 1.82 minutes).
6 Explorative screening investigations showed that under worst-case conditions, the
7 extractable monomer portion is at maximum in the order of about 0.49 % (4900 ppm).
8 For both nail modelling systems, quantities of 2 to 4 g are used for the first application and
9 approximately 1 g for filling up after approximately 2 to 3 weeks, corresponding to a
10 maximum of 1400 mg HEMA in total for all nail plates. Contact is meant to be limited to the
11 keratin of the nail plate.

12 Clear use instructions and adequate training of professional users should ensure that these
13 nail products are properly applied, i.e. exclusively to the nail plate and not to the
14 surrounding skin by ensuring a small space between the cuticle and the nail. Thus, there is
15 no contact to skin when carefully applied to the nail plate. In case of unintended skin
16 contact at the cuticle and the side of the nails, the use instructions call for removing it
17 immediately from the skin, especially prior to radiation.

18 For the two-component systems the curing reaction is triggered by mixing the liquid and the
19 powder. Since the reaction starts immediately and is completed after a maximum of 2 to 3
20 minutes, processing possibilities are limited in time. The reaction occurs with heating and
21 odour development.

22 For the light-curing gel systems, which represent a further development of the composites
23 from dental medicine, curing is started after the decomposition of the added photo
24 initiators, and the actual curing process is already completed after 30 to 45 seconds. In
25 practice there is, however, a curing period of 2 to 3 minutes in order to ensure optimum
26 strength and adhesion of the nail.

27 For the application of the systems there are detailed descriptions, which are selectively
28 intended to ensure not only optimum application of the nail modelling but also the highest
29 possible protection of the users.

30 The application of the liquid/powder systems is carried out by means of a special brush,
31 frequently using a template. With the tip of the brush previously immersed in the liquid, the
32 powder is absorbed in a slight circulating movement. This forms a wax-like bead. These and
33 possibly other beads are placed in the centre of the nail and modelled into a slight so-called
34 C curve. The material thickness is selected in such a way that the entire nail modelling has
35 at the so-called stress point a maximum height of 1 mm. For the gel systems the principle is
36 similar, whereby curing by UV light is carried out between the different work steps (gel
37 applications).

38 Filing is then used to optimise the form, polish and in most cases an additional top coat is
39 applied to bring about optimum gloss. If necessary, a filling up of the acrylic modelling is
40 carried out after a few weeks.

41
42 Ref: Creative Nail Design, 2001; Schoon, 1994a+b, Creative Nail Design, 2013, IKW, 2016
43
44

45 **3.3 Toxicological evaluation**

46
47 **3.3.1 Acute toxicity**

48 /

49
50 **3.3.2 Irritation and corrosivity**

51 /
52
53
54

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 **3.3.3 Skin sensitisation**

2 *Guinea pig maximisation tests (GMPT)*

3 A GMPT (Clemmensen 1985) investigated the influence of concentration, vehicle, and
4 cyclophosphamide on the skin sensitising potential of HEMA. The vehicles used for
5 elicitation were petrolatum, soybean oil, and a mixture of soybean oil and 2-butanone
6 (sbomek). Ten to twenty guinea pigs (Scg:AL) were used per dose group. The following
7 materials were used for intradermal induction (day 0): 1% HEMA (in soybean oil), 25%
8 HEMA (in soybean oil), 25% HEMA (in sbomek), 1% HEMA (aqueous), 10% HEMA
9 (aqueous), and 25% HEMA (aqueous). Dermal induction was performed on days 7 and
10 8 using a 10% sodium lauryl sulfate pre-treatment and 400 µl of HEMA applied via a 48
11 h patch. Challenge was performed on day 21 using 25% HEMA (in petrolatum), 25%
12 HEMA (aqueous), 25% HEMA (sbomek), 25% HEMA (in soybean oil), and 100% HEMA.
13 Effects were scored at 48 h and 72 h post-challenge.

14 The major determining factor for sensitisation was the concentration used for intradermal
15 induction. Induction with 10% HEMA or greater caused a reaction in 4 to 10 guinea pigs
16 out of 12 challenged per dose group.

17 There was no challenge response to challenge when an intradermal injection had been
18 given with 1% HEMA in soybean oil. When HEMA was used at concentrations of 25 % or
19 higher, the vehicles did not influence the response.

20 Other guinea pig studies showed (Katsuno 1995, Katsuno 1996) that HEMA produced
21 positive delayed hypersensitivity reactions: 6 out of 10 albino guinea pigs induced and
22 challenged with HEMA (100%) showed a positive reaction at 24 hours and 5 out of 10
23 showed a positive reaction at 48 hours.

24 The optimum concentration of HEMA for sensitisation and elicitation was established by
25 testing HEMA at 0.01, 0.02, 0.1, 0.2, 0.5, 1.0, and 5.0%. Challenge concentrations were
26 10, 25, 50, and 100%.

27 It was shown that the optimum concentration to induce sensitisation was 0.2%; five of five
28 guinea pigs had a positive challenge reaction to HEMA at 24 hours and 48 hours after patch
29 removal with a mean skin response of 5.0 (Katsuno, 1996).

30 In an unpublished report (Roehm 1982, cited in OECD-SIDS 2001), HEMA was negative in
31 the Buehler test when tested undiluted under occlusive conditions.

32 A study (Van der Walle 1982) with 8 albino female guinea pigs of the Himalayan white
33 spotted outbred strain investigated the skin sensitisation potential of HEMA in a Freund's
34 Complete Adjuvant Test (FCAT). Four guinea pigs were positive to HEMA on day 21 but all
35 animals were negative on day 35 .

36 Cross-reactivity patterns of methacrylates including HEMA were studied in guinea pigs using
37 a Freund's Complete Adjuvant Test (FCAT) (Rustemeyer 1998). HEMA led to strong cross-
38 reactions to all other methacrylates [methacrylate (MMA), 2-hydroxypropyl methacrylate (2-HPMA)
39 and ethyleneglycol dimethacrylate (EGDMA)], while cross-reactions to Ethylene Glycol
40 Dimethacrylate were weak. Hydroxypropyl Methacrylate had only weak to moderate cross
41 reactivity with HEMA.

42 *Local lymph node assay (LLNA) on Di-HEMA-TMTDC*

43 Guideline/method: OECD 429
44 Species/strain: Mouse/CBA
45 Group size: 4 females per group
46 Test substance: Di-HEMA-TMHDC (referred to as UDMA)

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 Batch: 81106228 (purity: 96.99%)
2 Vehicle: Dimethylformamide (DMF)
3 Concentrations: 0, 10, 25, 50%
4 Positive control: hexyl cinnamic aldehyde
5 Route: Epidermal (topical) application on the surface of the dorsal ear lobe
6 GLP: Yes
7 Published: No
8 Remark: The study is currently in a negotiation process.
9

10 The sensitising potential of Di-HEMA-TMHDC was tested at concentrations of 10, 25 and
11 50% (w/w) solution in DMF (dimethylformamide). The 50% concentration was the highest
12 non-irritant test concentration which did not show any signs of irritation or systemic toxicity
13 up to day 8 after three-day exposure to two animals. The application volume 25 µL was
14 spread over the dorsal surface of the ear lobes once daily for three consecutive days. Five
15 days after the first application, all mice were intravenously injected with 250 µL of [³H]-
16 thymidine.

17 *Results*

18 Stimulation Indices (SIs) of 1.58, 1.70 and 4.44 were determined at concentrations of 10,
19 25, and 50% (w/w) in DMF, respectively. A clear dose response was observed. Based on the
20 SI values, an EC3 value of 36.9% was calculated. A statistically significant increase in the
21 DPM values was observed in all dose groups in comparison to the vehicle control group.
22 Based on the calculated EC3 value, Di-HEMA-TMTDC was, under the condition of this LLNA,
23 considered as a weak sensitisier.

24 Ref: information taken from the submission

25 **SCCS comment on the animal studies**

26 Studies in guinea pigs:

27 While for most studies it is unclear whether the OECD guidelines were followed, induction of
28 sensitisation was achieved in a number of tests with injection of Freund's adjuvant.
29 Although guinea pig tests are not suitable to establish potency, the available data point
30 toward HEMA being a moderate skin sensitisier.

31 *LLNA*

32 HEMA was not tested in the LLNA. Therefore, no information on the skin sensitising potency
33 is available.

34 The LLNA with Di-HEMA-TMHDC indicates that it is a weak sensitisier.

35 **3.3.4 Dermal / percutaneous absorption**

36 From the submission dossier

37 There is no dermal penetration study available for HEMA.
38 However, exposure to HEMA is negligible when adhering to proper use conditions, i.e. no
39 contact to skin by careful application to the nail plate only as well as reduction of exposure
40 to residual monomers by fast polymerization within a few seconds to minutes. Since this
41 kind of product is not meant to be applied on the skin, but on nails only, there is no risk
42 from systemic exposure, even if insignificant amounts will have contact with the skin. In
43 case of unintended skin contact, the instructions call for its immediate removal from the
44 skin, especially prior to radiation.

45 After application of HEMA-containing nail products to the nail plate, the polymerisation
46 process starts immediately and is completed within less than 2 minutes. HEMA will be
47 consumed rapidly during the polymerisation process. Explorative screening investigations
48 showed that under worst-case conditions, the extractable monomer portion is at maximum
49 in the order of about 0.49 % (4900 ppm), irrespectively of product, curing time and light
50 source. Only this tiny amount would theoretically be available for penetration through the
51 skin.

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 nail plate. Considering the anatomical structure and the functional characteristics of the nail
2 (see section 7 in the submission dossier: Nail structure and function), proper application to
3 the nail plate will not result in any bioavailable portion of the residual HEMA fraction.

5 **SCCS comment**

6 The SCCS agrees that the nail plate has a very low permeability and that it is unlikely that
7 sufficient amounts of monomers of HEMA and Di-HEMA-TMHDC that are needed to induce
8 sensitisation will reach the nail-bed. However, the problem of an incorrect application by the
9 consumers who may apply the substance not only on the nail plate but also to the
10 surrounding skin remains as a possibility leading to sensitisation. Contact dermatitis to
11 (meth)acrylates has been observed on fingers, probably due to removal of excess polish by
12 rubbing it off with unprotected fingers. It is as yet unknown whether filing or sanding
13 ('roughening') of the nails before application of the monomers will lead to enhancement of
14 penetration.

15 Only a summary of the above-mentioned explorative screening investigations on extractable
16 monomers was available (see 3.1.9).

17 Ref.: Gatica-Ortega et al., 2017
18
19
20

21 **3.3.5 Repeated dose toxicity**

22 /
23
24

25 **3.3.6 Mutagenicity / Genotoxicity**

26 /
27
28

29 **3.3.7 Carcinogenicity**

30 /
31
32

33 **3.3.8 Reproductive toxicity**

34 /
35
36

37 **3.3.9 Toxicokinetics**

38 /
39
40

41 **3.3.10 Photo-induced toxicity**

42 /
43
44

45 **3.3.11 Human data**

46
47 **A. HEMA**

48
49
50 Sensitisation data from several patch test studies conducted on patients suspected to be
51 affected by contact dermatitis to acrylates in nail styling products are summarised in Table
52 3. Not all studies distinguish clearly between consumers and professionally exposed subjects
53 ('nail stylists', beauticians etc).

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1
2 **Table 3: Overview on patch test results from case reports and other clinical**
3 **studies with HEMA among patients with skin problems due to nail styling.**

Patients	No. of positive reactions to HEMA	Exposure/Remark	Reference
1 patient	Positive	Cosmetician	Conde-Salazar 1986
5 patients	5/5 positive to HEMA	5 women with dermatitis from photo-bonded acrylic nails	Hemmer 1996
337 patients out of 440 were patch tested with HEMA	29/337 were positive	440 patients identified with exposure to acrylates and methacrylates out of 14000 records. 67/440 patients showed at least one relevant reaction to acrylate patch tests. 47/67 patients were sensitized at work (3/47 were beauty therapists); of the remaining patients, 16 were sensitised via artificial nails.	Tucker 1999
55 patients	21/55 female patients positive to allergens from the methacrylate artificial nail series (14/22 were professional beauticians). Of the 55 patients, 17 had a positive reaction to HEMA. Of these, 9 were consumers and 8 were professionally exposed	All 55 patients were women professionally and non-professionally exposed to artificial nail products. Study period 2001 to 2004.	Lazarov 2007
122 patients	37/122 patients were positive to (meth)acrylates. HEMA was positive in 30. Of the 37 positive cases, 20 were beauty technicians and 8 were consumers.	Observational and retrospective study (2006-2013). Among 2263 patch-tested patients, 122 underwent testing with an extended meth(acrylate) series	Ramos 2014

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

241 patients	16 positive to a (meth)acrylate or cyanoacrylate 12/16 positive to HEMA	A retrospective observational study on 241 consecutive patients patch tested with (meth)acrylates or cyanoacrylates between January 2012- February 2015	Muttardi 2014
87 patients	27/87 positive to HEMA	87 female patients worked as nail artists/cosmetologists and suspected nail cosmetics as the cause of dermatitis	Uter 2015
8 patients	6/8 positive	8 patients who had reported severe skin reactions after the use of the UV-curing polish, patch tested at five dermatology departments in Sweden	Dahlin 2016
113 patients	37/113 positive	299 patients out of > 110,000 patients were selected as "nail" patients. 113 were specifically tested on HEMA allergy, of which 37 were sensitised.	Schnuch 2016
475 patients	52 positive to (meth)acrylates (24 occupation related). 29 positive to HEMA, for which acrylate nails were responsible in 22)	Retrospective review. A series of 28 (meth)acrylates was applied to 475 patients	Spencer 2016
455 patients	54 were positive to acrylates. Of these, 44 were positive to HEMA. Of the 54 positives to acrylates, 16 were beauticians and 30 had non-professional exposure to nail acrylates.	A retrospective review of all patients tested with acrylates from 2008 to 2014. Not clear how many (12 or 13) of the beauticians and how many of the non-professionally exposed had a positive reaction to HEMA.	Montgomery 2016

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

230 patients tested on methacrylates; of these, 220 were patch tested to HEMA	198/220 (90%) positive to HEMA	Retrospectively reviewed files of patients with ACD caused by (meth)acrylates related to nail cosmetic products who were patch tested between 2011-2015 in 13 departments of dermatology in Portugal. Not specified the number of consumer positive. Of the 230 investigated patients, 55 were nail stylists, 56 were consumers, and 119 had mixed exposure.	Raposo 2017
15086 patients	94 positive to methacrylate, 89 to HEMA	Retrospective study about allergic contact dermatitis from acrylates and methacrylates due to artificial nails diagnosed from 2013-15 in several clinics whose members belong to EECDRG	Goncalo 2017
908 patients	97/908 positive to at least one acrylate (21 cases were nail-related cosmetic reactions)	Out of 4758 patients 908 were patch tested to an acrylates series	Rajan 2017
2353 patients	43 patients were diagnosed with allergic contact dermatitis caused by (mehy)acrylates. 39/43 were positive to HEMA	The files of patients with ACD caused by (meth)acrylates in long-lasting nail polish diagnosed between 2013 and 2016 in four dermatology departments in Spain were reviewed	Gatiga-Ortega 2017

1
2
3 Hemmer et al. (1996) investigated five women with damages of nails and of the skin around
4 nails induced by the application of artificial nails with acrylic glues. They showed pruritic
5 dermatitis around and under the nails for several months. Two out of these patients had
6 dermatitis of the lower lids and cheeks. The symptoms developed 6 months to 3 years after
7 the first applications of artificial nails. Monthly renewal of the nails caused a strong
8 exacerbation of the dermatitis within 24 hours.

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 In the patch test performed with a standard series and a special battery including HEMA and
2 Di-HEMA-TMHDC and other acrylates and (meta) acrylates, all five patients (5) had a
3 positive patch-test to HEMA.
4 Two patients were positive to Di-HEMA-TMHDC.
5
6 Kanerva et al. (1996) also reported a case of 47-year-old female cosmetician who
7 developed dermatitis on her right thumb that subsequently spread to both hands and face
8 after she started to work with photo-bonded nails and chemically cured nail cosmetics.
9 HEMA and other but not all acrylates resulted in a positive skin reaction (+2). The patient
10 had also a positive allergic patch test result to her own nail strengthener preparation that
11 contained 2.2% Butyl Methacrylate and her own monomer liquid for sculptured nails with
12 5% Triethylene Glycol Dimethacrylate.
13
14 A retrospective study (Tucker 1999) over a 15-year period identified 440 patients
15 (professionally and non-professionally exposed) out of approximately 14,000 records with a
16 history of exposure to acrylates and methacrylates. All 440 had been patch tested with
17 HEMA; in 67 (15.2%) there was a positive reaction. 19 out of the 67 positive patients had
18 been exposed to nail-styling products.
19
20 Lazarov (2007) conducted a 4-year retrospective study of patients with suspected ACD from
21 artificial nails (ANs). Patients were tested with the methacrylate artificial nail series and
22 were evaluated clinically and with patch test examination.
23 About half of the patients were beauticians specialising in nail sculpturing who developed
24 Occupationally-related ACD.
25 Of the 55 patients reacting to acrylates, 17 had a positive reaction to HEMA. Of these, 9
26 were consumers and 8 were professionally exposed.
27
28 Uter (2015)_conducted a retrospective analysis (2004-2013) of patch test results with
29 (meth)acrylates, along with clinical and demographic data. These were used to subdivide
30 patients according to (i) a potentially exposed occupation and (ii) nail cosmetics as the
31 suspected cause of contact dermatitis and patterns of co-sensitisation. Among the 114 440
32 patients patch tested, 72 244 were female and were considered further. 87 patients worked
33 as nail artists or cosmetologists. In this group 31% responded with a positive patch test to
34 HEMA. Among the total number of patients, 47.1% reacted to at least one (meth)acrylate,
35 most often to HEMA (n = 27), 2-hydroxypropyl methacrylate and hydroxyethyl acrylate (n
36 = 26 each), with marked coupled reactivity. In other subgroups of interest, frequencies of
37 sensitisation to (meth)acrylates were less elevated but higher than in all remaining female
38 patients (n = 69 419). The authors concluded that the results indicate a fairly uncommon,
39 but potentially serious, problem, especially concerning professionally exposed and sensitised
40 nail artists.
41
42 Ramos (2014) performed an observational and retrospective study (January 2006-April
43 2013) to evaluate and correlate epidemiological and clinical parameters and positive patch
44 test results with (meth)acrylates. Among 2263 patch-tested patients, 122 underwent
45 testing with an extended (meth)acrylate series. Twenty-eight cases were related to artificial
46 nails. In their sample, beauty technicians working with artificial nails were the most affected
47 group (80% of occupational cases including industrial workers and dentists).
48
49 Dahlin (2016) reported severe undesirable effects in 8 patients caused by methacrylate
50 ultraviolet-curing nail polish for non-professional use. Out of these, 6 had a positive patch
51 test to HEMA.
52 The same 8 patients were also patch-tested with Di-HEMA-TMHDC in 2% petrolatum; 7
53 were positive and one had a doubtful reaction.
54
55 Geier (2016) performed a retrospective analysis of patch test results with (meth-) acrylates
56 including clinical and demographic data to analyse the frequency of contact allergy to

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 (meth) acrylates used in artificial nails in nail artists as well as in consumers. Altogether
2 72,244 female patients were patch tested between 2004 and 2013. Only in 398 out of
3 72,244 female patients (0.55%), this product category was explicitly mentioned. If nail
4 artists and cosmetologists were added, the patient portion increased to 732 cases (1.01%).
5 The investigators concluded that contact allergy to (meth-)acrylates was much more
6 common among nail artists with suspected allergic contact dermatitis to nail materials
7 (47.1%) than among consumers with suspected allergic contact dermatitis to nail materials
8 (18.0%).
9 The authors state that their data are the result of clinical epidemiology (and not population-
10 based epidemiology), and have therefore to be put into perspective by a quantitative view.
11 For general risk considerations, the authors pointed out that patients attending their skin
12 clinic are a highly selected subgroup of the general population, with a selection driven by
13 morbidity. Thus, in absolute terms, the risk in the general population is much lower than
14 0.55% as in their data, at least by a factor of ten.
15 Schnuch_(2016) provided results from a dermatological (Dermatological surveillance of the
16 Information Network of Departments of Dermatology (IVDK) on contact allergies with 56
17 departments participating, and with an annual entry of data from about 12,000 patients
18 based also on data Uter (2015). The analysis on nail cosmetics during a ten year period of
19 total accumulated data comprised 112,327 patients. Out of this collective, 299 patients
20 were selected as "nail" patients on the base of clinical symptoms, 113 of which were
21 specifically tested for HEMA allergy and 37 were shown to be sensitised. With regards to the
22 overall patients, the authors considered this as a negligible proportion of 0.03% if compared
23 to the total number of patients tested. They commented on this percentage because only
24 300 patients were selected as nail patients and 113 were specifically tested for HEMA. Thus
25 37 positive patients out of 113 tested for HEMA indicate a positive percentage of 32.7%.
26
27 Spencer (2016) applied a series of 28 (meth)acrylates to 475 patients. Results were positive
28 in 52 cases, with occupational sources being identified in 24.
29 29/52 patients were positive to HEMA. 22 of the 29 positive patients were exposed to
30 acrylates for nails application. These were both consumers and nail professionals.
31
32 Montgomery (2016) reported from the UK a retrospective review of all patients tested with
33 acrylates over a 6-year period (2000-2014). 4710 patients underwent patch testing and 455
34 of these were tested with an acrylates series. Of the 455 tested with acrylates, 54 showed
35 positive reactions. Of these, 44 (81.2%) were allergic to HEMA. Seventeen (31.5%) of the
36 54 were occupationally-related and all but one of these patients were beauticians. Among
37 occupational cases, 13 (92.9%) were allergic to HEMA. Thirty-seven patients had non-
38 occupational allergic contact dermatitis. Of these, 30 (81%) cases were deemed to be
39 related to nail products containing acrylates.
40
41 Recently, Raposo (2017) published the results of a retrospective review on patients patch
42 tested for acrylate contact dermatitis related to nail cosmetic products, summarising the
43 results from 13 departments of Dermatology in Portugal from 2011 - 2015.
44 Of 230 cases of ACD, 55 cases were professionally exposed as technicians, 56 were
45 consumers and 119 had mixed exposure from professional and non-professional contact
46 with acrylates. Most of the patients presented with chronic hand eczema (93%).
47 HEMA was tested in 220 patients, of which 190 tested positive.
48
49 In a Spanish study (Gatica-Ortega 2017) on 2353 patients patch tested positive to
50 (meth)acrylates, 43 (1.82%) were diagnosed with allergic contact dermatitis caused by
51 (meth)acrylates in long-lasting nail polish. The most frequent positive allergens were HEMA,
52 2-hydroxypropyl methacrylate (HPMA), and tetrahydrofurfuryl methacrylate (THFMA). In all
53 patients with allergic contact dermatitis to (meth)acrylates, the fingers were involved,
54 where eczema on the dominant hand usually was more severe. This was probably related to
55 excess polish being removed without the use of appropriate material. The excess material
56 was usually removed by rubbing it off with the unprotected dominant fingertips. Face

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 dermatitis was observed in 15 of 40 (37.5%) patients, and was probably mainly attributable
2 to accidental transfer of excess polish material by contaminated fingers or objects. Most
3 cases were diagnosed in an occupational setting. This study gives evidence that
4 professionals handling the substance without safety measures are likely to expose their
5 skin.

6

7

8 Following a call for data by the European Commission the reports described below were
9 submitted:

10

11 On behalf of the European Environmental Contact Dermatitis Research Group (EECDRG),
12 Gonçalo (2017) reported retrospective studies on allergic contact dermatitis (ACD) from
13 acrylates and methacrylates due to artificial nails diagnosed during the years 2013-15 in
14 several clinics. ACD from nail (meth)acrylates was diagnosed in 94 female patients out of
15 15,086 patients. Exposure to nail (meth)acrylates occurred mostly in an occupational
16 setting (57 cases – 60.6%). Thirty-seven patients were exposed to (meth)acrylates only
17 during the process of sculpting their own artificial nails. HEMA was the most common
18 allergen (89/93) found both in occupational and non-occupational cases

19

20 In a UK multicentre audit (Rajan 2017), HEMA was the most common acrylate causing
21 positive reactions (positive in 97 of 4758 consecutive unselected patch test patients and
22 10.5% of 908 selected patients).

23 Nail-cosmetic related reactions were observed in 21 cases.

24

25

26 **SCCS comment on human studies with HEMA**

27 Several clinical studies have been conducted with the 72-hour patch test method to test
28 acrylate sensitisation in large patient populations. These patients were selected based on a
29 diagnosis of suspected allergic contact dermatitis to acrylates. The patients in these studies
30 were made up of a mixed population comprising patients exposed for professional reasons
31 (dentists, industry workers), those working as professional nail stylists, and consumers
32 exposed to contact with artificial nails that require an adhesive application based on
33 acrylates. Not all of the studies have a clear division between patients that are just
34 consumers and professional nail stylists; often the patients seem to have mixed exposure as
35 both a consumer and professional nail stylist

36 Compared to the professional users of artificial nail systems, the positive reactions to HEMA
37 seem to be less common among those who are only consumers. Although the number of
38 users is not known, the data should be interpreted in the context of the apparently
39 widespread exposure among consumers and the number of professional users of artificial
40 nail products.

41

42

43 B. Di-HEMA-TMHDC

44

45 In Table 4 all the patch test studies with Di-HEMA-TMHDC, mostly conducted on populations
46 other than users of nail-styling products, are summarised.

47

48

49 **Table 4: Overview on patch test results from case reports and other clinical studies**
50 **regarding Di-HEMA-TMHDC exposed patients (professionally and not**
51 **professionally exposed)**

Subjects	No. of positive reactions	Exposure/Remark	Reference
1 dentist, 6 dental nurses	0/5	Assumed sensitisation towards acrylate	Kanerva 1989

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

		plastic resins, positive reactions towards other (meth)acrylates	
5 patients with photo-bonded acrylic nails and dermatitis	2/5	Patients developed symptoms 6 months to 3 years after first applications; monthly renewal caused strong exacerbation within 24 hours.	Hemmer 1996
1 cosmetician	1/1	A 47-year-old female cosmetician developed dermatitis on her right thumb that subsequently spread to both hands and face after she started to work with photo-bonded nails and chemically cured nail cosmetics	Kanerva 1996
268 patients	2 positive	Patients out of 440 in total from about 14,000 records with a history of acrylates and methacrylates exposure	Tucker 1999
13833 patients	54/13833 showed positive patch test to 1 or more (meth)acrylates (23 were non-occupationally exposed and 31 were occupational) Out of the 54 positive patients, one (1.4%) reacted to Di-HEMA	13833 patients suspected of contact dermatitis examined during 1978 – 1999	Geukens 2001
8 patients	7/8 showed positive reactions and 1/8 showed a doubtful reaction	8 patients who had reported severe skin reactions after the use of the UV-curing nail polish were patch tested at five dermatology departments in Sweden.	Dahlin 2016
6775 patients who were dental technicians	47/6775 (0.7%)	Di-HEMA-TMHDC is contained in tests for dental technicians. Least frequent allergen among (meth)acrylates. Tests	Geier 2016

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

		between 2008 – 2015.	
--	--	----------------------	--

1 Kanerva (1989) reported that none of five patients (4 dental nurses and 1 dentist)
2 occupationally sensitised to dental resin products reacted to Di-HEMA-TMHDC 2% in
3 petrolatum when patch tested with the European standard and special acrylates series.
4

5 Hemmer (1996) investigated five women with photo-bonded acrylic nails who had pruritic,
6 paronychial and subonychial dermatitis. In the patch tests performed with a standard series
7 and a special battery including acrylates and methacrylates, one patient and two patients
8 reacted positively to 0.2% and 0.6% Di-HEMA-TMHDC.
9

10 Kanerva (1996), reported a positive reaction in a 47-year-old female cosmetician who
11 developed dermatitis on her right thumb that subsequently spread to both hands and face
12 after she started to work with photo-bonded nails and chemically cured nail cosmetics. The
13 patient also had a positive patch test to other (meth)acrylates and to her own nail
14 strengthener preparation..
15

16 Tucker (1999) reported that, over a 15-year period, in total 440 patients out of
17 approximately 14,000 records with a history of exposure to acrylates and methacrylates
18 were identified. Two out of 268 patients (0.7%) who were patch tested with 2% Di-HEMA-
19 TMHDC showed a positive response.
20

21 Geukens (2001) reported that among 13,833 patients suspected of contact dermatitis
22 examined during the years 1978-1999, 54 patients showed a positive patch test to one or
23 more (meth)acrylates (23 subjects were non-occupationally exposed and 31 were
24 occupationally exposed). Out of the 54 positive patients, one (1.4%) reacted to Di-HEMA-
25 TMHDC.
26

27 Dahlin (2016) investigated eight patients who had reported severe skin reactions after the
28 use of the UV-curing polish; they were patch tested at five dermatology clinics Sweden. It
29 was shown that all 8 patients showed contact allergic reactions towards Di-HEMA-TMHDC.
30

31 Geier (2016) performed a study on dental technicians with occupational dermatitis. Di-
32 HEMA-TMHDC has been patch tested in this series in 6775 patients during the years 2008 to
33 2015 (total number of patients: 99,130). 47/6775 (0.7%) patients showed a reaction. Thus,
34 it was the least frequent allergen among the (meth-)acrylates in this series. Therefore, the
35 authors concluded that there is no conclusive indication that Di-HEMA-TMHDC represents a
36 special, frequent, or particularly severe allergological problem, compared to other
37 methacrylates.
38

40
41 **SCCS comment on human (patch-test) studies with Di-HEMA-TMHDC**

42 There are only a few reports with information on sensitisation to Di-HEMA-TMHDC among
43 users of nail-styling products. Di-HEMA-TMHDC is commonly used in dentistry and more
44 reports are available from this professional group. The LLNA indicates that it is a weak
45 sensitisier. This is reflected in the clinical studies in humans, especially the study among
46 dental technicians (Geier 2016) which indicates that this was the least frequent allergen
47 among the acrylates. The human studies do not indicate that sensitisation to Di-HEMA-
48 TMHDC is of concern among users of nail-styling products.
49

50 **Respiratory effects among professional users**

51 Several epidemiological studies among professionals applying and sculpturing artificial nails
52 point towards an increased risk of asthma (Kreiss 2006; Reutman 2009; Roelofs 2008). A
53 clinical study with simulated inhalation exposure to nail-styling work using different
54 acrylates among two professionals with asthmatic complaints established occupational

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 asthma (Sauni 2008). Interestingly, one of these cases had also been diagnosed with
2 allergic contact dermatitis with contact sensitisation to 2-HEMA and to ethylene glycol
3 dimethylacrylate (EGDMA). Three out of 10 nail-stylists with occupational allergic contact
4 dermatitis to acrylates experienced exacerbation of pre-existing asthma (Lazarov 2007). In
5 a study among 71 nail stylists who responded to an invitation for a clinical respiratory
6 examination, rhinitis (in 21%) was detected, as well as an overall tendency to reduced
7 expiratory flow (FEV) and diffusion (Dessalces 2014).

8

9

10 **3.3.12 Discussion**

11

12

13 **Physicochemical properties**

14

15 Data on the impurities in HEMA and Di-HEMA-TMHDC, in particular the presence of possible
16 sensitisers, have not been provided.

17 Additional information on the stability studies (conditions, any stabiliser added, analytical
18 method used to evaluate stability) is not provided.

19 Information on the speed and completeness of the polymerisation and persistence of Di-
20 HEMA-TMHDC monomer under use conditions along with information on the concentration
21 and the type of polymerisation inhibitors and polymerisation activators is not provided.
22 Information on various commercial systems used for polymerising HEMA and Di-HEMA-
23 TMHDC is also not provided.

24

25 **Nail penetration**

26

27 Penetration of the nails by pharmaceuticals (mainly anti-fungal agents) has generally been
28 insufficient to deliver the desired dosage. Several studies show that the nail plate behaves
29 like a hydrophilic-gel barrier and is not lipophilic (Mertin 1997, Brown 2009, Kobayashi
30 2004, Kobayashi 1999). Nail permeability is however independent of lipophilicity, but clearly
31 decreases with increasing molecular weight (Kobayashi 2004). Flux through the nail plates
32 of caffeine, methylparaben and Terbenafine are in the order of 0.55 to 6.5 microgram per
33 cm² per hour (Brown 2009). The flux of p-Hydroxybenzoic acid methyl ester -
34 methylparaben - (which has a molecular weight close to that of HEMA) was estimated to be
35 approx. 15 microgram per cm² per half a day (Kobayashi 2004).

36 In view of these studies, and considering that polymerisation is initiated immediately after
37 application, it can be assumed that monomers of HEMA and di-HEMA-TMHDC penetrate the
38 nails only in negligible amounts. In view of the moderate sensitisation potency, it can also
39 be assumed that induction of sensitisation is unlikely from the very small amounts that
40 could theoretically be presented to the immune system at the level of the nail bed.

41

42 It is as yet unknown whether filing or sanding ('roughening') of the nails before application
43 will lead to nail penetration by methacrylate monomers. A study on components of the nail
44 plate of one human subject indicates that the main nail barrier to drug permeation may be
45 the low diffusivity of drugs in the dorsal (upper) layer of the nail plate (Kobayashi 1999).

46

47 **Sensitisation**

48

49 **HEMA**

50 The animal studies indicate that HEMA can be considered as an allergen with weak to
51 moderate potency.

52 The human studies conducted by patch testing among patients in dermatology clinics
53 indicate that this substance can be considered an allergen of concern. However it should be
54 noted that among consumers the sensitisation most likely results from contamination of the
55 skin adjacent to the nails (with a relatively short exposure to a high concentration) because

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 penetration through the nail plate is likely to be negligible. This means that application that
2 is restricted to the nail plate is safe.
3 Compared to the consumers (those having their nails treated), the potential for sensitisation
4 to HEMA is considerably higher amongst the professional users when protective measures
5 are neglected. The clinical studies (in patch-tested populations) support this. Besides skin
6 exposure due to inadequate handling of the monomers, the removal of excess nail-polish
7 material using unprotected fingers is also likely to occur.
8 It should also be noted that the data obtained in clinical studies do not reflect the real
9 incidence in the general population of HEMA contact allergy, which is at the moment
10 unknown. An increase in incidence may occur due to the increasing popularity of artificial
11 nails.
12

13 *Di-HEMA-TMHDC*

14 There are only a few reports with information on sensitisation to Di-HEMA-TMHDC among
15 users of nail-styling products. Di-HEMA-TMHDC is commonly used in dentistry. The LLNA
16 indicates that it is a weak sensitisier. This is reflected in the clinical studies in humans. The
17 human studies do not indicate that sensitisation to Di-HEMA-TMHDC is of concern among
18 users of nail-styling products.
19

20 Respiratory problems have been reported among professional users of nail-styling products,
21 but the causative chemicals are often not identified.
22 For 'metacrylates' the evidence for respiratory allergy was denoted as limited or
23 contradictory in one review (Baur 2013) and absent in an updated version (Baur 2014).
24

25 For professional users, guidelines for the prevention of skin sensitisation and respiratory
26 problems are available (NIOSH 2011). A recent report from the French Authorities (ANSES
27 2017) reviews and discusses a range of exposures to various chemicals in nail-styling
28 professionals.
29

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1

2 **4. CONCLUSION**

3

4 *1. In light of the data provided, does the SCCS consider monomers of HEMA and Di-HEMA*
5 *Trimethylhexyl Dicarbamate, safe at concentrations of up to 35% and 99% respectively*
6 *when used in topically applied UV-cured artificial nail modelling systems?*

7

8 The available evidence suggests that normal nail plate acts as a good barrier to penetration
9 of chemical substances in general, and that both methacrylate monomers (HEMA and di-
10 HEMA-TMHDC) polymerise rapidly under UV curing when applied as part of an artificial nail
11 modelling system. This leaves very little chance for the monomers to be absorbed in any
12 appreciable amount through the nail plate. In view of this, the SCCS is of the opinion that
13 HEMA and di-HEMA-TMHDC, when applied appropriately to the nail plate at concentrations
14 of up to 35% and 99% respectively as part of an artificial nail modelling system, are not
15 likely to pose a risk of sensitisation, provided that their use is restricted to the nail plate
16 only and contact with the adjacent skin is avoided.

17

18

19 *2. Does the SCCS have any further scientific concerns with regard to the use of HEMA and*
20 *Di-HEMA Trimethylhexyl Dicarbamate monomers in cosmetic products?*

21

- 22 • More analytical data are needed to exclude the possibility of the presence of other
23 sensitisers that may be present as impurities or degradation products alongside the
24 two methacrylate monomers.
- 25 • Both HEMA and di-HEMA-TMHDC are weak to moderate sensitisers and may pose a
26 risk of sensitisation from misuse of the products or from inappropriately carried out
27 application that may lead to skin exposure.
- 28 • Filing or sanding nails to remove/replace previous applications may generate particle
29 dust that may lead to respiratory exposure of the professionals if appropriate
30 protective measures are not in place.
- 31 • The potential for sensitisation to the methacrylate monomers is likely to be higher
32 amongst the professionals who carry out routine applications of artificial nail
33 modelling systems.
- 34 • In view of the growing popularity of artificial nail fashions, and the potential use by
35 consumers at home, any increase in future incidence of sensitisation should be kept
36 under surveillance.

37

38

39 **5. MINORITY OPINION**

40 /

41

42

43

44

1 6. REFERENCES

2 3 A: References submitted for the dossier on HEMA

- 4 1. Akiyama T, Manabe A, Tani C, Takahashi Y, Itoh K, Hisamitsu H (2007) Guinea Pig
5 Maximization Test of tri-ethylene glycol mono-methacrylate, Dental Materials
6 Journal, 26, 312-315.
- 7 2. Andersen SL, Rastogi SC, Andersen KE (2009) Occupational allergic contact
8 dermatitis to hydroxyethyl methacrylate (2-HEMA) in a manicurist, Contact
9 dermatitis, 61, 48-50
- 10 3. Andersson J, Dahlgren U (2011a) 2-Hydroxyethyl methacrylate (HEMA) promotes
11 IgG but not IgM antibody production in vivo in mice, European journal of oral
12 sciences, 119, 305- 309
- 13 4. Andersson J, Dahlgren U (2011b) Effects on mouse immunity of long-term exposure
14 in vivo to minute amounts of HEMA, European Journal of Oral Sciences, 119,p. 109-
15 114
- 16 5. Arossi GA, Lehmann M, Dihl RR, Reguly ML, de Andrade HHR (2009) Induced DNA
17 Damage by Dental Resin Monomers in Somatic Cells, Basic and Clinical
18 Pharmacology and Toxicology, 106, 124-129
- 19 6. Baden HP (1970) The physical properties of nail, J. Investigative Dermatology, 55,
20 115-122
- 21 7. BASF (1977) Bericht über die vergleichende Prüfung der akuten Hautreizwirkung
22 von HEMA und HPA. Unveröffentlichte Untersuchung der BASF vom 3.11.1977; in:
23 DFG (1998) 2-Hydroxyethylmethacrylat, DFG (Deutsche Forschungsgemeinschaft)
24 Arbeitsmedizinisch-toxikologische Begründung von MAK-Werten, MAK, 28. Lieferung
25 VCH, Weinheim, 1998
- 26 8. Bean TA, Zhuang WC, Tong PY, Eick JD, Yourtee DM (1994). Effect of esterase on
27 methacrylates and methacrylate polymers in an enzyme simulator for biodurability
28 and biocompatibility testing, J. Biomedical Materials Research, 28, 59-63
- 29 9. BP Chemicals (1981) Initial Submission: Irritation and Mutagenicity tests of
30 Hydroxyethyl methacrylate and related studies with cover letter dated 082892;
31 Microfiche No.: OTS0556083; Carpanini Dr. F.M.B., date produced: 03/10/81; in:
32 CIR, 2005
- 33 10. Bradley MO, Taylor VI, Armstrong MJ, Galloway SM (1987) Relationships among
34 Cytotoxicity, Lysosomal Breakdown, Chromosome Aberrations, and DNA Double-
35 strand Breaks, Mut. Res., 189, 69-79
- 36 11. Clemmensen S (1984) Cross-reaction patterns in guinea pigs sensitized to acrylic
37 monomers, Drug Chemical Toxicology, 7, 527-540
- 38 12. Clemmensen S (1985); Sensitizing potential of 2-hydroxyethyl-methacrylate;
39 Contact Dermatitis, 12, 203-208
- 40 13. Conde-Salazar L, Guimaraens D, Romero LV (1986) Occupational allergic contact
41 dermatitis from anaerobic sealants, Contact Dermatitis, 15, 188-189; in: OECD
42 SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM
43 13, Bern, Switzerland, 6 – 9 November 2001
- 44 14. Conde-Salazar L, Guimaraens D, Romero LV (1988) Occupational allergic contact
45 dermatitis from anaerobic acrylic sealants, Contact Dermatitis, 18, 129-132; in:
46 OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for
47 SIAM 13, Bern, Switzerland, 6 – 9 November 2001
- 48 15. Cosmetic Ingredient Review (CIR, 2005) Final report of the safety assessment of
49 Methacrylate ester monomers used in nail enhancement products, Internat. J.
50 Toxicology, 24 (Suppl.5), 53-100
- 51 16. Creative Nail Design (2001) Differential scanning calorimetric analysis of twenty-two
52 methacrylate monomers used in artificial monomer/polymer nail enhancement
53 products. unpublished/confidential data prepared by Schoon D, 18 Oct 2001

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 17. Creative Nail Design (2013) Brochure - BRISA® UV gel enhancements sculpted on a
2 form, Step-by-Step Guide, 13/03, #0673, Creative Nail Design Inc. (CND), Vista,
3 CA, USA, 2013.

4 18. Dahlin J, Berne B, Duner K, Hosseiny S, Matura M, Nyman G, Tammela M, Isaksson
5 M (2016) Several cases of undesirable effects caused by methacrylate ultraviolet-
6 curing nail polish for non-professional use, *Contact Dermatitis*, 1-6

7 19. DFG (1998) 2-Hydroxyethylmethacrylat, DFG (Deutsche Forschungsgemeinschaft)
8 Arbeitsmedizinisch-toxikologische Begründung von MAK-Werten, MAK, 28. Lieferung
9 VCH, Weinheim, 1998

10 20. Donovan MO (2012) A critique of methods to measure cytotoxicity in mammalian
11 cell genotoxicity assays, *Mutagenesis*, 27, 615-621

12 21. DuPont De Nemours & Co. (1992): Initial Submission: Skin Irritation and
13 sensitization tests of Triethylene glycol diacrylate, Triethylene glycol dimethacrylate,
14 2-Hydroxyethyl methacrylate and Diethyleneglycol methacrylate in guinea pigs with
15 cover letter dated 10/15/92; Microfiche No.: OTS0555867; Haskell laboratory,
16 Report No. 48-69; Hood D.B., date produced 03/06/69

17 22. Durner J, Kreppel H, Kaspel J, Schweikl H, Hickel R, Reichl F (2009) The
18 Toxicokinetics and Distribution of 2-Hydroxyethyl methacrylate in Mice,
19 *Biomaterials*, 30, 2066-2071

20 23. Durner J, Walther UI, Zaspel J, Hickel R, Reichl FX (2010) Metabolism of TEGDMA
21 and HEMA in human cells, *Biomaterials*, 31, 818-23

22 24. Dutree-Meulenberg ROGM., Kozel MMA., Van Joost Th (1992) Burning mouth
23 syndrome: A possible etiologic role for local contact hypersensitivity; *Journal of the
24 American Academy of Dermatology* 26: 935 – 940; in: OECD SIDS (2001) 2-
25 Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern,
26 Switzerland, 6 – 9 November 2001

27 25. 26. Esschem (2003) Material Safety Data Sheet, product code X 968 7044, 2-
28 Hydroxyethyl Methacrylate, Esstech Division of Esschem, US, 08 Oct 2003

29 26. Esstech (2006) Certificate of analysis, 2-Hydroxyethyl Methacrylate, Esstech Inc.,
30 US, 01 Nov 20064 June 2016

31 27. Esstech (2016) Technical Data Sheet, Item# X-968-7044, 2-Hydroxyethyl
32 Methacrylate High Purity, Esstech Inc., US, 14 June 2016

33 28. Estlander T (1990) Occupational skin disease in Finland. Observation made during
34 1974-1988 at the Institute of Occupational Health, Helsinki; *Acta Dermatol-
35 Venereologica* 155: 1- 85

36 29. Feng Y, Jiang, RW, Zequan H (2014) Effects on immunity of long-term exposure to
37 minute amounts of HEMA, *Jilin Yixue*, 35, 3018-3020

38 30. Fleckman P, Allan C (2001) Surgical anatomy of the nail unit, *Dematol. Surg.*, 27,
39 257-260

40 31. Fremlin G; Sansom J (2014) Acrylate-induced allergic contact dermatitis in a car
41 windscreen repairer, *Occupational medicine* (Oxford, England), 64, 557-558

42 32. Gage JC (1970) The subacute Inhalation Toxicity of 109 Industrial Chemicals, *Brit. J.
43 Industr. Med.*, 27, 1-18; in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS
44 Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

45 33. Gebhardt M, Gebhardt A. Wollina U (1995) Differentialdiagnostik
46 Zahnprothesenbezogener Beschwerden - Eine Uebersicht; *H + G* 70: 738 – 744; in:
47 OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for
48 SIAM 13, Bern, Switzerland, 6 – 9 November 2001

49 34. Geier J, Schnuch A (2016) Contact allergy to nail cosmetics / Data from dermat-
50 allergological surveillance, *Information Network of Departments of Dermatology*
51 (IVDK), Institute at the University Medical Center Göttingen, Von-Bar-Str. 2-4,
52 37075 Göttingen, Germany, 21 July 2016

53 35. Geukens S, Goossens A (2001) Occupational contact allergy to (meth)acrylates.
54 *Contact Dermatitis* 44(3): 153-159

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 36. Geurtsen, W., F. Lehmann, W. Spahl, Leyhausen (1998). Cytotoxicity of 35 dental
2 resin composite monomers/additives in permanent 3T3 and three human primary
3 fibroblast cultures. *J. Biomed. Mater. Res.* 41:474- 480.

4 37. Goon A, Teik-Jin [Reprint Author]; Bruze, Magnus; Zimerson, Erik; Goh, Chee-Leok;
5 Isaksson, Marlene (2007) Contact allergy to acrylates/methacrylates in the acrylate
6 and nail acrylics series in southern Sweden: simultaneous positive patch test
7 reaction patterns and possible screening allergens, *Contact Dermatitis*, 57, 21-27

8 38. Goon ATJ, Bruze M, Zimerson E, Goh CL, Koh DSQ, Isaksson M (2008) Screening for
9 acrylate/methacrylate allergy in the baseline series: our experience in Sweden and
10 Singapore, *Contact Dermatitis*, 59, 307-313

11 39. Guerra L, Vincenzi C, Peluso AM, Tosti A (1993) Prevalence and sources of
12 occupational contact sensitization to acrylates in Italy; *Contact Dermatitis* 28: 101-
13 103; in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment
14 Report for SIAM 13, Bern, Switzerland, 6 - 9 November 2001

15 40. Gupchup GV, Zatz JL (1999) Structural characteristics and permeability properties of
16 the human nail, *J. Cosmet. Sci.*, 50, 363-385

17 41. Hashimoto Y, Nakamura M (2000) Estrogenic activity of dental materials and
18 bisphenol-A related chemicals, *Dent. Mater. J.*, 19, 245-262

19 42. Hayakawa R, Takeuchi Y, Kojima S (1989) Occupational Allergic Contact Dermatitis
20 due to 2-Hydroxy-Ethyl-Methacrylate; *Hifu* 31(7): 17-23; in: OECD SIDS (2001) 2-
21 Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern,
22 Switzerland, 6 - 9 November 2001

23 43. Heil J, Reifferscheid G, Waldmann P, Leyhausen G, Geurtsen W (1996) Genotoxicity
24 of dental materials, *Mutat Res.*, 368, 181-194

25 44. Hemmer W, Focke M, Wantke F, Gotz M, Jarisch R (1996). Allergic contact
26 dermatitis to artificial fingernails prepared from UV light-cured acrylates. *J. Am.*
27 *Acad. Dermatol.*, 35, 377-380

28 45. ICI (1966) Hydroxyethyl methacrylate - Toxicological properties; Imperial Chemical
29 Industries Limited Industrial Hygiene Research Laboratories; unpublished report No.
30 TR/555 (25.10.1966); in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS
31 Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 - 9 November 2001

32 46. IKW (2016) Group data sheet for artificial nail products, Industrieverband
33 Körperpflegeund Waschmittel e. V. (IKW) (The German Cosmetic, Toiletry,
34 Perfumery and Detergent Association), 23-Mar-2016

35 47. Isaksson M, Lindberg M, Sundberg K, Hallander A, Bruze M (2005) The development
36 and course of patch-test reaction to 2-hydroxyethyl methacrylate and ethyleneglycol
37 dimethacrylate, *Contact Dermatitis* 53: 292-297

38 48. Johannsen FR, Vogt B, Waite M, Deskin R (2008) Mutagenicity assessment of
39 acrylate and methacrylate compounds and implications for regulatory toxicology
40 requirements, *Regul. Toxicol. Pharmacol.*, 50, 322-335

41 49. Kanerva L, Estlander T, Jolanki R (1988); Sensitization to patch test acrylates,
42 *Contact Dermatitis*, 18, 10-15, in: CIR, 2005

43 50. Kanerva L, Estlander T, Jolanki R (1989) Allergic contact dermatitis from dental
44 composite resins due to aromatic epoxy acrylates and aliphatic acrylates, *Contact*
45 *Dermatitis*, 20, 201-211

46 51. Kanerva L, Estlander T, Jolanki R, Tarvainen K (1992) Occupational acrylate allergy
47 in dental personnel, *Allergologie*, 15(9), 322, in: OECD SIDS (2001) 2-Hydroxyethyl
48 Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 - 9
49 November 2001

50 52. Kanerva L, Jolanki R, Leino T, Estlander T (1995) Occupational allergic contact
51 dermatitis from 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate in
52 a modified acrylic structural adhesive, *Contact Dermatitis*, 33, 84-89

53 53. Kanerva L, Lauerma A, Estlander T, Alanko K, Henriks-Eckerman ML, Jolanki R
54 (1996) Occupational allergic contact dermatitis caused by photobonded sculptured
55 nails and a review of (meth) acrylates in nail cosmetics, *Am. J. Contact. Dermat.*, 7,
56 109-115, in: CIR, 2005

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 54. Kanerva L, Turjanmaa K, Estlander T, Jolanki R (1991a) Occupational Allergic
2 Contact Dermatitis Caused by 2-Hydroxyethyl Methacrylate (2-HEMA) in a New
3 Dentin Adhesive, *American J. Contact Dermatitis*, 2(1), 24-30, in: OECD SIDS
4 (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13,
5 Bern, Switzerland, 6 – 9 November 2001

6 55. Kanerva L, Turjanmaa K, Jolanki R, Estlander T (1991b) Occupational allergic
7 contact dermatitis from iatrogenic sensitization by a new acrylate dentin adhesive,
8 *European J. Dermatology*, 1, 25-28, in: OECD SIDS (2001) 2-Hydroxyethyl
9 Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9
10 November 2001

11 56. Katsuno K, Manabe A, Hasegawa T, Nakayama S, Itoh K, Wakumotot S, Hisamitsu H
12 (1992). Possibility of allergic reaction to dentin primer- application on the skin of
13 guinea pigs. *Dent. Mater. J.* 11:77-82, in: CIR, 2005.

14 57. Katsuno K, Manabe A, Itoh K, Hisamitsu H, Wakumoto S, Nakayama S, Yoshida T
15 (1995) A delayed hypersensitivity reaction to dentin primer in the guinea pig, *J.
16 Dent.*, 23(5), 295 -299

17 58. Katsuno K, Manabe A, Itoh K, Nakamura Y, Wakumoto S, Hisamitsu H, Yoshida T
18 (1996) Contact dermatitis caused by 2-HEMA and GM dentin primer solutions
19 applied to guinea pigs and humans, *Dent. Mater. J.*, 15,22-30

20 59. Keystone (2016) Safety Data Sheet, 2-Hydroxyethyl Methacrylate, Version 1.
21 Keystone Europe BV, The Netherlands, 23 June 2016

22 60. Kirkland DJ and Mueller L (2000) Interpretation of the biological relevance of
23 genotoxicity test results; Importance of thresholds, *Mutat. Res.*, 464, 137-147

24 61. Kirk-Othmer (1984) Encyclopedia of Chemical technology, 3 rd ed.;New York, NY:
25 John Wiley and Sons 15: 347-369, 386-371 (1978-1984); ISBN: 0-471-02068-0;
26 in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report
27 for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

28 62. Kleinsasser NH, Wallner BC, Harreus UA, Kleinjung T, Folwaczny M, Hickel R, Kehe
29 K, Reichl FX (2004) Genotoxicity and cytotoxicity of dental materials in human
30 lymphocytes as assessed by the single cell microgel electrophoresis (comet) assay.
31 *Journal of Dentistry* 32(3): 229-234

32 63. Kleinsasser, Norbert H.; Schmid, Katharina; Sassen, Andrea W.; Harreus, Ulrich A.;
33 Staudenmaier Rainer; Folwaczny, Matthias; Glas, Juergen; Reichl, Franz-Xaver
34 (2006) Cytotoxic and genotoxic effects of resin monomers in human salivary gland
35 tissue and lymphocytes as assessed by the single cell microgel electrophoresis
36 (Comet) assay, *Biomaterials*, 27, 1762-1770

37 64. Kocak O, Gul U. Patch test results of the dental personnel with contact dermatitis.
38 *Cutan Ocul Toxicol.* 2014 Dec;33(4):299-302.

39 65. Kusakabe H, Yamakage K, Wakuri S, Sasaki K, Nakagawa Y, Watanabe M, Hayashi
40 M, Sofuni T, Ono H, Tanaka N (2002) Relevance of chemical structure and
41 cytotoxicity to the induction of chromosome aberrations based on the testing results
42 of 98 high production volume industrial chemicals, *Mutation Research* 517 (1-2):
43 187-198,

44 66. Lawrence WH, Bass GE, Purcell WP, Autian J (1972) Use of Mathematical Models in
45 the Study of Structure-Toxicity Relationship of Dental Compounds: I. Esters of
46 Acrylic and Methacrylic Acids; *J. Dental. Res.* 51(2): 526-535, in: OECD SIDS
47 (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13,
48 Bern, Switzerland, 6 – 9 November 2001

49 67. Lazarov A (2007) Sensitization to acrylates is a common adverse reaction to
50 artificial fingernails, *J. European Academy Dermatology Venereology*, 21, 169-174

51 68. Lee DH, Lim BS, Lee YK, Ahn SJ, Yang HC (2006) Involvement of oxidative stress in
52 mutagenicity and apoptosis caused by dental resin monomers in cell cultures, *Dental
53 Materials* 22: 1086-1092

54 69. Lewis RJ (1992) Dangerous Properties of Industrial Materials, 8 ed., Van Nostrand
55 Reinhold, Vol. II: 1607 (1992); ISBN: 0-442-01277-2); in: OECD SIDS (2001) 2-

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

70. Lovell CR, Rycroft RJG, Williams DMJ, Hamlin JW. (1985) Contact dermatitis from the irritancy (immediate and delayed) and allergenicity of hydroxypropyl acrylate; Contact Dermatitis 12: 117-118, in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

71. MacFarlaine AW, Curley RK, King CM (1986); Contact sensitivity to unsaturated polyester resin in a limb prosthesis; Contact Dermatitis 15: 301-303 in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

72. Maio, Paula; Carvalho, Rodrigo; Amaro, Cristina; Santos, Raquel; Cardoso, Jorge (2012) Allergic contact dermatitis from sculptured acrylic nails: special presentation with an airborne pattern, Dermatology Reports, 4, 20-21

73. Manabe A, Hasegawa T, Chigira H, Itoh K, Wakumoto S, Nakayama S, Tachikawa T (1990) Morphological Changes of Rabbit Skin by Application of Dentin Primer; Dent. Mater. J. 9(2): 147-152; in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

74. Marcus R. et al. (1980) Acute Systemic Toxicological Tests of Soft Contact Lens Extractives; Am. J. Optom. Physiol. Opt. 57(6): 360-362, in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

75. Marren P, De Berkker D, Powell S (1991) Methacrylate sensitivity and transcutaneous electrical nerve stimulation (TENS); Contact Dermatitis 25: 190-191, in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

76. Mathias CGT., Cadwell TM, Maibach HI (1979); Contact dermatitis and gastrointestinal symptoms from hydroxyethylmethacrylat; Britisch Journal of Dermatology 100: 447-449; in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001 in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

77. Ministry of Health and Welfare (MHW, 1998) Japan. Initial submission: Letter from Methacrylate Producers Association Inc to USEPA Re: summaries of methacrylate toxicity studies conducted in Japan, with attachments and cover letter dated 8/21/1999. NTIS Report No. OTS0559766, in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

78. Ministry of Health and Welfare (MHW, 997) Japan, Toxicity Testing Reports of Environmental Chemicals 5, 525-552; in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

79. Mitsubishi Rayon (2001), Unpublished report on micronucleus test; in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

80. Molina L, Amado A, Mattei PL 4th, Taylor JS (2009) Contact dermatitis from acrylics in a histology laboratory assistant, Dermatitis : contact, atopic, occupational, drug, 20, E11-2.

81. Neumeister M, Danikas D, Wilhelmi BJ (2004) Nail Pathology, E-Textbooks, eMedicine.com. 27 October 2004,
<http://www.emedicine.com/orthoped/topic421.htm>

82. Nocca G, D'Anto V, Desiderio C, Rossetti DV, Valletta R, Baquala AM, Schweikl H, Lupi A, Rengo S, Spagnuolo G (2010) N-acetyl cysteine directed detoxification of 2-hydroxyethyl methacrylate by adduct formation, Biomaterials, 31, 2508-2516

83. OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 84. Parker D, Turk JL (1983) Contact sensitivity to Acrylate compounds in guinea pigs; Contact Dermatitis, 9, 55-60

2 85. Pawlowska E, Poplawski T, Ksiazek D, Szczepanska J, Blasiak J (2010) Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate, Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 696, 122-129

3 86. Pedersen NB, Senning A, Nielsen AO (1983) Different sensitising acrylic monomers in Napp printing plate; Contact Dermatitis 9: 459-464, in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

4 87. Peiler D, Rustemeyer T, Frosch PJ (1996) Dermatosen bei Zahntechnikern - Irritation und Allergene; Allergologie 19: 93 – 94, in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

5 88. Peters K, Andersen KE (1986) Allergic hand dermatitis from 2-hydroxyethyl-acrylate in contact lenses; Contact Dermatitis 15: 188-189, in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

6 89. Ramos, Leonor; Cabral, Rita; Goncalo, Margarida (2014) Allergic contact dermatitis caused by acrylates and methacrylates - a 7-year study, Contact Dermatitis, (2014) Vol. 71, No. 2, pp. 102-107

7 90. Ranchoff RE, Taylor J (1985) Contact dermatitis to anaerobic sealants; J. Am. Acad. Dermatol. 13: 1015-1020, in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

8 91. Rao KS, Betso JE, Olson KJ (1981) A collection of guinea pig sensitization test results--Grouped by chemical class; Drug and Chemical Toxicology 4(4): 331-351

9 92. Ratanasathien S, Wataha JC, Hanks CT, Dennison JB (1995) Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J. Dent. Res. 74:1602-1606

10 93. Reichl FX, Durner J, Kehe K, Manhart J, Folwaczny M, Kleinsasser N, Parker WR, Hickel R (2002) Toxicokinetic of HEMA in guinea pigs, Journal of Dentistry 30: 353-358

11 94. Rhein LD (2001) Nails - Review of Structure, Function and Strategies to Treat Disorders, GlaxoSmithKline, November 2001

12 95. Rhône-Poulenc (1980) Initial Submission: DOT Skin corrosion of SIPOMER HEM-HP-T in rabbits with cover letter dated 061992; Microfiche No.: OTS0541037; Prod. Safety Labs., date produced 07/09/80; in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

13 96. Richter G, Geier J (1996) Dentalwerkstoffe – Problemstoffe in der allergologischen Diagnostik; Hautarzt 47: 839 – 843, in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

14 97. Roehm (1977) Prüfung von 2-Hydroxyäthylmethacrylat auf primäre Hautreizwirkung beim Kaninchen; IBR, unveröffentlicht, Bericht Nr. 77-009; in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

15 98. Roehm (1978) Akute Toxizitätsprüfung von 2-Hydroxyäthylmethacrylat nach oraler Applikation an der Ratte; IBR, unveröffentlicht, Bericht Nr.78-002 (1978); in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

16 99. Roehm (1978) Prüfung von 2-Hydroxyäthylmethacrylat im Augenreiztest am Kaninchen; IBR, unveröffentlicht, Bericht Nr. 78-003 (1978); in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 100. Roehm (1982) 2-Hydroxyethylmethacrylat (HEMA) Delayed Contact
2 Hypersensitivity modified by E.V. Buehler; IBR, unpublished report No. 82-006
3 (1982); in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial
4 Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

5 101. Rohm & Haas (1981) Initial Submission: Acute Range-Finding rabbit eye/ skin
6 irritation studies (final report) with cover letter dated 072192; Microfiche No.:
7 OTS0544769; Rohm & Haas Co., date produced 07/22/81, in: OECD SIDS (2001) 2-
8 Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern,
9 Switzerland, 6 – 9 November 2001

10 102. Romaguera C, Vilaplana J, Grimalt F, Ferrando J (1990) Contact Sensitivity to
11 Methacrylate in a Limb Prosthesis; American Journal of Contact Dermatitis 1(3):
12 183-185; in: OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial
13 Assessment Report for SIAM 13, Bern, Switzerland, 6 – 9 November 2001

14 103. Runne U, Orfanos CE (1981) The human nail: structure, growth and pathological
15 changes, Curr. Probl. Dermatol., 9, 102-149.

16 104. Rustemeyer T, de Groot J, von Blomberg BM, Frosch PJ, Scheper RJ (2001)
17 Induction of tolerance and cross-tolerance to methacrylate contact sensitizers,
18 Toxicol. Appl. Pharmacol., 176, 195–202, in: CIR, 2005

19 105. Rustemeyer T, de Groot J, von Blomberg BM, Frosch PJ, Scheper RJ (1998)
20 Crossreactivity patterns of contact-sensitizing methacrylates, Toxicol. Appl.
21 Pharmacol., 148, 83–90, in: CIR, 2005

22 106. Rustemeyer T, Frosch P (1996) Occupational skin diseases in dental laboratory
23 technicians; Contact Dermatitis 34: 125 – 133, in: OECD SIDS (2001) 2-
24 Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern,
25 Switzerland, 6 – 9 November 2001

26 107. Sandberg E, Dahlgreen UI (2006) Application of HEMA on intact mouse skin-
27 effects on the immune system, Contact Dermatitis 54, 186-191

28 108. SCCS (2016) The SCCS Notes of Guidance for the Testing of Cosmetic
29 Ingredients and their Safety Evaluation, 9th Revision, adopted at 11th plenary
30 meeting, 29-Sep 2015, revised 25-Apr-2016, SCCS/1564/15

31 109. Schnuch A (1997) Allergien gegen Hydroxyethylmethacrylat,
32 Hydroxypropylmethacrylat, Hydroxyethylacrylat und Hydroxypropylacrylat;
33 personnel communication to Dr. Müllerschön and Dipl.-Ing. G. Ritz, Roehm GmbH;
34 Informationsverband Dermatologischer Kliniken, Göttingen; in: OECD SIDS (2001)
35 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern,
36 Switzerland, 6 – 9 November 2001

37 110. Schnuch A (2016) Contact allergies to nail cosmetics / Data from dermatological
38 surveillance, 24-Feb-2016

39 111. Schnuch A, Geier J (1994) Kontaktallergie bei Dentalberufen, Dermatosen, 42,
40 253-255 (1994)

41 112. Schoon D (1994a) Differential scanning calorimeter determinations of residual
42 monomer content in ethyl methacrylate fingernail formulations, special report
43 prepared on behalf of the Nail Manufacturers Council for the Cosmetic Ingredient
44 Review, Schoon D, Director of Research and Development, Creative Nail Design
45 Systems, Carlsbad, CA, USA, unpublished/confidential

46 113. Schoon D (1994b) Addendum to: Differential scanning calorimeter
47 determinations of residual monomer content in ethyl methacrylate fingernail
48 formulations. Schoon D, Director of Research and Development, Creative Nail
49 Design Systems, Carlsbad, CA, USA, unpublished/confidential

50 114. Schwach GW, Hofer H (1978) Determination of the oral acute toxicity of
51 methacrylates and vinylpyrrolidone in mouse; Ber. Oesterr. Studienges.
52 Atomenerg., SG AE Ber. No.3004; [German; Chem. Abstr. 90; CA: 1 33656y]; in:
53 OECD SIDS (2001) 2-Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for
54 SIAM 13, Bern, Switzerland, 6 – 9 November 2001

55 115. Schweikl H, Schmalz G, Bey B (1994) Mutagenicity of dentin bonding agents; J.
56 Biomedical Materials Research, 28, 1061-1067

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 116. Schweikl H, Schmalz G, Rackebrandt K (1998) The mutagenic activity of
2 unpolymerized resin monomers in *Salmonella typhimurium* and V79 cells, *Mutat.*
3 *Res.*, 415, 119-30

4 117. Schweikl H, Schmalz G, Spruss T (2001) The induction of micronuclei in vitro by
5 unpolymerized resin monomers. *J. of Dent. Res.* 80(7): 1615 – 1620

6 118. Schweikl H; Hartmann A; Hiller KA; Spagnuolo G; Bolay C; Brockhoff G; Schmalz
7 G (2007) Inhibition of TEGDMA and HEMA-induced genotoxicity and cell cycle arrest
8 by Nacetylcysteine, *Dental materials : official publication of the Academy of Dental*
9 *Materials*, 23, 688-695

10 119. Schwengberg S, Bohlen H, Kleinsasser N, Kehe K, Seiss M, Walther UI, Hickel R,
11 Reichl FX (2005) In vitro embryotoxicity assessment with dental restorative
12 materials, *Journal of dentistry* 33 (1): 49-55

13 120. Scott D, Galloway SM, Marshall RR, Ishidate M, Brusick D, Ashby J, Myhr BC
14 (1991) Genotoxicity under Extreme Culture Conditions, A Report from ICPEMC Task
15 Group 9, *Mut. Res.*, 257, 147-205

16 121. Spencer A, Gazzani P, Thompson DA (2016). Acrylates and metacrylates contact
17 allergy and allergic contact disease: a 13-year review. *Contact Dermatitis*, 75, 157-
18 64.

19 122. Steffier L (2016) HEMA, HPMA & Polyurethane (Meth)acrylate Oligomer
20 Extraction Report, Keystone Research & Pharmaceutical, Cherry Hill, NJ, USA,
21 unpublished/confidential information, 21 June 2016

22 123. Szczepanska J, Poplawski T, Synowiec E, Pawlowska E, Chojnacki CJ, Chojnacki
23 J, Blasiak J (2012) 2-Hydroxyethyl methacrylate (HEMA), a tooth restoration
24 component, exerts its genotoxic effects in human gingival fibroblasts trough
25 methacrylic acid, an immediate product of its degradation, *Molecular Biology*
26 *Reports*, 39, 1561-1574

27 124. Tucker SC, Beck MH (1999) A 15-year study of patch testing to (meth)acrylates.
28 *Contact. Dermatitis*, 40, 278-279

29 125. Urcan E, Scherthan H, Styllou M, Haertel U, Hickel R, Reichl FX (2010) Induction
30 of DNA double-strand breaks in primary gingival fibroblasts by exposure to dental
31 resin composites, *Biomaterials*, 31, 2010-2014

32 126. Ursberg AM, Bergwndooff O, Thorsson AC, Isaksson M (2016) Is there a good in
33 vivo method to show whether gloves are sufficiently protective when a nail
34 technician is exposed to (meth)acrylates? An in vivo pilot study, *Contact Dermatitis*,
35 75, 62-65

36 127. Uter W, Geier J (2015) Contact allergy to acrylates and methacrylates in
37 consumers and nail artists - data of the Information Network of Departments of
38 Dermatology, 2004-2013, *Contact Dermatitis*, 72, 224-228

39 128. Van der Walle HB, Klecak G, Geleick H, Bensink T (1982) Sensitizing potential of
40 14 mono (meth) acrylates in the guinea pig, *Contact. Dermatitis*, 8, 223-235

41 129. Van Esch C (1983) UV curing-now and in the future; European Supplement to
42 Polymers Paint Colour Journal 5: 79-85 (

43 130. Von Blomberg-Van Der Flier M, Scheper RJ, Boerrigter GH, Polak L (1984);
44 Induction of Contact Sensitivity to a Broad Variety of Allergens with Haptenized
45 Macrophages; *Journal of Investigative Dermatology* 83(2): 91-95

46 131. Waegemaekers THJ, Bensink MPM (1984); Non-mutagenicity of 27 aliphatic
47 acrylate esters in the *Salmonella*-microsome test; *Mut. Res.* 137: 95-102

48 132. Wahlberg JE (1983) Contact sensitivity to APP printing plates secondary to a
49 relapsing hand dermatitis; *Contact Dermatitis* 9(3): 239, in: OECD SIDS (2001) 2-
50 Hydroxyethyl Methacrylate, SIDS Initial Assessment Report for SIAM 13, Bern,
51 Switzerland, 6 – 9 November 2001

52 133. Walters KA, Abdalghafor HM, Lane ME (2012) The human nail – Barrier
53 characterization and permeation enhancement, *Int. J. Pharmaceutics*, 435, 10-21

54 134. Warshaw, Erin M.; Wang, Michael Z.; Mathias, C. G. Toby; Maibach, Howard I.;
55 Belsito, Donald V.; Zug, Kathryn A.; Taylor, James S.; Zirwas, Matthew J.;
56 Fransway, Anthony F. (2012) Occupational contact dermatitis in

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 hairdressers/cosmetologists: Retrospective analysis of North American contact
2 dermatitis Group Data, 1994 to 2010, *Dermatitis*, (2012) Vol. 23, No. 6, pp. 258-
3 268
4 135. Yoshii E (1997) Cytotoxicity effects of acrylates and methacrylates: relationships
5 of monomer structures and cytotoxicity. *J. Biomed. Materials. Res.*, 37, 517-524,
6 in: CIR, 2005

7
8 **B: References related to dossier on Di-HEMA-TMHDC**

9 1. Api AM, Basketter DA, Cadby PA, Cano MF, Ellis G, Gerberick GF, Griem P,
10 McNamee PM, Ryan CA, Safford L (2008) Dermal sensitization quantitative risk
11 assessment (QRA) for fragrances, *Regular Toxicol. Pharmacol.*, 52, 3-23
12 2. Arossi GA, Lehmann M, Dihl RR, Reguly ML, de Andrade HHR (2009) Induced DNA
13 Damage by Dental Resin Monomers in Somatic Cells, *Basic and Clinical
14 Pharmacology and Toxicology*, 106, 124-129
15 3. Baden HP (1970) The physical properties of nail, *J. Investigative Dermatology*, 55,
16 115-122
17 4. Bradley MO, Taylor VI, Armstrong MJ, Galloway SM (1987) Relationships among
18 Cytotoxicity, Lysosomal Breakdown, Chromosome Aberrations, and DNA Double-
19 strand Breaks, *Mut. Res.*, 189, 69-79
20 5. Chang HH, Chang MC, Lin LD, Lee JJ, Wang TM, Huang CH, Yang TT, Lin Hjen,
21 Jeng JH (2010) The mechanisms of cytotoxicity of urethane dimethacrylate to
22 Chinese hamster ovary cells, *Biomaterials*, 31, 6917-6925
23 6. Cosmetic Ingredient Review (CIR, 2005) Final report of the safety assessment of
24 Methacrylate ester monomers used in nail enhancement products, *Internat. J.
25 Toxicology*, 24 (Suppl.5), 53-100
26 7. Creative Nail Design (2001) Differential scanning calorimetric analysis of twenty-
27 two methacrylate monomers used in artificial monomer/polymer nail enhancement
28 products. Unpublished/confidential data prepared by Schoon D, 18 Oct 2001
29 8. Dahlin J, Berne B, Duner K, Hosseiny S, Matura M, Nyman G, Tammela M,
30 Isaksson M (2016) Several cases of undesirable effects caused by methacrylate
31 ultraviolet-curing nail polish for non-professional use, *Contact Dermatitis*, 1-6
32 9. Donovan MO (2012) A critique of methods to measure cytotoxicity in mammalian
33 cell genotoxicity assays, *Mutagenesis*, 27, 615-621
34 10. Esstech (2009) Material Safety Data Sheet, Product code X-850-0000, Urethane
35 Dimethacrylate, Esstech Inc., US, 17 Dec 2009
36 11. Esstech (2012) Certificate of analysis, Item# X-850-0000, Urethane
37 Dimethacrylate, Esstech Inc., US, 17 Dec 2009
38 12. Esstech (2016) Technical Data Sheet, Item# X-850-0000, Urethane
39 Dimethacrylate, Esstech Inc., US, 14 June 2016
40 13. Fleckman P, Allan C (2001) Surgical anatomy of the nail unit, *Dematol. Surg.*, 27,
41 257-260.
42 14. Geier J, Schnuch A (2016) Contact allergy to nail cosmetics / Data from dermat-
43 allergological surveillance, Information Network of Departments of Dermatology
44 (IVDK), Institute at the University Medical Center Göttingen, Von-Bar-Str. 2-4,
45 37075 Göttingen, Germany, 21 July 2016
46 15. Geukens S, Goossens A (2001) Occupational contact allergy to (meth)acrylates.
47 *Contact Dermatitis* 44(3): 153-159
48 16. Geurtzen W, Lehmann L, Spahl W, Leyhausen G (1998). Cytotoxicity of 35 dental
49 resin composite monomers/additives in permanent 3T3 and three human primary
50 fibroblast cultures. *J. Biomed. Mater. Res.* 41, 474-480.
51 17. Gupchup GV, Zatz JL (1999) Structural characteristics and permrbility properties of
52 the human nail, *J. Cosmet. Sci.*, 50, 363-385
53 18. Hashimoto Y, Nakamura M (2000) Estrogenic activity of dental materials and
54 bisphenol-A related chemicals, *Dent. Mater. J.*, 19, 245-262
55 19. Heil J, Reifferscheid G, Waldmann P, Leyhausen G, Geurtzen W (1996)
56 Genotoxicity of dental materials, *Mutat Res.*, 368, 181-194

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

1 20. Hemmer W, Focke M, Wantke F, Gotz M, Jarisch R (1996). Allergic contact
2 dermatitis to artificial fingernails prepared from UV light-cured acrylates. *J. Am.*
3 *Acad. Dermatol.*, 35, 377-380

4 21. IKW (2016) Group data sheet for artificial nail products, Industrieverband
5 Körperpflegeund Waschmittel e. V. (IKW) (The German Cosmetic, Toiletry,
6 Perfumery and Detergent Association), 23 Mar 2016

7 22. Johannsen FR, Vogt B, Waite M, Deskin R (2008) Mutagenicity assessment of
8 acrylate and methacrylate compounds and implications for regulatory toxicology
9 requirements, *Regul. Toxicol. Pharmacol.*, 50, 322-335

10 23. Kanerva L, Estlander T, Jolanki R (1988) Sensitization to patch test acrylates,
11 *Contact Dermatitis*, 18, 10-15, in CIR, 2005

12 24. Kanerva L, Estlander T, Jolanki R (1989) Allergic contact dermatitis from dental
13 composite resins due to aromatic epoxy acrylates and aliphatic acrylates, *Contact*
14 *Dermatitis*, 20, 201-211

15 25. Kanerva L, Jolanki R, Leino T, Estlander T (1995) Occupational allergic contact
16 dermatitis from 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate in
17 a modified acrylic structural adhesive, *Contact Dermatitis*, 33, 84-89

18 26. Kanerva L, Lauerma A, Estlander T, Alanko K, Henriks-Eckerman ML, Jolanki R
19 (1996) Occupational allergic contact dermatitis caused by photobonded sculptured
20 nails and a review of (meth) acrylates in nail cosmetics, *Am. J. Contact. Dermat.*,
21 7, 109-115, in CIR, 2005

22 27. Keystone (2016) Safety Data Sheet, Urethane Dimethacrylate, Version 1.01,
23 Keystone Europe BV, The Netherlands, 23 June 2016

24 28. Kirkland DJ and Muel ler L (2000) Interpretation of the biological relevance of
25 genotoxicity test results; Importance of thresholds, *Mutat. Res.*, 464, 137-147

26 29. Kleinsasser NH, Wallner BC, Harreus UA, Kleinjung T, Folwaczny M, Hickel R, Kehe
27 K, Reichl FX (2004) Genotoxicity and cytotoxicity of dental materials in human
28 lymphocytes as assessed by the single cell microgel electrophoresis (comet) assay.
29 *Journal of Dentistry* 32(3): 229-234

30 30. Kleinsasser, Norbert H.; Schmid, Katharina; Sassen, Andrea W.; Harreus, Ulrich
31 A.; Staudenmaier Rainer; Folwaczny, Matthias; Glas, Juergen; Reichl, Franz-Xaver
32 (2006) Cytotoxic and genotoxic effects of resin monomers in human salivary gland
33 tissue and lymphocytes as assessed by the single cell microgel electrophoresis
34 (Comet) assay, *Biomaterials*, (2006) Vol. 27, No. 9, pp. 1762-1770

35 31. Kroes R, Renwick AG, Feron V, Galli CL, Gibney M, Greim H, Guy RH, Lhuquenot
36 JC, van de Sandt JJ (2007) Application of the threshold of toxicological concern
37 (TTC) to the safety evaluation of cosmetic ingredients, *Food Chem. Toxicol.*, 45,
38 2533-2562

39 32. Lee DH, Lim BS, Lee YK, Ahn SJ, Yang HC (2006) Involvement of oxidative stress
40 in mutagenicity and apoptosis caused by dental resin monomers in cell cultures,
41 *Dental Materials* 22: 1086-1092

42 33. Nassiri, M. Reza; Hanks, Carl T.; Cameron, Mark J.; Strawn, Susan E.; Craig,
43 Robert G. (1994) Application of flow cytometry to determine the cytotoxicity of
44 urethane dimethacrylate in human cells, *Journal of Biomedical Materials Research*,
45 28, 153-8

46 34. Nomura, Y.; Ishibashi, H.; Miyahara, M.; Shinohara, R.; Shiraishi, F.; Arizono, K
47 (2003) Effects of dental resin metabolites on estrogenic activity in vitro, *Journal of*
48 *Materials Science: Materials in Medicine*, 14, 307-310

49 35. Poplawski, Tomasz; Loba, Katarzyna; Pawlowska, Elzbieta; Szczepanska, Joanna;
50 Blasiak, Janusz (2010) Genotoxicity of urethane dimethacrylate, a tooth
51 restoration component, *Toxicology in Vitro*, 24, 854-862

52 36. Ratanasathien S, Wataha JC, Hanks CT, Dennison JB (1995) Cytotoxic interactive
53 effects of dentin bonding components on mouse fibroblasts. *J. Dent. Res.*
54 74:1602-1606

Opinion on the safety of cosmetic ingredients HEMA (CAS 868-77-9) and Di-HEMA Trimethylhexyl Dicarbamate (CAS 41137-60-4 / 72869-86-4) - Submission I (Sensitisation only)

37. Rhein LD (2001) Nails - Review of Structure, Function and Strategies to Treat Disorders, GlaxoSmithKline, November 2001, <http://www.nyscc.org/news/archive/tech1101.htm>

38. Runne U, Orfanos CE (1981) The human nail: structure, growth and pathological changes, *Curr. Probl. Dermatol.*, 9, 102-149.

39. Saito D, Minamida G, Tani-Ishii N, Izukuri K, Ozono S, Koshika S, Teranaka T (2003) Effect of prenatal exposure to dental composite resin monomers on testosterone production in the rat testis, *Environmental Sciences* (Tokyo, Japan), 10, 327-336.

40. SCC (2016) Estimation of toxicological hazards of Di-HEMA Trimethylhexyl Dicarbamate (UDMA, CAS 72869-86-4) using the OECD QSAR Toolbox, SCC GmbH, Bad Kreuznach, Germany, 21 July 2016

41. SCCS (2016) The SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and their Safety Evaluation, 9th Revision, adopted at 11th plenary meeting, 29 Sep 2015, revised 25 Apr 2016, SCCS/1564/15

42. Schoon D (1994a) Differential scanning calorimeter determinations of residual monomer content in ethyl methacrylate fingernail formulations, special report prepared on behalf of the Nail Manufacturers Council for the Cosmetic Ingredient Review, Schoon D, Director of Research and Development, Creative Nail Design Systems, Carlsbad, CA, USA, unpublished/confidential

43. Schoon D (1994b) Addendum to: Differential scanning calorimeter determinations of residual monomer content in ethyl methacrylate fingernail formulations. Schoon D, Director of Research and Development, Creative Nail Design Systems, Carlsbad, CA, USA, unpublished/confidential

44. Schweikl H, Schmalz G, Spruss T (2001) The induction of micronuclei in vitro by unpolymerized resin monomers. *J. of Dent. Res.* 80(7): 1615 – 1620

45. Schweikl H, Schmalz G, Rackebrandt K (1998) The mutagenic activity of unpolymerized resin monomers in *Salmonella typhimurium* and V79 cells. *Mutat. Res.* 415:119-130

46. Schwengberg S, Bohlen H, Kleinsasser N, Kehe K, Seiss M, Walther UI, Hickel R, Reichl FX (2005) In vitro embryotoxicity assessment with dental restorative materials, *J. dentistry*, 33, 49-55

47. Scott D, Galloway SM, Marshall RR, Ishidate M, Brusick D, Ashby J, Myhr BC (1991) Genotoxicity under Extreme Culture Conditions, A Report from ICPEMC Task Group 9, *Mut. Res.*, 257, 147-205

48. Steffier L (2016) HEMA, HPMA & Polyurethane (Meth)acrylate Oligomer Extraction Report, Keystone Research & Pharmaceutical, Cherry Hill, NJ, USA, unpublished/confidential information, 21 June 2016

49. Tucker SC, Beck MH (1999) A 15-year study of patch testing to (meth)acrylates. *Contact. Derm.*, 40, 278-279

50. Urcan E, Scherthan H, Styllou M, Haertel U, Hickel R, Reichl FX (2010) Induction of DNA double-strand breaks in primary gingival fibroblasts by exposure to dental resin composites, *Biomaterials*, 31, 2010-2014

51. Ursberg AM, Bergwndoeff O, Thorsson AC, Isaksson M (2016) Is there a good in vivo method to show whether gloves are sufficiently protective when a nail technician is exposed to (meth)acrylates? An in vivo pilot study, *Contact Dermatitis*, 75, 62-65

52. Walters KA, Abdalghafor HM, Lane ME (2012) The human nail - Barrier characterization and permeation enhancement, *Int. J. Pharmaceutics*, 435, 10-21

53. Wisniewska-Jarosinska M, Poplawski T, Chojnacki CJ, Pawlowska E, Krupa R, Szczepanska J, Blasiak J (2011) Independent and combined cytotoxicity and genotoxicity of triethylene glycol dimethacrylate and urethane dimethacrylate, *Molecular Biology Reports*, 38, 4603-4611

54. Yoshii E (1997) Cytotoxicity effects of acrylates and methacrylates: relationships of monomer structures and cytotoxicity. *J. Biomed. Materials. Res.*, 37, 517-524, in: CIR. 2005

1 **C: References from Call for data performed by DG GROW**

2 1. Gonçalo M (2017), on behalf of the EECDRG. Report on allergic contact dermatitis
3 from nail acrylates.
4 2. Rajan S, Orton DI, Chowdhury MM, Wilkinson SM, Reckling C, Shah A, Johnston GA,
5 Bourke JF, Green C, Ghaffar SA, Buckley DA (2017). Contact allergy to
6 (meth)acrylates: a UK multicentre study.

7 **Additional references**

8 1. ANSES (2017) <https://www.anses.fr/fr/system/files/CONSO2014SA0148Ra.pdf>
9 (accessed Nov 2017)
10 2. Baur X (2013) A compendium of causative agents of occupational asthma. *J Occup
11 Med Toxicol* 8:1-8
12 3. Baur X, Bakehe P (2014) Allergens causing occupational asthma: an evidence-based
13 4. evaluation of the literature. *Int Arch Occup Environ Health* 87:339-363
14 5. Bjorkner B, Frick-Engfeld M, Ponten A, Zimerson E (2011) Plastic materials – Acrylic
15 Plastics. In: Johansen DJ, Frosch PJ, Lepoittevin JP (eds) *Contact Dermatitis* 5th ed
16 (2011) Springer Verlag Berlin Heidelberg ISBN 978-3-642-03826-6, pp 696 - 701
17 6. Brown MB, Khengarc RB, Turner B et al (2009) Overcoming the nail barrier: A
18 systematic investigation of ungual chemical penetration enhancement. *Internat J
19 Pharmaceutics* 370:61-67
20 7. Dessalces FB (2014) Risques liés aux résines méthacryliques chez les prothésistes
21 ongulaires: évaluation de l'exposition professionnelle, évaluation clinique et
22 spirométrique de 71 professionnelles. Thesis, Medical University of Grenoble, FR.
23 8. Gatica-Ortega M-E, Pastor-Nieto M-A, Mercader-Garcia P, Silvestre-Salvador J-F
24 (2017) Allergic contact dermatitis caused by (meth)acrylates in long-lasting nail
25 polish – are we facing a new epidemic in the beauty industry? *Contact Dermatitis* doi:
26 10.1111/cod. 12827
27 9. Kimber I, Pemberton MA (2014) Assessment of the skin sensitizing potency of the
28 lower alkyl methacrylate esters. *Reg Toxicol Pharmacol* 70:24-38
29 10. Kimber I, Dearman RJ, Basketter D, Boverhof DR (2014). Chemical respiratory
30 allergy: reverse engineering an adverse outcome pathway. *Toxicology* 318:32-39
31 11. Kobayashi Y, Miyamoto M, Sugibayashi K, Morimoto Y (1999) drug permeation
32 through the three layers of the human nail plate. *J Pharm Pharmacol* 51:271-278
33 12. Kobayashi Y, Komatsu T, Sumia M et al (2004) In vitro permeation of several drugs
34 through the human nail plate: relationship between physicochemical properties and
35 nail permeability of drugs. *Eur J Pharm Sciences* 21:471-477
36 13. Kreiss K, Esfahani RS, Antao VC, Odencrantz J, Lezotte DC, Hoffman RE (2006) Risk
37 factors for asthma among cosmetology professionals in Colorado. *J Occup Environ
38 Med* 48:1062-9.
39 14. Montgomery R, Stocks SJ, Wilkinson SM (2016). Contact allergy resulting from the
40 use of acrylates nails is increasing in both users and those who are occupationally
41 exposed. *Contact Dermatitis*, 74, 110-127.
42 15. NIOSH (1999) National Institute for Occupational Safety and Health. Controlling
43 chemical hazards during the application of artificial nails. DHHS (NIOSH) Publication
44 No. 99-112. Also referenced as: *Appl Occup Environ Hyg*. 2001;16:509-11.
45 16. Reutman SR, Rohs AM, Clark JC, Johnson BC, Sammons DL, Toennis CA, Robertson
46 SA, MacKenzie BA, Lockey JE (2009) A pilot respiratory health assessment of nail
47 technicians: symptoms, lung function, and airway inflammation. *Am J Ind Med*
48 52:868-75
49 17. Roelofs C1, Azaroff LS, Holcroft C, Nguyen H, Doan T (2008) Results from a
50 community-based occupational health survey of Vietnamese-American nail salon
51 workers. *J Immigr Minor Health* 10:353-61
52 18. Sauni R, Kauppi P, Alanko K, Henricks-Eckerman M, Tuppurainen M, Hannu T (2008)
53 Occupational asthma caused by sculptured nails containing methacrylates. *Am J
54 Indus Med* 51:968-974.