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Abstract 

The present paper is focused on theoretical and experimental study of the kinetics of field-

induced aggregation of magnetic nanoparticles of a size range of 20-100 nm. Our results 

demonstrate that (a) in polydisperse suspensions, the largest particles could play a role of the 

centers of nucleation for smaller particles during the earliest heterogeneous nucleation stage; (b) 

an intermediate stage of the aggregate growth (due to diffusion and migration of individual 

nanoparticles towards the aggregates) is weakly influenced by the magnetic field strength; (c) the 

stage of direct coalescence of drop-like aggregates (occurring under magnetic attraction between 

them) plays a dominant role at the intermediate and late stages of the phase separation, with the 

timescale decreasing as a square of the aggregate magnetization.  

I. Introduction 

Magnetic micro- and nanoparticles and their liquid suspensions or gels are gaining a growing 

interest in environmental and biomedical applications, such as water purification from organic 

and inorganic molecules
1,2

, magnetic resonance imaging
3,4

, cell separation
5
, protein 

purification
6,7

, magnetic hyperthermia
8,9

, controlled drug delivery and release
10,11

, magneto-

mechanical lysis of tumor cells
12,13

, high sensitivity immunoassays
14

 and tissue engineering
15,16

. 

In many of these applications, magnetic particles are subject to aggregation induced by an 

external applied magnetic field, and the kinetics of aggregation becomes an important factor 

affecting efficiency of a considered system. An excellent example is enhancement of the 

magnetophoresis of magnetic microbeads due to their field-induced aggregation – the 

phenomenon referred to as cooperative magnetophoresis
17-20

, which could be beneficial for 

separation and detection of biomolecules using functionalized magnetic microbeads. 

Most of existing works characterize the field-induced particle aggregation in terms of 

three governing parameters – the particle volume fraction , the ratio of the energy of dipole-

dipole interaction between particles to thermal energy – so called dipolar coupling parameter  

and the ratio of the energy of interaction of a magnetic particle with an external magnetic field of 

an intensity H0 to thermal energy called magnetic field parameter or Langevin parameter . Both 

last parameters are defined by the following expressions
21

: 
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where0=410
-7

 H/m is the magnetic permeability of vacuum; mp - the particle magnetic 

moment (in T×m
3
); d – its diameter, kB≈1.38×10

-23
 J/K - the Boltzmann constant and T – 

absolute temperature. Since the particle magnetic moment is linear with the particle volume, the 

parameters  and  are proportional to the cube of the particle size. The physics of particle 

aggregation is rather different for micron-sized particles (with >>1) and for nanoparticles 

(with1). 

Kinetics of field-induced aggregation of micron or sub-micron-sized particles (typically 

d>100 nm) has been studied experimentally by either direct visualization
22-24

 or light scattering
25-

28
. The common feature shared between most of the studied systems is that these particles exhibit 

a rapid field-induced aggregation in linear chains aligned with the direction of applied magnetic 

field, and the average chain length 2a grows with time as 2a t , with 0.45 0.8  . At 

longer times, lateral aggregation dominates over tip-to-tip aggregation and the chains can merge 

and form either a fibrous structure “frozen” in non-equilibrium state likely by inter-particle 

friction
22

 or column structures confined by the walls orthogonal to the applied field
29

, or 

unconfined ellipsoidal drop-like aggregates under pulsed magnetic field
30,31

. Theoretical studies 

are mainly based on Langevin dynamics simulations
19,32,33

 or solution of Smoluchowsky kinetic 

equation 
23,24,27,28,33-35

. A simplified theoretical approach, so-called hierarchical model, has been 

developed by See and Doi
36

 considering only coalescence of the chains of equal sizes and 

showing a satisfactory agreement with experiments on 2a , even though it predicts 

monodisperse particle chains instead of experimentally observed polydisperse distribution. 

In the opposite size limit, typically d<20 nm, when considering aggregation, one usually 

speaks about field-induced phase separation or a condensation phase transition. Appropriate 

phase diagrams and equilibrium microstructures have been extensively studied theoretically and 

experimentally
37-47

. Kinetics of phase separation has been studied by light scattering by Socoliuc 

and Bica
48

 for aqueous dispersions of nanoparticles (ferrofluids) and by Laskar et al.
49

 for non-

aqueous ferrofluids. Elongated scattered patterns have been reported by these authors 

corresponding to formation of long drop-like aggregates, which during time settle to a stable 

space configuration owing to magnetic lateral repulsion. Thermodynamic approach broadly used 

for molecular liquids is appropriate for modeling of the phase separation in suspensions of 

magnetic nanoparticles. Using this approach, Zubarev and Ivanov
50

 and Ivanov and Zubarev
51

 

have considered three different stages of the phase separation: (a) appearance of critical nuclei at 

early stage of homogeneous nucleation; (b) evolution of the nuclei to long drop-like aggregates, 

and (c) Oswald ripening when the particles are transferred from smaller to larger aggregates 

leading at infinite times to a full coalescence of the concentrated phase into a single bulk phase. 

The aggregate size distribution has been calculated and the average aggregate volume has been 
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found to increase with time as 7/ 4V t  at early stage, followed by an intermediate plateau at 

the end of the stage (b) showing a final increase with 7/6V t at the ripening stage (c). 

Magnetic nanoparticles of medium size, 20<d<100 nm have not been available for a long 

time because of difficulties related to their colloidal stabilization. To prevent their aggregation 

by magnetic interactions in zero field, they have to be superparamagnetic. So, these particles are 

usually porous nanoclusters composed of smaller 10-nm superparamagnetic nanoparticles
52-56

. 

Similarly to small nanoparticles, medium-sized colloids exhibit condensation phase 

transitions
54,55,57

 which enhance drastically their magnetic separation on magnetized collectors
57-

61
. Kinetics of phase separation of medium-sized nanoparticles has been studied only scarcely. 

Socoliuc et al.
54

 has conducted direct visualization and light scattering experiments on 80-nm 

magnetic nanoclusters and shown appearance of elongated drop-like aggregates. In addition to 

three kinetic stages postulated by Zubarev and Ivanov
50

 and Ivanov and Zubarev
51

, Socoliuc et 

al.
54

 claims a forth final stage of coalescence of aggregates into larger domains. This kinetics 

seems to combine features of condensation phase transitions of small nanoparticles with 

aggregation of large micron- or submicron-sized particles. To the best of our knowledge, 

theoretical description of such kinetics is still missing. 

The present paper is focused on theoretical modeling of kinetics of aggregation (or phase 

separation) of the medium-sized (20<d<100 nm) superparamagnetic nanoparticles. The main 

goal is to establish theoretical correlations for the temporal evolution of the aggregate size and 

shape as function of the initial supersaturation of the suspension (or initial particle volume 

fraction 0) and of the applied magnetic field. To check our model, aggregation process is 

visualized using an optical microscope and the size and shape of the aggregates is analyzed as 

function of time. Visualization experiments allow assessing dominant mechanisms of 

aggregation, which are implemented into the theory. Therefore, the present theory is developed 

for two stages that are explicitly distinguished in our experiments and are interesting from the 

practical point of view: (a) intermediate aggregate growth by particle diffusion and 

magnetophoresis, and (b) aggregate coalescence due to dipolar interactions. Simple hierarchical 

model of See and Doi
36

 developed for chain-like clusters is extended to coalescence of drop-like 

aggregates, while the transition between two aggregation stages is managed by comparison of 

the aggregation rates at each stage. 

The present paper is organized as follows. Theoretical model implying two observed 

aggregation stages is developed in Sec. II. The aggregate growth and coalescence stages are 

described in Secs. II-A and II-B, respectively, while the transition between stages is considered 

in Sec. II-C. Experimental details of optical visualization and image processing are provided in 

Sec. III. Experimental data on temporal evolution of the aggregate size are compared with 

theoretical results in Sec. IV, while the conclusions and perspectives are outlined in Sec. V. 

II. Theory 

A. Aggregate growth 

Let us consider initially homogeneous suspension of Brownian super-paramagnetic hard 

sphere particles, all having the same diameter d, and dispersed at a volume fraction 0 in a 

Newtonian liquid of a dynamic viscosity 0. In the absence of any external magnetic field, the 
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particles magnetic moment is zero, they do not exhibit dipolar interactions and do not form any 

clusters. 

When a uniform external magnetic field, of intensity H0, is applied, particles acquire 

magnetic moments and attract to each other, while the Brownian motion tends to re-disperse 

them. Depending on the values of 0 and H0, the suspension undergoes a phase separation 

manifested by appearance of elongated aggregates. At infinite times the systems tends to a 

thermodynamic equilibrium at which the particle volume fraction in the dilute (outside the 

aggregates) and concentrated (inside the aggregates) phases tend to steady-state values '  and 

''  depending on H0, while 0'( )H  and 0''( )H  dependences correspond to coexistence curves 

of a 0- phase diagram
38

. Such diagrams have been modeled for our particular nanocluster 

suspensions
55,57

, and strong inequality '' '   has been found. In the present paper, '  is 

directly measured as function of H0 [see figure 6 in Sec. IV-A], while the value '' 0.6 close to 

the random close packing limit is taken for the aggregates. In this section, we intend to find the 

evolution of the aggregate size and shape with time and as a function of two governing 

dimensionless parameters 
0 0 '     called initial supersaturation

62
 and  - the magnetic field 

parameter depending on H0 [Eqs. (1b), (10)].

The aggregation starts by a short nucleation stage not considered here, which is most 

likely heterogeneous and during which primary aggregates composed of large number of 

particles are expected to appear around the biggest particles playing a role of nucleation centers. 

These primary aggregates are supposed to be of the same size and to have a shape modeled by a 

prolate ellipsoid of revolution extended along the applied magnetic field as commonly admitted 

in theoretical models
30,50,51

 and observed in experiments with ferrofluids
48,54,63-65

. Initial volume 

V0 and initial volume fraction 0 of primary aggregates (ratio of the total volume of all the 

aggregates to the suspension volume) are considered as adjustable parameters of the model.  

During time, individual magnetic particles of the dilute phase surrounding the aggregates 

are attracted to the aggregates and induce the aggregate growth. The aggregates are supposed to 

conserve their ellipsoidal shape but their concentration  in the suspension and size, 

characterized by a major semi-axis a, a minor semi-axis b (as depicted in Fig. 1) and a volume 
24 /3V ab , increase progressively with time. Nevertheless, the aggregate concentration is 

supposed to remain low enough <<1 (approximation valid for very dilute suspensions with 

0 / '' 1  ), and possible coalescence of aggregates at this stage is neglected. The aggregate 

shape is quantified by their aspect ratio ra=a/b, which is assumed to be very high, ra>>1, in 

agreement with numerous observations
48,54,63-65

. During all this aggregation stage, the aggregates 

are supposed to be of equal size, their number concentration is assumed to be constant with time

0 0/ / n V V , while possible appearance of new nuclei is neglected. These rough 

approximations are to some extent supported by the more precise theory of aggregation of small 

nanoparticles
50

 (d<20 nm). 
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Fig.1. Sketch of the ellipsoidal aggregate. Cylindrical and ellipsoidal coordinates are introduced. Key values of the 

particle concentration inside the aggregate (”), on the outer side of the aggregate surface (’) and far from the 

aggregate () are also indicated. The external uniform magnetic field H0 is oriented along the z-axis. 

The internal aggregate volume fraction i (ratio of volumes of all particles constituting 

the aggregate to the aggregate volume) is supposed to be close to the equilibrium concentration 

of the concentrated phase: ''i  0.6, while the particle concentration in any point of the dilute 

phase around the aggregate is 
i  . Finally, possible sedimentation of individual particles and 

aggregates is neglected. This assumption is justified in Sec. III.

The starting point of the model is the particle conservation equation implying that the 

growth rate, dN/dt of the number of particles, N, in the aggregate is equal to the particle flux J 

towards the aggregate: 

   
( ) ''i sn n dVdN dV

J
dt dt v dt


   ,    (2) 

where / ''/i in v v    is the number concentration of particles inside the aggregates; /s sn v  

and 
s are respectively the number concentration and the volume concentration of individual 

particles around the aggregate in the vicinity of its surface; v is the volume of primary particles. 

The particle flux density j outside the aggregates at any point of the dilute phase is related 

to the gradient of the local chemical potential  and local volume fraction  of particles. The 

expressions for  and j take the following form in the dilute-limit approximation
50,66

: 

 ln ln u

B Bk T U k T e     ,    (3a) 

    u uD
e e

v v


       j ,    (3b) 
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where  and 
0/(3 )B BD k T k T d   are the particle mobility and diffusion coefficient, 

respectively; U and /( )Bu U k T  are respectively the dimensional and dimensionless energies of 

magnetic interaction of a particle with the local field H at a given position of the particle outside 

the aggregate. The expression for U takes the following form under the approximation of linear 

magnetization of particles, valid at low magnetic field intensities H04 kA/m, considered in our 

experiments
67

: 

    2

0

3

2
p pU m dH H v     ,    (4) 

where /(3 )p p p     is the magnetic contrast factor of an individual nanoparticle of a 

magnetic susceptibility p. The spatial distribution of the magnetic field H around the ellipsoidal 

aggregate and the dimensionless energy u are calculated in Appendix A. 

Let us introduce axisymmetric ellipsoidal coordinate system (, , ), with an origin 

situated at the aggregate center and whose coordinate surfaces =const and =const represent 

confocal ellipsoids of revolution and hyperboloids of revolution, respectively [Fig. 1]. These 

coordinates are related to the coordinates (, , z) of the cylindrical coordinate system by the 

following expressions
68

: 

z c ; 2 2 2 2( 1)(1 )c     ; 1s   ; 1 1   ,  (5) 

where 
2 2 2c a b   and /s a c  is the value of  on the aggregate surface. The polar coordinate 

 is common for both coordinate systems. The metric coefficients of the ellipsoidal system are 

  
2 2

2

2 1
g c

 







; 

2 2
2

21
g c

 







; 2 2 2( 1)(1 )g c     . (6) 

The particle diffusion towards the aggregates is considered in quasi-stationary 

approximation div 0j , for which it can be shown that (a) the particle flux J through the 

surfaces =const is independent of ; (b) the chemical potential of particles outside the 

aggregates depends only on the coordinate , and (c) the product ue  intervening into Eq. (3b) is 

independent of . Bearing this in mind, we arrive at the following expressions for the normal 

component of the particle flux density and the flux through a coordinate surface =const: 

    
1u uD

j e e
v g








 
 


,    (7a) 

 
1 1

2

0 1 1

2 ( 1) u uD
J j dS j g g d d c e e d

v



         






 


     

    ,  (7b) 

where we make use of Eq. (6) for the metric factors and the minus sign in Eq. (7b) comes from 

the fact that the particle flux is the oriented towards the aggregate. Isolating the term   /ue  

, and integrating over  from s to infinity, we get the following expression for the particle flux 

independent of the coordinate : 
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1
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1

2
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s

S
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s

u
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

 

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











 
   

.    (8)

Here u0 is the dimensionless energy of the particle in the external filed H0, 
is the particle 

volume fraction at the infinite distance from the aggregate, us and s are respectively the 

dimensionless energy and concentration of particles at any point (s, ) situated on the outer side 

of the aggregate surface. Since the product su

se  is independent of , it can be replaced by 0

0

u

s e

, where 
0s  is the particle concentration at the point of the aggregate surface where the magnetic 

field intensity is equal to H0. Furthermore, the local thermodynamic equilibrium at the aggregate 

surface imposes that the concentration outside and inside the aggregate are approximately equal 

to the binodal concentrations: 
0 's  and ''i   [Fig. 1]. This allows expressing the particle 

flux through the supersaturation '     of the suspension: 

     2
D

J c
v I




 ,      (9) 

where the integral 0

1
1

( )2

1
( 1)

S

u u
I e d d


  




 



  
     is estimated in Appendix B [cf. Eq. (B-6)] 

as a function of the magnetic field parameter [Eq. (1b)], which, for the case of the medium-sized 

magnetic nanoparticles with induced dipole moment and linear magnetization appears to be 

proportional to the square of the magnetic field intensity H0 and takes the following form: 

2

0 0

0

3

2

p

B

H v
u

k T

 
    .    (10) 

In the aforementioned case, the parameter  is closely related to the dipolar coupling parameter  

[Eq. (1a)] through: / 4p   . In the considered limit of high aspect ratio aggregates, 

ra=a/b>>1, the magnitude c intervening into Eq. (9) could be expressed through the aggregate 

volume 
2 / 3V ab  : 

1/3

2 2 1/ 2 23
( ) ac a b a Vr



 
     

 
.    (11) 

On the other hand, the local thermodynamic equilibrium of an aggregate requires the 

minimization of its free energy at any time and leads to the following key relationship
50

 between 

the aggregate volume V and its aspect ratio ra valid at ra>>1: 

   

7

3ln

a

a

r
V B

r
 ; 

3
4

2

048
B

M





 
  

 
,    (12) 

where M is the aggregate magnetization and  – the aggregate surface tension. The volume-scale 

B has been shown to be of the order of particle volume
69

: B
3 / 64v . Equation (12) allows 

expressing lnra and ra through V using the strong inequality ln(ln ) lna ar r  valid at ra>>1: 
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r

B
 ,      (13a) 

1/7 1/7 3/7

3/7 1
ln ln

7
a a

V V V
r r

B B B

     
      
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.   (13b) 

Combining together Eqs. (2), (9), (11), (13) and (B-6), equation (2) of the aggregate 

growth takes the following form: 

 
3/7

1/3

5/7

/4
''

ln ( / )

V BdV
DB

dt K V B


   ,    (14) 

where  
1/35/77 / 3 2.5 


    and K is a numerical factor depending on  and given by Eq. (B-

6b) in Appendix B.

To integrate Eq. (14), we need to relate the supersaturation '     to the aggregate 

volume V. First, the concentration 
 can be estimated from the condition of conservation of the 

total volume of particles in the suspension: 

    
0 (1 )i     ,     (15) 

with ''i  . Second, under the aforementioned assumption of a constant number of aggregates 

during the aggregate growth stage, (
0 0/ /n V const V   ), the aggregate concentration  at 

a given time t is related to the aggregate initial volume V0 and concentration 0 by 

     0

0

V

V
  .      (16) 

Combining Eqs. (15) and (16), and taking into account the smallness of the aggregate 

concentration, <<1, in initially dilute suspension with 0<<1, we obtain: 

    0
0 0

0

''
' ' ''

1

V

V

 
   

 
        


.  (17) 

Recall that 
0 0 '     is the initial supersaturation. The time integration of Eq. (14) with the 

initial condition V(0)=V0 leads to the following expression for the elapsed time t as function of 

the dimensionless volumes ˆ /V V B  and 0 0
ˆ /V V B : 

0

1ˆ2/3 3/7

0 05/7
ˆ 0

ˆ ˆ'' ˆ''
ˆ ˆ4 (ln )

V

V

K B V V
t dV

D V V








   
        

     
 .   (18) 

One can fit Eq. (18) by the following formula, exact at both short and long time limits: 

   
2/3 5/7

0

3/7
0

ˆ ˆ(ln )
ln

ˆ4

I

I

VK B V
t f

D V

   
   

     
,    (19-a) 
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0.45 0.3

1 0.8 1
I I I

f
       

       
       

,   (19-b) 

where
0 0''I       is the suspension supersaturation at the beginning of the aggregate growth 

stage corresponding to primary aggregates with a volume V0. Both theoretical dependencies (18) 

and (19) of the dimensionless volume ˆ /V V B  on the dimensionless time 
2/3ˆ /t Dt B  are 

plotted in Fig. 2 for the following values of the parameters appropriate for our experimental 

conditions: 4

0 10  , 6

0 10  , '' 0.6  , 7

0
ˆ 10V  , 1K  .  

 

Fig. 2. Theoretical dependence of the dimensionless aggregate volume on the dimensionless time for the aggregate 

growth stage. The following set of parameters were used in calculations: 4
0 10  , 6

0 10  , '' 0.6  , 

7
0
ˆ 10V  , 1K  . 

The aggregate volume exhibits an initial sharp increase with time and becomes almost 

constant at longer times. Such saturation of the aggregate volume corresponds to the vanishing of 

the suspension supersaturation  [Eq. (17)] with time when the dilute phase concentration 
 

approaches the binodal concentration '  and the aggregate concentration tends to its maximum 

value dictated by particle conservation [Eq. (15)]: 
0 / '' 1m     . However, such a state with 

a final number of aggregates, 
0 0/n V , is thermodynamically unfavorable, since aggregates 

start to coalesce in order to decrease the suspension free energy – the mechanism considered in 

Sec. II-B. Another striking point is that the characteristic time of the aggregate growth is about 

nine orders of magnitude higher than the diffusion timescale t
2/3 /B D 

2 /d D  at the 

considered set of parameters. This is explained by the fact that the aggregates contain a very 

large number of particles (10
7
-10

9
 in the current example), and the real time scale is based on the 

aggregate volume, rather than on the particle volume, as inferred from Eq. (19): t
2/3 4/7

0
ˆ( / )( / )mB D V  .  

Finally, the considered kinetics includes both diffusive and magnetophoretic particle 

fluxes related respectively to the 1
st
 and the 2

nd
 term of Eq. (3a) for the chemical potential. The 

diffusive flux arises thanks to the fact that the particle concentration in the dilute phase in the 

vicinity of the aggregate surface is close to the equilibrium value '  and is lower than the 

concentration   far from the aggregate. The magnetophoretic flux is responsible for particle 
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migration towards the aggregate due to magnetic attraction. The contribution of magnetophoretic 

flux appears in final equations (18) and (19) through the numerical multiplier 1K  , which is 

logarithmically decreasing function of the magnetic field parameter  [cf. Eq. (B-6b) in 

Appendix B]. The magnetophoretic flux (or the value of K) does not change the shape of the 

time dependency of the aggregate volume [Fig. 2] but decreases the time of the aggregate 

growth, with respect to the time governed exclusively by diffusive flux. 

B. Aggregate coalescence 

As already pointed out, the state with a finite number of aggregates is thermodynamically 

unfavorable, the system tends to decrease the surface area between concentrated and dilute 

phases, which promotes coalescence of aggregates, even if their concentration is low. In the 

present section, we consider the coalescence stage of the phase separation neglecting possible 

aggregate growth by absorption of individual particles from the dilute phase. This assumption is 

valid if the timescale of the aggregate growth stage is much shorter than that of the coalescence 

stage, such that the dilute phase concentration 
rapidly approaches the binodal concentration 

'  and the aggregates no more able to absorb particles from the surrounding fluid. The 

coalescence is supposed to begin when the aggregates achieve some initial volume V, same for 

all of them, and initial volume fraction , which can be different from those used for the initial 

conditions of the aggregate growth stage [Sec. II-A]. Again, during all this stage, the aggregates 

are assumed to preserve their ellipsoidal shape, high aspect ratio ra>>1, low concentration <<1 

and to be of the same size. We seek for the evolution of the aggregate volume with time thanks 

to their coalescence induced by magnetic attraction between them. 

To this purpose, we adopt the basic idea of the hierarchical model of See and Doi
36

, who 

considered that all pairs of primary aggregates coalesce at the same time producing secondary 

aggregates of a volume 2V, then, all the pairs of secondary aggregates coalesce at the same time 

into the aggregates of a volume 4V, and so on, until full coalescence of the bulk concentrated 

phase. At the beginning of the coalescence stage (t=0), the initial number fraction of aggregates 

is /n V   . Let 0 be the time for two neighboring aggregates to coalesce into an aggregate of 

a volume 
1 2V V . The number concentration of the aggregates at t=0 is divided by two, 

1 / 2n n , while the volume fraction does not change, 
1    under considered assumption 

that the aggregate do not absorb individual particles from the surrounding fluid. After the first 

coalescence, the secondary aggregates will coalesce into aggregates of a volume 2

2 12 2V V V   

at number fraction 2

2 / 2n n  during a time interval 1. The i-th coalescence step will 

correspond to the aggregate volume 2k

kV V , the number fraction / 2k

kn n  and the volume 

fraction 
k    , while the total elapsed time from the beginning of the process is 

1

0

k

k i

i

t 




 . We have now to relate the time interval i of each i-th coalescence step to the 

aggregate volume Vi.

To this purpose, let us consider two identical drop-like aggregates aligned with the 

applied magnetic field and having a major semi-axis a, a minor semi-axis b, an aspect ratio 

ra=a/b>>1 and a volume 
24 /3V ab . Mutual position of their centers is described by a 
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distance r and an angle  in a spherical coordinate system with an origin in the center of the first 

aggregate [Fig. 3a]. The average position (r, ) of a pair of aggregates should meet the 

requirement of the volume conservation of the concentrated phase, which can be satisfied by a 

cell model often used in mechanics and optics of composite materials
70,71

. Each aggregate is 

supposed to be situated inside an ellipsoidal cell having an aspect ratio ra equal to that of the 

aggregate and a volume equal to /V  . The major and minor semi-axes of the cell are equal to 
1/3/a  and 

1/3/b  , respectively. From geometrical considerations, the center of the second 

aggregate can be situated at any point on the surface of a control ellipsoid [dotted line on Fig. 3a] 

with semi-axes 
1/32 /a    and 1/32 /b   . The time interval of a given coalescence step can 

be evaluated as inverse of the aggregate flux through the surface of this ellipsoid.  

 

Fig. 3. Sketches of the cell model (a) and of the “four charges” model (b). In both cases, the external uniform 

magnetic field H0 is oriented along the z-axis 

During the coalescence stage, the aggregates have a size of several microns and their 

diffusive flux is therefore negligible. The magnetophoretic flux of the aggregates through the 

surface of the control ellipsoid is expressed through the force F of magnetic interactions between 

two aggregates as follows: 

 II
0 0 0

2 ( ) 2 2 z z
J J J

J n dS n F n dS n F n dS  
  

        ζ F n ,  (20) 

where /n V  is the aggregate number fraction supposed to be homogeneous on the aggregate 

surface; n  is the outward unit vector normal to the control ellipsoid surface; II,   are the 

transverse and longitudinal diagonal components of the aggregate mobility tensor ζ . The two 

terms in the right-hand side of Eq. (20) correspond to the radial and axial components of the flux 

with respect to the cylindrical coordinate system (, , z) introduced in Fig. 3a. The factor 2 

before the integrals comes from the fact that both aggregates are moving towards each other at 

the same speeds, while the minus sign stands for the positive inward flux. The integration 

domain J>0 corresponds to the fact that only inward flux is considered to contribute to the 

coalescence of a given pair of aggregates, while the outward flux would induce a coalescence of 

another pair. The products n dS
 and 

zn dS  are the projections of the surface element dS on the 

z- and r- coordinate surfaces, respectively. They have the following expression in cylindrical 

coordinates: 2 ( )n dS z dz  and 2zn dS d  , where 2 2 1/ 2( ) ( ) / az z r    on the control 

ellipsoid surface. The expression (20) for the flux reads: 
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0

0

II

0

2 4 ( ) 4 z

z

J n F z dz n F d



      

 
   

 
 

  ,   (21) 

where (0, z0) are the coordinates of the point on the control ellipsoid surface where the flux 

density is zero.  

The magnetic force F will be estimated in a “four charges” approximation initially 

developed for chains of magnetic particles
29

. By analogy with electrostatics, the induced dipole 

moment of each aggregate is supposed to be a result of two opposite point charges q and –q 

concentrated at the aggregate tips, as shown schematically in Fig. 3b. The charge q is related to 

the aggregate dipole moment 2am aq , and the latter is defined though the aggregate 

magnetization M as 
0am MV , such that 

0 /(2 )q MV a . Absolute values of the four forces 

acting on the poles of the right aggregate in Fig. 3b are given by the Coulomb’s law, neglecting 

magnetic susceptibility of the medium surrounding the aggregates: 

2

2

04

q
F F

r

   ;  
2

2

0 14

q
F

r

  ; 
2

2

0 24

q
F

r

  ,  (22) 

where 2 2 2r z  , 2 2 2

1 1r z   and 2 2 2

2 2r z   are the squares of the distances between 

different pairs of charges belonging to two aggregates; r corresponds to the distance between the 

centers of two aggregates; 
1 2z z a   and 

2 2z z a  . The radial and axial components of the 

total force acting on the right aggregate of Fig. 3 read: 

2

1 2 3 3 3

0 1 2

2 1 1
( )sin sin sin

4

q
F F F F F

r r r
    



     
       

 
;  (23-a) 

2

1 2
1 2 3 3 3

0 1 2

2
( )cos cos cos

4
z

z zq z
F F F F F

r r r
  



     
       

 
,  (23-b) 

Where , 1 and 2 are the angles between the z-axis and the lines connecting different pairs of 

charges belonging to two aggregates;  corresponds to the angle that the line connecting the 

aggregate centers makes with the z-axis.  

Evaluation of the flux [Eq. (21)] with appropriate expressions for the forces F
, 

zF  and 

for the charge q shows that the second term (axial flux) is always negligible under considered 

approximations <<1, ra>>1, while the first term (radial flux) reads:  

     
0

2 2
0

2

3/ 2 3/ 2 3/ 2
2 2 2 2 2 2 2 2 2 2 2 2 2

0

2

2 ( 1) ( 2 ) ( 2 ) ( )

a

z

a a a

n M V
J r

a

r z z r z a z r z a z dz

 

   



  

  

 
            

 
. (24) 

Estimation of this integral is presented in detail in Appendix C, and the final result for the 

aggregate flux reads: 



13 
 

1
2

0

2 2/3 2

0

ln 25 5
1

6 24

a

a a

M r
J

r r







 
    

.    (25) 

The aggregate aspect ratio ra and its logarithm are related to the aggregate volume by Eqs. (13), 

therefore the time interval of the i-th coalescence step is related to the volume Vi, as follows: 

    
1/7 2/7

1 *

1/7

7 ( / )7

ln( / ) ln ( / )

i
i i

i i

V B
J

V B V B


   
   

 
   (26) 

where 2/325 5 /(24 )    and * 2

0 06 /( )M     is a characteristic timescale of the 

coalescence stage with the aggregate magnetization, M, independent of ra and Vi thanks to 

negligible demagnetizing effects in the high aspect ratio limit, ra>>1. The total elapsed time 

corresponding to k successive coalescence steps is obtained by summing up the durations i and 

using 2i

iV V :  

   
1/7 2/71 1

*

1/7
0 0

ˆ7 (2 )7

ˆ ˆln(2 ) ln (2 )

ik k

k i i i
i i

V
t

V V



 


 

 

 

 
    

 
  ,    (27) 

where ˆ /V V B   and B
3 / 64v  as it was defined below Eq. (12), v is the volume of individual 

nanoparticle. The sum in Eq. (27) admits the following approximate expression with a maximal 

deviation of 3.7% from the exact numerical result: 

  

1/7 2/7 2 /7
*

2/71/7 1

ˆ ˆln(2 ) 77 2 1
ln

ˆ ˆln 2 2 1ln ln (2 )

k k

k k

V V
t

V V

 

 






   
       

.   (28) 

Finally, using 2 /k

kV V  in the last equation, and moving form a discrete variation of the 

volume to a continuous variation, valid at k>>1 (omitting subscripts k at Vk and tk), we get the 

following expression for the elapsed time t as function of the dimensionless volume ˆ /V V B : 

  

2/7 2/71/7
*

2/7 1/7

ˆ ˆˆ7 ln 7
ln

ˆ ˆln 2 2 1ln ln

V VV
t

V V







   

        
   (29) 

Theoretical dependency of the dimensionless aggregate volume V̂ on the dimensionless 

elapsed time 
*ˆ /t t   is plotted in double logarithmic scale in Fig. 4 for the values =10

4
 and 

7ˆ 10V   typical for our experiments. 

The solid curve in that figure corresponds to the general expression Eq. (29) derived for 

any value of the parameter 3

ar   but in the limits <<1 and ra>>1. The shape of this curve is 

explained by the behavior of two terms of Eq. (29). The first term in the brackets of Eq. (29) is 

dominant in the beginning of the coalescence process when the aggregates are still small enough 

and the strong inequality 3 1ar    holds. This term corresponds to the point dipole 

approximation and gives an initial very slow linear increase of the aggregate volume 
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*(1 ln 2 /(7 ) ( / ))V V t     at * 5/ 7 / ln 2 10t    , followed by an extremely fast growth 

with time
*exp(ln2/(7 ) / )tV V  



 at 
* 5/ 7 / ln 2 10t    . However, at longer times, the aggregates 

become very long and the second term of Eq. (29) becomes dominant when the distance between 

aggregates is much shorter than their length, implying the strong inequality 3 1ar   .This 

second term gives a power-law growth of the aggregate volume with time, V * 7/ 2( / )V t   at 

* 5/ 7 / ln 2 10t    , explaining a final linear part of the ˆ ˆ( )V t  dependency with a slope 7/2 in 

double logarithmic scale. Both asymptotic behaviors at 3 1ar    and 3 1ar   corresponding to 

two terms of Eq. (29) are shown in Fig. 4 by dotted and dashed lines, respectively.  



Fig. 4. Theoretical dependences of the dimensionless aggregate volume on the dimensionless time for the aggregate 

coalescence stage. The following parameters were used in calculations: 7ˆ 10V  , 410  . 

C. Transition between growth and coalescence stages 

The transition from the aggregate growth stage (at shorter times) to the coalescence stage 

(at longer times) could be found by a simple approach based on comparison of aggregation rates, 

dV/dt, of both stages. The transition is supposed to take place at some volume V corresponding 

to the equality of the aggregation rates of two stages; the aggregate growth takes place at V<V  

and coalescence – at V>V. The aggregation rate for the growth stage is directly given by Eq. 

(14), while the rate for the coalescence stage is obtained by derivation of Eq. (29) with respect to 

V̂ :  
1

ˆ ˆ/ /


dV dt dt dV . The equality of aggregation rates gives the following transcendent 

equation for the dimensionless transition volume V̂ : 

1
3/7 6/7

0 02/3 * 2/75/7 5/7 1/7

0

ˆ ˆ4 1 7 1 2 7 1
''

ˆ ˆ ˆ ˆ ˆ ˆ'' ln 2 2 1(ln ) ln ln

V VD

K B V V V V V V

 

    

 


 


    

                  
, (30) 

recalling that the correction factor K is given as function of the magnetic field parameter  by Eq. 

(B-6b) in Appendix B and * 2 2

0 0 0 0 0
ˆ6 /( ) 6 /( )M V M         .  

Once the value of V̂  is obtained from numerical solution of Eq. (30), the elapsed time 

covering both phase separation stages is obtained from Eqs. (19) and (29) taking into account 
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that the initial time of the coalescence stage corresponds to the final time of the growth stage at 

ˆ ˆV V : 

2/3 5/ 7
0

3/ 7
0

5/ 7 2/ 7 2/ 72/3 1/ 7
*0

2/ 73/ 7 1/ 7
0

ˆ ˆ(ln ) ˆ ˆln , ;
ˆ4

ˆ ˆ ˆ ˆˆ(ln ) 7 ln 7 ˆ ˆln ln , ,
ˆ ˆ ˆ4 ln 2 2 1ln ln

I

I

I

I

VK B V
f V V

D V
t

V V V VK B V
f V V

D V V V



  


 








     
           

 
      
                      

 (31) 

where 
0 0''I      , 

0 0 0
ˆ ˆ'' /V V      , 

0 0 0
ˆ ˆ'' /V V      [Eq. (17)], and the 

correction factor  / If    is given by Eq. (19-b). 

The behavior of Eq. (31) is inspected in details in Sec. IV, in which it is tested against 

experimental results, and the validity and drawbacks of the current approach (based on 

comparison of aggregation rates) are discussed. 

III. Experiments 

In experiments, the phase separation process was visualized using an optical microscopy. 

The main goal was to determine the aggregate size as function of the elapsed time, the magnetic 

field intensity and the initial particle volume fraction. 

A suspension (ferrofluid) of iron-oxide nanoparticles dispersed in distilled water and 

covered by a double layer of oleate salts has been synthesized using a conventional method of 

co-precipitation of iron salts in alkali medium
21,72

. This synthesis gave permanent nanoclusters of 

nearly spherical shape and composed of numerous nanoparticles likely because of a rapid and 

uncontrolled kinetics of adsorption the second oleate layer
55

. The nanoclusters have a relatively 

broad size distribution ranging from 20 to 220 nm with the average size equal to 54 nm, as 

inferred from dynamic light scattering [Fig. S1 in Supplementary Material]. This size 

corresponds to the gravitational Péclet number 53 10GPe   , defined as the ratio of the 

diffusion time to the sedimentation time, and confirming a good stability of the suspension 

against gravitational sedimentation. The saturation magnetization of the solid phase of 

nanoclusters was measured by vibrating sample magnetometry and found to be MS=481 kA/m, 

the value closed to that of the bulk magnetite. The details of the nanoclusters’ synthesis and 

characterization are given in Supplementary Material. To avoid any confusion between 

nanoclusters and aggregates, the former are hereinafter called magnetic particles or shortly 

particles. 

The minimum particle volume fraction ' at which the suspension undergoes phase 

separation at a given magnetic field was measured by direct visualization of the suspension 

structure. To this purpose, the synthesized ferrofluid was diluted by distilled water at different 

particle volume fractions  ranging from 810
-6

 to 310
-3

 (810
-4

 – 0.3%vol.). Each suspension 

was injected to a transparent cell of a size 20100.2 mm sketched in Fig. 5 and formed by a 

Plexiglas substrate and a microscope glass slide separated from each other by a polyvinyl seal. 

The cell was placed into a transmitted light inverted microscope Nikon Diaphot-TMD (Japan) 

equipped with a complementary metal oxide semiconductor (CMOS) camera PixeLINK PL-
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B742U (Canada). An external homogeneous magnetic field was generated by a pair of 

Helmholtz coils placed around the microscope and was applied parallel to the thin layer of the 

suspension inside the cell. The observation of the suspension structure was carried out using a 

50-fold objective (Olympus LMPlanFl 50×0.50) with a large working distance, allowing 

detection of aggregates of a minimum size about 1 µm. 

In the absence of external magnetic field, the suspensions were homogeneous on the 

length scale 1µm of the microscope optical resolution. When a strong enough magnetic field was 

applied, long and thin particle aggregates of a size above 1 µm and aligned with the direction of 

the applied magnetic field rapidly appeared and grew with time, as shown in Fig. 7 of Sec. IV-B. 

If the applied magnetic field was not strong enough, the aggregates were not observed for at least 

half an hour. The threshold field H at a given concentration  was determined as a medium value 

of two closest magnetic fields H1 and H2 at which the aggregates were not and were observed 

during 30 min, while the uncertainty was estimated as 
2 1( ) / 2H H . The obtained experimental 

dependency '( )H  will be analyzed in Fig. 6 of Sec. IV-A. 

 

Fig. 5. Sketch of the experimental setup. The ferrofluid sample is squeezed between a lower Plexiglas and an upper 

glass plates separated from each other by a polyvinyl seal (not shown here). 

A similar experimental setup [Fig. 5] was used for measurements of the aggregate size 

during phase separation. Upon application of the external magnetic field of a desired intensity 

H0, the aggregation process was recorded for 20 min and snapshots were taken each one minute. 

The measurements were performed for the suspensions of initial particle volume fraction 

0=110
-3

, 210
-3

 and 310
-3

, and for the magnetic field intensities H0=0.78, 2.75 and 4.0 kA/m. 

The observed microstructure will be analyzed in Sec. IV-B. To draw quantitative conclusions, 

the snapshots were processed by the ImageJ software. The aggregate size and shape were 

characterized by the following magnitudes: (a) a tip-to-tip length 2a called the aggregate length 

[Fig. 1]; (b) a width 2b at the half-length [Fig. 1]; (c) the aggregate volume, supposing its 

ellipsoidal shape, 
24 /3V ab ; and (d) the aggregate aspect ratio (2 ) /(2 )ar a b . Because of a 

limited number of aggregates per observation window, it was rather challenging to obtain a 

smooth distribution function of their size, and we restricted our analysis to arithmetic averages 

2a , 2b , V and ar  of the measured quantities defined in different focal planes of the 
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sample. The evolution of these quantities with time will be analyzed in Sec. IV-C for different 

values of H0 and 0. Uncertainties on these quantities were estimated as a sum of the standard 

deviation between three independent measurements and the error related to focusing and 

sharpness of the aggregate border. 

IV. Results and discussion 

A. Binodal curve 

The experimental dependency '( )H  obtained at relatively long elapsed times (when the 

particle aggregation seemed to stop) is shown in double logarithmic scale in Fig. 6. The region 

below this curve corresponds to the dilute gas-like suspension phase of the suspension. The 

region above and on the right from this curve corresponds to a mixture between the dilute and 

the concentrated liquid-like or solid-like phases. The technique described in Sec. III does not 

allow determination with confidence of the second coexistence curve ''( )H . The shape of the 

'( )H  curve has some similarities with the shape of the corresponding coexistence curve of the 

phase diagram calculated by Hynninen and Dijkstra
42

 for dipolar hard spheres. A step in the 

middle of the binodal curve could stand for transition between entropically driven
73

 to 

magnetically driven phase transition, as inferred from our previous study
57

. In our case, this 

curve was fitted by the following empirical formula, valid in the concentration range 
6 38 10 ' 3 10      and in the range of the magnetic field intensities 150 12500 A/mH  : 
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  (32) 

where the magnetic field intensity H is in A/m and the fitting parameters take the following 

values: 
4

1 5.05 10a   , 
3 -1

2 2.90 10  A ma   , 1 133 A/mh  , 2 3330 A/mh  , 
6

1 8.259 10  

, 
4

2 7.072 10   . The fitting curve [Eq. (32)] is shown in Fig. 6 by a continuous line. 

 

Fig. 6. Experimental -H phase diagram of the nanoparticle suspension in the presence of a uniform magnetic field. 

Only one of the coexistence curves, '( )H , is available in experiments. Another coexistence curve ''( )H  is 

unavailable and not shown here. The error bars correspond to the sum of the standard deviation on three independent 

measurements and of uncertainties of measurements of H and . 
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It is important to notice that the measured values of the threshold magnetic field 

correspond to unexpectedly low values of the magnetic field parameter  [Eq. (10)] and of the 

dipolar coupling parameter / 4p    (both ranged between 10
-2

 and 10). The phase separation 

in magnetic colloids is usually expected at >1 and >1 and the reason for the phase separation 

at <1 and <1 very likely comes from relatively high polydispersity of magnetic particles, as 

discussed in details in Sec. IV-E.  

B. Microstructure  

Snapshots of the suspension microstructure at different elapsed times are shown in Fig. 7 

for the intensity of the applied magnetic field H0=4.0 kA/m. The three columns correspond to the 

three studied initial particle volume fractions 0=110
-3

, 210
-3

 and 310
-3

. The first raw 

corresponds to the initial moment of time t=0 at which the magnetic field was applied to initially 

homogeneous suspension in the direction horizontal with respect to the page.  

Upon the field application, elongated drop-like aggregates aligned with the applied 

magnetic field appear and are already distinguishable at the elapsed time t=1min (second row in 

Fig. 7). This means that the initial nucleation stage is very short and unobservable in our optical 

microscopy experiments. The aggregate size increases progressively with time. At relatively 

short times, t<5 min, the growth of individual aggregates is observed, certainly thanks to 

adsorption of magnetic particles from the surrounding fluid. At longer times, t>5 min, 

neighboring aggregates start to coalesce because of their dipolar interactions, when their length 

is comparable to the average distance between them. Coalescence seems to accelerate the 

aggregate growth until t≈15 min. However, at t>15 min, the average aggregate length becomes 

much longer than the distance between them and the coalescence rate seems to decrease, at least 

at the considered field, H0=4 kA/m, likely because of repulsive dipolar interactions between 

aggregates. 

Because of insufficient optical resolution, it was impossible to retrieve exact aggregate 

shape. Qualitatively, the aggregate width progressively decreases when moving from the 

aggregate center to the tips, as in the case of ellipsoidal shape supposed in the model. Conical 

spikes have not been detected on aggregate tips, as opposed to the experiments of Promislow and 

Gast
30

 on drop-like aggregates of magnetorheological fluids and to our previous experiments on 

phase condensation around a magnetized micro-bead
55,57

. In fact, the characteristic period

 
1/3

0 /( )aD g    of patterns arising during convective instability on the interface between 

two miscible magnetic phases
74

 is about one micron for our experimental case (here a is the 

difference between the aggregate and the surrounding medium densities). This length scale is 

comparable to the aggregate width, such that the aggregate tip is likely unable to develop 

numerous spikes. 

As expected, at increasing initial particle volume fraction 0, the aggregate size increases 

at a given elapsed time. The effect of the volume fraction and of the applied magnetic field on 

the aggregation state of the suspension can be better inspected on Fig. 8 where, all the snapshots 

are presented for the same elapsed time, equal to t=20 min but for three different values of 0 

and H0. The suspension structure does not seem to change qualitatively with variations in 0 and 

H0: more or less long aggregates, extended along the applied magnetic field are observed for all 
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studied concentrations and fields. However, the aggregate length and thickness seem to increase 

considerably with increasing magnetic field and initial particle concentration and this effect will 

be inspected in detail in Sec. III-C.  

 

Fig.7. Snapshots of the suspension microstructure at different elapsed times (different rows), for three initial particle 

concentrations 0 (different columns) and for the intensity of the applied magnetic field H0=4.0 kA/m 
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Fig. 8. Snapshots of the suspension microstructure at the fixed elapsed time equal to t=20 min and different intensity 

H0 of the applied magnetic field and different initial particle concentrations 0. 

It is important to notice that the aggregates have a thickness of a few microns and the 

length of several hundreds of microns. Note that the aggregate thickness is governed by the 

interplay between magnetic and surface energy of the aggregates leading to Eq. (12) relating the 

aggregate volume to its shape. Their gravitational Péclet number is of the order of GPe 10
2
 and 

their sedimentation time (required for a horizontal aggregate to fall a distance equal to its width) 

is equal to a few seconds, so the aggregates are expected to sediment and reach the bottom of the 

cell during a few minutes. However, the images at different horizontal planes show that there are 

no aggregates near the bottom and the upper walls of the cell within boundary layers of a 

characteristic thickness of about 10 µm. This could be tentatively explained by magnetic 

levitation of aggregates dispersed in a dilute ferrofluid, when the lines of the magnetic field 

induced by the aggregate are “repelled” from non-magnetic walls and create an effective 

repulsion of the aggregate from the cell walls, by analogy with levitation of magnets in 

ferrofluids
21

. 

C. Aggregate size 

Our model was mostly focused on calculations of the elapsed time as function of the 

aggregate volume V. The three remaining geometrical parameters of the aggregates are easily 

related to the aggregate volume using Eqs. (11), (13). Thus, the aggregate aspect ratio ra is 

directly given by Eq. (13b), while the aggregate length and width are given by the following 

expressions: 
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.   (33-b) 

The most precise measured quantity describing the aggregate size is the average 

aggregate length 2a . Theoretical and experimental dependencies of the average aggregate 

length on elapsed time are presented in Figs. 9 a-c for three different values of the intensity H0 of 

the applied magnetic field and for the three different initial particle volume fractions 0 of the 

suspension. The most of experimental curves show an initial sublinear increase of the aggregate 

length with time, followed by a change in the slope at t≈10-15 min and by a stronger increase. 

Qualitatively, such a change of the slope corresponds to a transition between the aggregate 

growth and the aggregate coalescence regimes, as checked by tracking the snapshots [Fig. 7]. 

Since in experiments the aggregates had unequal lengths, the transition was progressive, i.e. 

occurred within finite lapses of times and aggregate volumes. Experiments also show that at the 

same elapsed times, the aggregate length is an increasing function of the magnetic field intensity 

H0 and of the initial particle volume fraction 0. This means that the aggregation process 

accelerates with increasing H0 and 0. This was expected because an increasing magnetic field 

enhances dipolar particle-particle, particle-aggregate and aggregate-aggregate interactions, while 

an increasing particle concentration reduces the time of approach of two particles and of two 

aggregates. 

The theoretical dependence of the average aggregate length 2a on time is found in 

parametric form  1 22 ( ), ( )a f V t f V   [Eqs. (33-a), (31)] and is presented by solid lines in 

Fig. 9. The aggregate magnetization M intervening into the timescale 
*  of the coalescence stage 

was calculated in a linear approximation, 0M H  with the aggregate magnetic susceptibility 

estimated using the Maxwell-Garnett mean field theory
71

: 

3 ''/(1 '') 3 ''/(1 '') 4.5p p           , where 1p   [cf. definition below Eq. (4)] and 

'' 0.6   - the internal volume fraction of aggregates [cf. Sec. II-A]. Two remaining unknown 

parameters, 0V̂  and 0 were found by fitting the experimental 2a versus t dependences by 

theoretical ones. Both these parameters have been found to strongly vary with the magnetic field 

intensity H0 and the initial particle volume fraction 0. The initial aggregate concentration 0  is 

expected to be proportional to the concentration of the condensation centers in the suspension 

and is assumed to vary linearly with 0: 0 0  . On the other hand, depending on the kinetics 

of the early nucleation stage, the initial dimensionless volume 0V̂  of aggregates could be an 

increasing function of both the magnetic field parameter  and the initial particle volume fraction 

0. We have supposed the empirical correlation 
2

0 0V̂  for 0V̂ , which allows a reasonable 

agreement with experiments. Thus, all the nine experimental curves shown in Fig. 9 have been 
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fitted to the theory using the aforementioned expressions for 0 , 0V̂  and the single set of 

adjustable parameters  and  . The best fit was obtained at 
43.3 10  and 

125.0 10   .  

 

Fig. 9. Experimental and theoretical dependences of the average aggregate length on the elapsed time for different 

initial particle concentrations 0 and different magnetic field intensities H0=0.78 kA/m (a); 2.75 kA/m (b); 4.0 kA/m 

(c). Symbols stand for the experiments, solid lines – for the theory. The inset in (b) shows the same dependency for 

0=0.1% in extended time scale. The experimental results were fitted by the theoretical dependences with the values 

of the adjustable parameters: 43.3 10   and 125.0 10   .

Our model seems to qualitatively reproduce the main experimental behaviors. First, one 

can distinguish a change of the behavior of the 2a  versus t theoretical curves from sublinear to 

stronger than linear dependency. This change corresponds to the transition between two 

aggregation stages. The slope changes in a less abrupt manner than in experiments but rather 

continuously according to the proposed scenario of the transition based on equality of the 

aggregation rates [Sec. II-C]. The change of the slope can be better appreciated in inset of 

Fig.9b, where 2a  versus t dependence is plotted for broader range of the elapsed times at 

H0=2.75 kA/m and 0=0.001. Second, the model captures the increasing dependence of the 

aggregate length on the applied field H0. The magnetic field accelerates both stages of the phase 

separation. During the aggregate growth stage, it decreases the correction factor K responsible 

for magnetophoretic particle flux and increases initial supersaturation 0 0 '     through a 

decrease of the equilibrium dilute phase concentration 0'( )H  according to Eq. (32) and Fig. 6. 
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Since the aggregate growth rate dV/dt is proportional to the ratio 0/ ( '' ) /K K      [Eq. 

(14)], both effects contribute to the increase of the aggregation rate with an increasing magnetic 

field. The effect of 0 is found to dominate over the effect of K within our experimental ranges 

of H0 and 0 because K is a weakly (logarithmically) decreasing function of  and therefore of 

H0 [Eq. (B-6b) in Appendix B]. During the coalescence stage, the magnetic field decreases 

significantly the timescale of the process proportionally to the square of the aggregate 

magnetization M, thus to the square of the applied field: 
* 2 2

0M H    . Third, the model 

predicts an increase of the aggregate length with the initial particle volume fraction 0. During 

the aggregate growth stage, the aggregation rate is proportional to the supersaturation 

0 0''      [Eq. (14)], thus, it increases linearly with 0. During coalescence stage, both 

terms of the elapsed time are proportional to 5/3  and 1  respectively [Eq. (29)], implying an 

increasing growth rate with increasing 0. In addition to it, higher initial aggregate volumes 

2 2 2

0 0 0 0V̂ H    at higher applied fields and higher initial concentrations also lead to an 

increase of the aggregate length with the growth in H0 and 0. 

Quantitative discrepancy between the theory and experiments could come from different 

assumptions of the model. For example, a slower variation of the aggregate size than that 

observed in experiments at t>15 min likely arises because of underestimation of the coalescence 

rate using the cell model [cf. Sec. II-B]. On the other hand, step-like shape of some experimental 

curves could be a result of insufficient number of aggregates at long elapsed times when 

individual coalescence events (resulting in a step-wise increase of the aggregate size) are not 

sufficiently frequent for obtaining a smooth variation of the aggregate size. 

The behavior of other geometrical parameters, 2b , ar  and V , were also inspected 

and plotted as function of time in Figs. 10a and b for the magnetic field H0=2.75 kA/m and the 

initial particle volume fraction 0=0.001. For the sake of comparison, the aggregate length 2a

is also plotted in Fig. 10a. We remark that the aggregate width 2b  exhibits a slower growth 

with time than the aggregate length 2a : in experiments the length increases from 0 to 150 µm, 

while the width – from 0 to 2.6 µm [symbols on Fig. 10a]. This trend is confirmed by our model 

[lines in Fig. 10a] and is explained by minimum energy principle (valid for individual aggregates 

under local equilibrium assumption) leading to the scaling laws 
3/72a V  [Eq. (33-a)], 

2/72b V  [Eq. (33-b)] and showing that the length increases stronger than the width with the 

aggregate volume, and therefore with time. Even though experimental determination of the 

aggregate width is subjected to relatively large errors, our model systematically overestimates it. 

This is likely because of overestimation of the aggregate surface tension , and thus of the 

volume scale 
3 2 3 3

0/( ) / 64B M v    [Eq. (12)]. Such overestimation is expected to promote 

thicker aggregates with a smaller aspect ratio, as compared to those observed in experiments – 

see Fig. 10b for ar . The model reproduces qualitatively the shape of the experimental V

versus t dependency, but since it overestimates the aggregate thickness by a factor of about 1.7, it 
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overestimates the aggregate volume 2V b  by a factor of 3. A better agreement between 

theory and experiments should be obtained in future in frames of a more precise model based on 

determination of the aggregate size distribution. 

 

Fig. 10. Experimental and theoretical dependences of the average aggregate length and width (a), as well as of the 

average aggregate volume and aspect ratio (b) on the elapsed time for the magnetic field intensity H0=2.75 kA/m 

and the initial particle volume fraction 0=0.1%. Symbols stand for the experiments, solid lines – for the theory. The 

experimental results were fitted by the theoretical dependences with the same values of the adjustable parameters, as 

the one used for fitting the data on Fig. 9. 

D. Aggregate concentration 

Another important parameter that can be retrieved from our model is the aggregate 

concentration , which changes with time, at least during the aggregate growth stage when the 

aggregates absorb individual particles from the surrounding fluid. In our model, the aggregate 

concentration is related to the dimensionless aggregate volume by the following equation: 

  
0 0

0 0

ˆ ˆ ˆ ˆ/ ,  

ˆ ˆ ˆ ˆ/ ,  

V V V V

V V const V V



 

 
  

  

     (34) 

where the upper expression corresponds to the aggregate growth stage, the lower expression – to 

the coalescence stage and the volume V̂  at the transition is found by numerical solution of 

Eq.(30).  

Theoretical dependence of the aggregate concentration on the elapsed time is obtained in 

parametric form  1 2
ˆ ˆ( ), ( )f V t f V    [Eqs. (34), (31)] and is plotted in Fig. 11 for the 

magnetic field intensity H0=4 kA/m and for three different initial particle volume fractions 0. In 

the beginning, the aggregate concentration increases stronger than linearly with time during the 

aggregate growth stage proportionally to the aggregate volume. Then, above the transition point, 

it becomes independent of time and the curves show a final horizontal plateau. As expected, at 

the same elapsed time, the aggregate concentration increases with the initial particle volume 

fraction 0 because the initial aggregate concentration 0 has been supposed to be proportional 

to 0 in frames of the heterogeneous nucleation scenario. 
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Fig. 11. Theoretical dependence of the aggregate concentration as function of elapsed time for the magnetic field 

intensity H0=4.0 kA/m and three different initial particle volume fractions 0. For calculations, we have used the 

same values of the adjustable parameters, as the one used for fitting the data on Fig. 9.

It is important to note that the concentration  at the plateau of  versus t dependences 

does not reach the maximal concentration 0 / ''m     expected at the equilibrium between the 

dilute and concentrated phases at the end of the phase separation. For instance, the plateau value 

for H0=4 kA/m and 0=0.003 is 
54.3 10

   , while the maximum value is 
39.7 10m

   , 

so, it is two orders of magnitude larger than  . This means that the particle concentration  in 

the dilute phase does not reach the equilibrium concentration '  but remains relatively close to 

the initial particle volume fraction 0 , implying that the suspension super-saturation  does not 

tend to zero at infinite times, as expected at equilibrium, but decreases insignificantly with 

respect to its initial value 0 .  

Such inconsistency could come from the transition scenario developed in Sec. II-C. 

Apparently, the transition between two stages occurs at relatively low aggregate volumes, 

mV V , well below the plateau of the aggregate growth stage [cf. Fig. 2], when the aggregate 

concentration is still far from the maximum value m . After transition, during the coalescence 

stage, possible aggregate growth due to absorption of individual particles is ignored, implying 

constant aggregate concentration, which is well below the equilibrium value m . In reality, the 

aggregates are expected to grow both due to absorption of particles and coalescence. 

It is worth noticing that in experiments, the aggregate concentration  at long elapsed 

times also seems to be much lower that the equilibrium value m . Direct estimation from the 

micrographs, obtained at different focal plains across the thickness of the observation cell, gives 

the  value of the order of 10
-4

 for t=20 min, H=4 kA/m and 0=0.3%, so, two orders of 

magnitude lower than the equilibrium value 
210m

  . However, the reason of the experimental 

discrepancy between  and m  is rather different from the reasons indicated above for the 

theoretical discrepancy. The experimental discrepancy is expected to come from particle 

polydispersity, as discussed in details in the following Sec. IV-E.  
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E. Possible effects of polydispersity 

Polydispersity is expected to have different effects on the phase separation process. First, 

it leads to the heterogeneous mechanism of the particle nucleation: the biggest particles play the 

role of the condensation centers for formation of nuclei, as opposed to the homogeneous 

nucleation occurring in monodisperse suspensions free of any impurity, in which the nuclei are 

formed by the particles of the same size, as has been described in details in the work of Zubarev 

and Ivanov
50

. The heterogeneous nucleation is expected to lead to another nucleation rate and 

other details of the earliest stage, than those for the homogeneous nucleation. The initial stage of 

heterogeneous nucleation is too short for our system and cannot be detected using the optical 

microscopy.  

Second, the particle polydispersity is expected to result in polydisperse initial nuclei 

enhancing the degree of polydispersity of final bulk drop-like aggregates. Third, only the largest 

particles of the polydisperse magnetic colloid are expected to form aggregates. This can be 

implicitly checked by comparing the fraction of particles 0"/   belonging to the aggregates 

with the fraction of large particles in the suspension. Assuming " 0.6  , we estimate 

0"/ 0.02    (2%vol). This fraction corresponds to the particles of the size d>150 nm 

according to the size distribution curve [Fig. S1 in Supplementary Material]. The population of 

the largest particles has a medium size of about 180 nm and corresponds to the parameters  

ranged between 1 and 23 for the experimental range of the magnetic fields. These values of  are 

more relevant for the field-induced phase separation described in Sec. IV-A rather than the 

values of  calculated using the average particle size, d=54 nm, of the suspension. The rest of the 

particles (98 %) do not contribute to the aggregates, such that the dilute phase concentration   

should not be very different from the initial particle concentration 0. This fact is confirmed by 

the analysis of the transmitted light intensity through the medium between the aggregates. This 

also explains the difference between the measured value of the aggregate concentration  and 

the maximum value m that would expected if the particles of all sizes were able to aggregate 

[cf. Sec. IV-D]. 

The effect of the polydispersity of the magnetic colloid on the phase equilibrium is often 

accounted for in a bi-disperse approximation
75,76

, with a size ratio and a fraction of largest 

particles considered as two adjustable parameters of that model. Our assumption that aggregates 

are mainly constituted by coarse particles is in agreement with the prediction of the bi-disperse 

model. Bi- or polydispersity of particles would certainly affect the predictions of our kinetic 

model not only through appearance of unequal aggregates but also through a modification of the 

time scale 
2/3 3/B D d  and of the initial aggregate concentration 0 and initial supersaturation 

0 both depending on the initial concentration of the fraction of largest particles 0L<0. We 

believe, however, that our monodisperse approximation gives a satisfactory physical picture of 

the kinetics of aggregation of medium-sized nanoparticles without introduction of two 

supplementary adjustable parameters related to the particle polydispersity. The extension to the 

polydisperse case will be performed in a future work. 
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V. Concluding remarks 

The present paper is focused on theoretical modeling and experimental studies of the 

kinetics of aggregation of medium sized superparamagnetic nanoparticles (20<d<100 nm) in the 

presence of an external uniform magnetic field.  

In experiments, the kinetics of aggregation was directly observed in the presence of a 

magnetic field using a transmission light microscope. At initial particle concentrations 

0 0'( )H  , upon application of an external uniform magnetic field, a suspension of magnetic 

nanoparticles undergoes a phase separation manifesting by appearance of long needle-like 

aggregates extended along the direction of the applied field. The aggregate size grows with time, 

and two distinct aggregation stages are distinguished: (a) growth of individual aggregates by 

absorption of nanoparticles from the ambient fluid; (b) coalescence of neighboring aggregates 

occurring at longer elapsed times, while the earliest heterogeneous nucleation stage is too short 

and cannot be observed in optical microscopy experiments. The beginning of coalescence is 

accompanied by a change of the slope of the time dependency of the average aggregate length. 

The aggregation rate appears to increase with increasing magnetic field intensity H0 and initial 

particle concentration 0.

For the better understanding of each aggregation step, separate theoretical models have 

been developed for both steps and a transition scenario has then been proposed. First, a kinetic 

equation including diffusive and magnetophoretic fluxes of the single particles and their 

adsorption by the aggregate has been developed for the aggregate growth step. The kinetic 

equation shows a saturation of the aggregate size with time when the dilute phase particle 

concentration   approaches the equilibrium value ' , meaning that the supersaturation 

'     goes to zero. Second, hierarchical model of See and Doi
36

 was adapted for 

coalescence of ellipsoidal aggregates, while possible aggregate growth due to absorption of 

particles between coalescence steps was neglected. This model predicts stronger than linear 

increase of the aggregate volume and of the aggregate length with time, with long-time behaviors 
7/ 2V t and 

3/ 22a t . Both models confirm experimental findings on an increase of the 

aggregation rate with growing magnetic field intensity and the initial particle volume fraction. 

However, the magnetic field H0 has a much stronger effect on kinetics of the coalescence stage 

(decreasing the timescale 
*  proportionally to H0

2
) than on the kinetics of the aggregate growth 

stage. 

A transition between two aggregation stages was supposed to occur when the aggregation 

rate of the coalescence regime becomes larger than that of the aggregate growth regime. Such 

approach gave a reasonable agreement between the theory and experiments for the time 

dependencies of the aggregate length at different magnetic fields and initial particle 

concentrations. The agreement was less good for the aggregate width and volume. Another 

important point is that the model predicts the transition at the aggregate concentrations   well 

below the equilibrium value 0 / ''m     and during coalescence stage the concentration is 

supposed to be constant m   . The reason for the experimental discrepancy between  
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and m  lies in the fact that only the largest particles of the polydisperse colloid contribute to the 

phase separation. 

In summary, the presented model captures the main features of the aggregation process 

and allows at least semi-quantitative agreement with experimental results. The theory can be 

further improved by considering particle polydispersity, the early nucleation stage and final 

Oswald ripening stage, as well as calculating the size distribution of aggregates using either 

Fokker-Planck or Smoluchowski kinetic equations. New experiments allowing a precise 

description of the early nucleation stage are necessary to complete the physical picture of 

kinetics of phase separation in polydisperse suspensions. 

Supplementary Material 

Materials and Methods. Synthesis and characterization of magnetic nanoparticles are described. 
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Appendix A. Spatial distribution of the magnetic field and the particle energy  

Both ellipsoidal aggregates and the surrounding fluid are considered as continuous media, 

with high and low particle concentrations, respectively, and possessing magnetic susceptibilities 

equal to a and zero, respectively. The magnetostatic potential around the aggregate can be 

found using a similar approach to the one employed for the electrostatic potential of the 

conducting ellipsoid
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. In ellipsoidal coordinates introduced in Sec. II-A [Eqs. (5), (6)], the 

solution for  reads: 

0

( )
1

( )

s

s

H z A
  

  

 
    

 
,     (A-1a) 

( ) acoth 1     ,      (A-1b) 

2

II

( 1)

1

s sA
n

 





 


,      (A-1c) 

2

II ( 1) ( )s sn     ,      (A-1d) 

recalling that 2 2/ /s a c a a b     is the value of  on the aggregate surface. The components 

Hand Hof the magnetic field  H  outside the aggregate as well as its absolute value H 

can be calculated as: 

  
1

H
g







 


,  

1
H

g






 


, 

2 2 2H H H     (A-2) 
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where the metric coefficients g  and g  are given by Eq. (6).  

The difference of the dimensionless energies 0( )u u , intervening into the integral I 

appearing in Eq. (9), is given by the following expression:  

0
0 ( , )

B

U U
u u

k T
  


     ,     (A-3) 

where the magnetic field parameter 0u    is given by Eq. (10) and 
2 2

0( , ) / 1H H    . 

Combining Eqs. (A-1)-(A-2), after some algebra, we arrive at the following expression for the 

factor , appearing in Eq. (A-3) for the energy difference of a particle around the aggregate as 

function of the particle position (,):  

   2 2 2

2 2

1
( , ) ( 1) ( ) (1 ) ( )C D      

 
      

   (A-4a) 

2 2( ) 2 ' 'C A A         (A-4b) 

2 2( ) 2D A A         (A-4c) 

    
2

' acoth
1

d

d

 
 

 
  


     (A-4d)

Appendix B. Estimation of the integral I in Eq. (9) 

We aim at expressing the integrals  

2

1

2 ( 1)S

d
I

I









 ,     (B-1a) 

0
1 1

( ) ( , )

0 0

u u
I e d e d  

          (B-1b) 

as function of the magnetic field parameter , the aggregate aspect ratio ra and the aggregate 

susceptibility .  

First, we obtain the following asymptotic values of I and I at =0 – the case when the 

magnetophoretic particle flux is neglected: 

  1I  ; 
1 1

acoth ln(2 )
2 2

s aI r  at 0   and 1ar  ;  (B-2) 

At nonzero values of  and at the considered high aspect ratio limit 1ar  , the integrand 

of I exhibits a sharp increase close to the aggregate tips, i.e. at s   and in the vicinity of the 

integration limit 1  , while it takes a value close to unity on the rest of the integration interval. 

At such condition the term ( , )  [Eq. (A-4)] can be expanded in Taylor series in the vicinity of 

the point 1   and the integral I can be evaluated as follows: 
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  (B-3)

where the functions C() and D() are given by Eqs. (A-4b), (A-4c). 

This evaluation is only valid at s   while at larger distances  from the aggregate 

surface the integral falls to its asymptotic value of 1. Nevertheless Eq. (B-3) will allow obtaining 

an approximate analytical expression for the integral I. To this purpose, both numerical and 

analytical estimations of the integrand 21/ ( 1)I    of I are plotted in Fig. 12a as function of 

/ s   for ra=100, =1 and =4.5. Analytical estimation (dashed curve) seems to be rather 

precise at / 1.00003s    as compared to the numerical result (solid curve). At 

/ 1.00008s   , the numerical estimation gives 1I   and the integrand is approximately equal 

to 
21/( 1)  as inferred from comparison between the dotted and the solid lines in Fig. 12a. 

 

Fig. 12. The integrand of I as a function of / s   for =1 (a); the correction factor K as a function of the magnetic 

field parameter  (b). Both figures (a) and (b) are plotted for ra=100 and =4.5.

The exact value of the integral I represents the area below the dotted curve in Fig. 12a. 

This area can be roughly estimated as the area of the hatched figure whose upper border is 

defined by the curve 
21/( 1)   and the left border – by a vertical line corresponding to the 

intersection between the theoretical solid curve and 
21/( 1)   curve. This corresponds to the 

following approximate expression for I: 

2

1 1
acoth

2 1 2C
C

d
I










 
 ,    (B-4) 

where C is found from Eq. (B-3), in which I  is set to unity. The equation ( ) 1CI    has an 

approximate analytical solution in the limit ra>>1 and gives the following explicit expression for 

the integral I: 
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      2ln 2 ( 2) ar         (B-5b) 

Finally the integral I can be presented as a product of its value at =0 by a correction 

factor K defined as follows: 

   
1

ln(2 )
2

aI K r 
1

ln
2

aK r  at 1ar  ,    (B-6a) 
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where is given by Eq. (B-5b), and the conditional expression in Eq. (B-6b) is introduced in 

order to avoid the values of K>1 at low parameters  for which Eq. (B-3)-(B-5) are no longer 

valid but the value of K is close to unity. In the whole range of , the correction factor K can be 

evaluated numerically as 2 / ln(2 )aK I r , where I [Eq. (B-1)] is integrated numerically.  

Both numerical and analytical values of the correction factor K are plotted as function of 

the magnetic field parameter  in Fig. 12b for ra=100 and =4.5. Analytical and numerical 

calculations show a slow decrease of K as function of , in agreement with a logarithmic 

decrease predicted by Eq. (B-6b). For instance, K decreases only by a factor of about 2 when  

varies from 0 to 100. Such a small decrease could be explained by the fact that magnetic field in 

the vicinity of strongly elongated aggregates is everywhere close to the external field H0, except 

for the aggregate tips; this leads to a rather weak magnetophoretic fluxes and results to a weak 

dependence of K on . Finally, the relative error of the analytical estimate of K [Eq. (B-6b)] is 

less than 6% at <10 and reaches 19% at  =100.

Appendix C. Estimation of the aggregate flux [Eq. (25)] 

For evaluation of the integral in Eq. (24) for the aggregate flux, it is more convenient to 

use a spherical coordinate system (r, ) introduced in Fig. 3. First, we have to express the 

magnitudes z and dz on the surface of the control ellipsoid, intervening into Eq. (24), through the 

angle : 

 
1/ 2

2 2 2
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z r
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Using the last expressions along with the relationship 1/32 /a    in Eq. (24) and 

applying the limit ra>>1, we arrive at the following approximate expression for the aggregate 

flux: 

   

02 2
2 2 3/ 2 2 2 3/ 20
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0

2 2
0 0 0 0 0
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  (C-3) 

where we denoted 
1/3

ar    and the angle 0 corresponds to the position on the control ellipsoid 

surface [Fig. 3a] where the flux density is zero. This corresponds to the condition: 

2 2 3/ 2 2 2 3/ 2

0 0 0 02 (1 sin 2 sin ) (1 sin 2 sin ) 0                  (C-4) 

Explicit solutions of Eq. (C-4) with respect to 0 exist only in the limits of small and high   

giving the following asymptotes for the flux: 
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   (C-5) 

In deriving the last equation from Eq. (C-3), we have used /n V  for the number fraction of 

aggregates and   0ln(2 ) 1/ 2 /(8 )ar a     0ln /(8 )ar a  for the transverse component of the 

aggregate hydrodynamic mobility
77

 at ra>>1. Beyond these two asymptotes, using numerical 

solution for 0 in Eq. (C-3), we get a numerical result for the aggregate flux, which is fitted by 

Eq. (25) of Sec. II-B at a maximal error of 5.2% at 1.5  . 
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