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In this paper, we propose a new optimization algorithm for sparse logistic regression based on a stochastic version of the Douglas-Rachford splitting method. Our algorithm sweeps the training set by randomly selecting a mini-batch of data at each iteration, and it allows us to update the variables in a block coordinate manner. Our approach leverages the proximity operator of the logistic loss, which is expressed with the generalized Lambert W function. Experiments carried out on standard datasets demonstrate the efficiency of our approach w.r.t. stochastic gradient-like methods.

Introduction

Sparse classification algorithms have gained much popularity in the context of supervised learning, thanks to their ability to discard irrelevant features during the training stage. Such algorithms aim at learning a weighted linear combination of basis functions that fits the training data, while encouraging as many weights as possible to be equal to zero. This amounts to solving an optimization problem that involves a loss function plus a sparse regularization term. Different types of classifiers arise by varying the loss function, the most popular being the hinge and the logistic losses [START_REF] Rosasco | Are loss functions all the same?[END_REF][START_REF] Bartlett | Convexity, classification, and risk bounds[END_REF].

In the context of supervised learning, sparse regularization traces back to the work of Bradley and Mangasarian [START_REF] Bradley | Feature selection via concave minimization and support vector machines[END_REF], who showed that the 1 -norm can efficiently perform feature selection by shrinking small coefficients to zero. Other forms of regularization have also been studied, such as the 0 -norm [START_REF] Weston | Use of the zero-norm with linear models and kernel methods[END_REF], the p -norm with p > 0 [START_REF] Liu | Support vector machines with adaptive Lq penalty[END_REF], the ∞ -norm [6], and other nonconvex terms [START_REF] Laporte | Non-convex regularizations for feature selection in ranking with sparse SVM[END_REF]. Mixed-norms have been investigated as well, due to their ability to impose a more structured form of sparsity [START_REF] Krishnapuram | Sparse multinomial logistic regression: Fast algorithms and generalization bounds[END_REF][START_REF] Meier | The group Lasso for logistic regression[END_REF][START_REF] Duchi | Boosting with structural sparsity[END_REF][START_REF] Obozinski | Joint covariate selection and joint subspace selection for multiple classification problems[END_REF][START_REF] Yuan | A comparison of optimization methods and software for large-scale L1-regularized linear classification[END_REF][START_REF] Rosasco | Nonparametric sparsity and regularization[END_REF].

Many efficient learning algorithms exist in the case of quadratic regularization, by benefiting from the advantages brought by Lagrangian duality [START_REF] Blondel | Large-scale multiclass support vector machine training via euclidean projection onto the simplex[END_REF]. This is unfortunately not true for sparse regularization, because the dual formulation is as difficult to solve as the primal one. Consequently, sparse linear classifiers are usually trained through the direct resolution of the primal optimization problem. Among the possible approaches, one can resort to linear programming [START_REF] Wang | On l 1 -norm multi-class support vector machines: methodology and theory[END_REF], gradient-like methods [START_REF] Krishnapuram | Sparse multinomial logistic regression: Fast algorithms and generalization bounds[END_REF][START_REF]Optimization with first-order surrogate functions[END_REF], proximal algorithms [START_REF] Laporte | Non-convex regularizations for feature selection in ranking with sparse SVM[END_REF][START_REF] Chierchia | A proximal approach for sparse multiclass SVM[END_REF][START_REF] Barlaud | Classification and regression using a constrained convex splitting method[END_REF], and other optimization techniques [START_REF] Tan | Learning sparse SVM for feature selection on very high dimensional datasets[END_REF].

Nowadays, it is well known that random updates can significantly reduce the computational time when a quadratic regularization is used [START_REF] Hsieh | A dual coordinate descent method for large-scale linear SVM[END_REF][START_REF] Lacoste-Julien | Block-coordinate Frank-Wolfe optimization for structural SVMs[END_REF]. Therefore, a great deal of attention has been paid recently to stochastic approaches capable of handling a sparse regularization [START_REF] Pereyra | A survey of stochastic simulation and optimization methods in signal processing[END_REF]. The list of investigated techniques includes blockcoordinate descent strategies [START_REF] Shalev-Shwartz | Stochastic methods for l1-regularized loss minimization[END_REF][START_REF] Blondel | Block coordinate descent algorithms for large-scale sparse multiclass classification[END_REF][START_REF] Fercoq | Accelerated, parallel, and proximal coordinate descent[END_REF][START_REF] Lu | On the complexity analysis of randomized block-coordinate descent methods[END_REF], stochastic forward-backward iterations [START_REF] Langford | Sparse online learning via truncated gradient[END_REF][START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF][START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF][START_REF] Rosasco | Stochastic forward-backward splitting for monotone inclusions[END_REF][START_REF] Combettes | Stochastic approximations and perturbations in forwardbackward splitting for monotone operators[END_REF], random Douglas-Rachford splitting methods [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF], random primal-dual proximal algorithms [START_REF] Pesquet | A class of randomized primal-dual algorithms for distributed optimization[END_REF], and stochastic majorization-minimization methods [START_REF]Stochastic majorization-minimization algorithms for large-scale optimization[END_REF][START_REF] Chouzenoux | A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation[END_REF].

In this paper, we propose a random-sweeping block-coordinate Douglas-Rachford splitting method. In addition to the stochastic behavior, it presents three distinctive features with respect to related approaches [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF][START_REF] Briceño-Arias | A monotone + skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Boţ | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF]. Firstly, the matrix to be inverted at the initial step is block-diagonal, while in the concurrent approaches, it did not present any specific structure. The block diagonal property implies that the inversion step actually amounts to inverting a set of smaller size matrices. Secondly, the proposed algorithm can take advantage explicitly from a strong convexity property possibly fulfilled by some of the functions involved in the optimization problem. Finally, the dual variables appear explicitly in the proposed scheme, making it possible to use clever block-coordinate descent strategies [START_REF] Perekrestenko | Faster coordinate descent via adaptive importance sampling[END_REF].

Moreover, the proposed algorithm appears to be well tailored to binary logistic regression with sparse regularization. In contrast to gradient-like methods, our approach deals with the logistic loss through its proximity operator. This results in an algorithm that is not tied up to the Lipschitz constant of the loss function, possibly leading to larger updates per iteration. In this regard, our second contribution is to show that the proximity operator of the binary logistic loss can be expressed in closed form using the generalized Lambert W function [START_REF] Mező | On the generalization of the lambert W function[END_REF][START_REF] Maignan | Fleshing out the generalized lambert W function[END_REF]. We also provide comparisons with state-of-the-art stochastic methods using benchmark datasets.

The paper is organized as follows. In Section 2, we derive the proposed Douglas-Rachford algorithm. In Section 3, we introduce sparse logistic regression, along with the proximal operator of the logistic loss. In Section 4, we evaluate our approach on standard datasets, and compare it to three sparse classification algorithms proposed in the literature [START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF][START_REF] Rosasco | Stochastic forward-backward splitting for monotone inclusions[END_REF][START_REF] Chierchia | Random primal-dual proximal iterations for sparse multiclass SVM[END_REF]. Finally, conclusions are drawn in Section 5.

Notation: Γ 0 (H) denotes the set of proper, lower semicontinuous, convex functions from a real Hilbert space

H to ] -∞, +∞]. Let ψ ∈ Γ 0 (H). For every ν ∈ H, the subdifferential of ψ at ν is ∂ψ(ν) = {ξ ∈ H | (∀ζ ∈ H) ζ -ν | ξ + ψ(ν) ≤ ψ(ζ)}, the proximity operator of ψ at ν is prox ψ (ν) = argmin ξ∈H 1 2 ξ -ν 2 + ψ(ν), and the conjugate of ψ is ψ * = sup ξ∈H ξ | • -ψ(ξ) in Γ 0 (H).
The adjoint of a bounded linear operator A from H to a real Hilbert space G is denoted by A * Let (Ω, F, P) be the underlying probability space, the σ-algebra generated by a family Φ of random variables is denoted by σ(Φ).

Optimization method

Throughout this section, H 1 , . . . , H B , G 1 , . . . , G L are separable real Hilbert spaces. In addition, H = H 1 ⊕ • • • ⊕ H B denotes the Hilbertian sum of H 1 , . . . , H B . Any vector v ∈ H can thus be uniquely decomposed as (v b ) 1≤b≤B where, for every b ∈ {1, . . . , B}, v b ∈ H b . In the following, a similar notation will be used to denote vectors in any product space (in bold) and their components.

We will now aim at solving the following problem. 

f b (w b ) + L =1 h B b=1 A ,b w b ,
under the assumption that the set of solutions E is nonempty.

In order to address Problem 1, we propose to employ the random-sweeping blockcoordinate version of the Douglas-Rachford splitting method with stochastic errors described in Algorithm 1. Let us define

(∀b ∈ {1, . . . , B}) C b = Id +τ b L =1 γ 1 + γ ρ A * ,b A ,b -1 : H b → H b , (1) 
where (τ b ) 1≤b≤B and (γ ) 1≤ ≤1 are the positive constants introduced in Algorithm 1.

The next result establishes the convergence of the proposed algorithm.

Proposition 1 For every b ∈ {1, . . . , B}, let w b i∈N be H b -valued random variables and, for every ∈ {1, . . . , L}, let v [0] and s [0] be G B -valued random variables and let (d

[i]
i∈N be G -valued random variables. In addition, let (ε [i] ) i∈N be identically distributed {0, 1} B+L \ {0}-valued random variables and in Algorithm 1 assume that (i) (∀i ∈ N) σ(ε [i] ) and χ [i] = σ(t [0] , . . . , t [i] , s [0] , . . . , s [i] ) are independent;

(ii) (∀b ∈ {1, . . . , B}) i∈N E( a [i] b 2 |χ [i] ) < +∞; (iii) (∀ ∈ {1, . . . , L}) i∈N E( d [i] 2 |χ [i] ) < +∞; (iv) (∀b ∈ {1, . . . , B}) P[ε [0] b = 1] > 0 and (∀ ∈ {1, . . . , L}) P[ε [0] B+ = 1] > 0.
Then, the sequence (w [i] ) i∈N generated by Algorithm 1 converges weakly P-a.s. to an E-valued random variable.

Algorithm 1 Random Douglas-Rachford splitting for solving Problem 1

Initialization          Set (τ b ) 1≤b≤B ∈]0, +∞[ B and η ∈]0, 1].
For every ∈ {1, . . . , L}, set ρ ≥ 0 such that Bβ ρ ≤ 1.

For every ∈ {1, . . . , L}, set γ > 0 such that γ ρ < 1.

(∀b ∈ {1, . . . , B}) u

[0] b = L =1 1 1 + γ ρ A * ,b s [0] ,b
For i = 0, 1, . . .

                                           Set µ [i] ∈ ]η, 2 -η[ for b = 1, . . . , B      w [i+1] b = w [i] b + ε [i] b C b t [i] b -τ b u [i] b -w [i] b t [i+1] b = t [i] b + ε [i] b µ [i] prox τ b f b (2w [i+1] b -t [i] b ) + a [i] b -w [i+1] b for = 1, . . . , L                    v [i+1] = v [i] + ε [i] B+ s [i] + γ A ,b w [i] b 1≤b≤B 1 + γ ρ -v [i] p [i] = 2 B b=1 v [i+1] ,b - B b=1 s [i] ,b q [i] = prox B(1-γ ρ ) γ h p [i] /γ + d [i] for b = 1, . . . , B s [i+1] ,b = s [i] ,b + ε [i] B+ µ [i] p [i] -γ q [i] B(1 -γ ρ ) -v [i+1] ,b for b = 1, . . . , B u [i+1] b = u [i] b + L =1 ε [i] B+ 1 + γ ρ A * ,b s [i+1] ,b -s [i] ,b .
Proof Problem 1 can be reformulated as minimizing f + h • A where

f : H →] -∞, +∞] : w → B b=1 f b (w b ) (2) 
A : H → G : w → (A ,1 w 1 , . . . , A ,B w B ) 1≤ ≤L (3) h : G → R : v → L =1 h (Λ v ) (4) (∀ ∈ {1, . . . , L}) Λ : G B → G : v → B b=1 v ,b (5) 
and v = (v ) 1≤ ≤L denotes a generic element of G = G B 1 ⊕ • • • ⊕ G B L with v = (v ,b ) 1≤b≤B ∈ G B for every ∈ {1, . . . , L}. Since dom(h) = G, from [42, Theo- rem 16.47(i)], Problem 1 is equivalent to find w ∈ H such that 0 ∈ ∂f (w) + A * ∇h (Aw) , (6) 
which, from [START_REF] Briceño-Arias | A monotone + skew splitting model for composite monotone inclusions in duality[END_REF]Proposition 2.8] is also equivalent to find (w, v) ∈ H × G such that (0, 0) ∈ N (w, v) + S(w, v), [START_REF] Laporte | Non-convex regularizations for feature selection in ranking with sparse SVM[END_REF] where 2), ( 4) and [42, Proposition 13.30 and Proposition 16.9], ∂f :

N : (w, v) → ∂f (w) × ∂h * (v) is maximally monotone and S : (w, v) → (A * v, -Aw) is a skewed linear operator. Note that A * : v → ( L =1 A * ,b v ,b ) 1≤b≤B and, from (
w → × B b=1 ∂f b (w b ) and ∂h * : v → × L =1 ∂(h • Λ ) * (v ). Since, for every ∈ {1, . . . , L}, h • Λ is convex differentiable with a Bβ -Lipschitzian gradient ∇(h • Λ ) = Λ * • ∇h • Λ , it follows from Baillon-Haddad theorem [42, Corollary 18.17] that ∇(h • Λ ) is (Bβ ) -1 -cocoercive and, hence, ∂(h • Λ ) * = (∇(h • Λ )) -1 is (Bβ ) -1 -strongly monotone. Therefore, for every ρ ∈ [0, (Bβ ) -1 ], (h • Λ ) * is ρ -strongly convex. By defining (∀ ∈ {1, . . . , L}) ϕ = (h • Λ ) * -ρ • 2 /2, ( 8 
)
it follows from [42, Proposition 10.8] that, for every ∈ {1, . . . , L}, ϕ ∈ Γ 0 (G B ) and, hence, ∂ϕ

:= ∂(h • Λ ) * -ρ Id is maximally monotone. Consequently, Problem 1 can be rewritten equivalently as find (w, v) ∈ H × G such that (∀b ∈ {1, . . . , B}) 0 ∈ ∂f b (w b ) + B b (w, v) (∀ ∈ {1, . . . , L}) 0 ∈ ∂ϕ (v ) + B (w, v), (9) 
which, for strictly positive constants (τ b ) 1≤b≤B and (γ ) 1≤ ≤L , is equivalent to

find (w, v) ∈ H×G such that (∀b ∈ {1, . . . , B}) 0 ∈ τ b ∂f b (w b ) + τ b B b (w, v) (∀ ∈ {1, . . . , L}) 0 ∈ γ ∂ϕ (v ) + γ B (w, v), ( 10 
) where B b : (w, v) → L =1 A * ,b v ,b B : (w, v) → -(A ,1 w 1 , . . . , A ,B w B ) + ρ v . ( 11 
)
Since S : (w, v) → (A * v, -Aw) and D : G → G : v → (ρ v ) 1≤ ≤L are linear and monotone operators in H × G and G, respectively, the operator

B : (w, v) → (A * v, -Aw + Dv) = ((B b (w, v)) 1≤b≤B , (B (w, v)) 1≤ ≤L )
is maximally monotone in H×G. Therefore, by defining the strongly positive diagonal linear operator

U : H × G → H × G (w, v) → (T w, Γ v), ( 12 
)
where

T : w → (τ b w b ) 1≤b≤B and Γ : v → (γ v ) 1≤ ≤L , the operator U B : (w, v) → (T A * v, -Γ Aw + Γ Dv) = ((τ b B b (w, v)) 1≤b≤B , (γ B (w, v)) 1≤ ≤L ) (13) is maximally monotone in (H × G, • U -1 ), where ∀(w, v) ∈ H × G (w, v) U -1 = B b=1 τ -1 b w b 2 + L =1 γ -1 v 2 . ( 14 
)
Note that the renormed product space (H × G, [START_REF] Duchi | Boosting with structural sparsity[END_REF] in

• U -1 ) is the Hilbert sum H 1 ⊕ • • • H B ⊕ G B 1 ⊕ • • • G B L
(H × G, • U -1 ). Given (t, s) ∈ H × G, let (w, v) = J U B (t, s) = (Id + U B) -1 (t, s).
It follows from ( 13) that [START_REF] Wang | On l 1 -norm multi-class support vector machines: methodology and theory[END_REF] which leads to

w = t -T A * v v = (Id + Γ D) -1 (s + Γ Aw),
w = Id + T A * (Id + Γ D) -1 Γ A -1 t -T A * (Id + Γ D) -1 s . ( 16 
)
In order to derive an explicit formula for the matrix inversion in [START_REF]Optimization with first-order surrogate functions[END_REF], set z = t -T A * (Id + Γ D) -1 s. We have z = w + T A * (Id + Γ D) -1 Γ Aw and, since (3) and D is diagonal, we obtain

T A * (Id + Γ D) -1 Γ A : w → τ b L =1 γ A * ,b A ,b w b 1 + γ ρ 1≤b≤B ,
and, hence,

(∀b ∈ {1, . . . , B}) w b = Id +τ b L =1 γ A * ,b A ,b 1 + γ ρ -1 z b = C b z b . ( 17 
)
Therefore, ( 16) can be written equivalently as

(∀b ∈ {1, . . . , B}) w b = C b t [i] b -τ b L =1 A * ,b s ,b 1 + γ ρ = C b (t b -τ b u b ), (18) 
where

(∀b ∈ {1, . . . , B}) u b = L =1 A * ,b s ,b 1 + γ ρ . ( 19 
)
Moreover, from [START_REF] Wang | On l 1 -norm multi-class support vector machines: methodology and theory[END_REF], we deduce that

(∀ ∈ {1, . . . , L}) v = s + γ (A ,b w b ) 1≤b≤B 1 + γ ρ , ( 20 
)
and, hence, we have 

J U B : (t, s) → ((Q b (t, s)) 1≤b≤B , (Q (t, s)) 1≤ ≤L ), where    (∀b ∈ {1, . . . , B}) Q b : (t, s) → C b (t b -τ b u b ) (∀ ∈ {1, . . . , L}) Q : (t, s) → s + γ (A ,b Q b (t, s)) 1≤b≤B 1 + γ ρ . ( 21 
r = prox γ ϕ z ⇔ z -r γ ∈ ∂ϕ (r ) ⇔ z -r γ ∈ ∂(h • Λ ) * r -ρ r ⇔ z -(1 -γ ρ )r ∈ γ ∂(h • Λ ) * r . ( 22 
)
Therefore, if γ ρ < 1 we have that ( 22) is equivalent to

r = prox γ 1-γ ρ (h •Λ ) * z 1 -γ ρ ( 23 
)
and, from Moreau's decomposition formula [42, Theorem 14.13(ii)], we obtain

r = 1 1 -γ ρ z -γ prox 1-γ ρ γ (h •Λ ) z γ . ( 24 
)
Noting that, for every ∈ {1, . . . , L}, Λ • Λ * = B Id, from [42, Proposition 24.14], [START_REF] Pereyra | A survey of stochastic simulation and optimization methods in signal processing[END_REF] and [START_REF] Blondel | Block coordinate descent algorithms for large-scale sparse multiclass classification[END_REF] we deduce that [START_REF] Fercoq | Accelerated, parallel, and proximal coordinate descent[END_REF] and, hence,

(∀b ∈ {1, . . . , B}) r ,b = 1 B(1 -γ ρ ) B d=1 z ,d -γ prox B(1-γ ρ ) γ h 1 γ B d=1 z ,d
prox γ ϕ z = 1 B(1 -γ ρ ) B d=1 z ,d -γ prox B(1-γ ρ ) γ h 1 γ B d=1 z ,d 1≤b≤B .
(26) Therefore, by defining, for every i ∈ N and ∈ {1, . . . , L}, e [i] ∈ G B via

(∀ ∈ {1, . . . , L}) e [i] = - γ B(1 -γ ρ ) d [i] 1≤b≤B , ( 27 
)
we deduce that Algorithm 1 can be written equivalently as

For i = 0, 1, . . .                 For b = 1, . . . , B      w [i+1] b = w [i] b + ε [i] b Q b (t [i] , s [i] ) -w [i] b t [i+1] b = t [i] b + ε [i] b µ [i] prox τ b f b (2w [i+1] b -t [i] b ) + a [i] b -w [i+1] b For = 1, . . . , L      v [i+1] = v [i] + ε [i] B+ Q (t [i] , s [i] ) -v [i] s [i+1] = s [i] + ε [i]
B+ µ [i] prox γ ϕ (2v [i+1] s [i] ) + e [i] v [i+1] .

Defining, for every i ∈ N, a [i] = (a

[i] b ) 1≤b≤B , (e [i] ) 1≤ ≤L ∈ H × G, we have i∈N E( a [i] 2 U -1 |χ [i] ) = i∈N B b=1 τ -1 b E a [i] b 2 |χ [i] + L =1 γ -1 E e [i] 2 |χ [i] ≤ B b=1 τ -1/2 b i∈N E( a [i] b 2 |χ [i] ) + L =1 γ -1/2 i∈N E( e [i] 2 |χ [i] ) < +∞, ( 28 
)
where the last inequality follows from (ii), (iii), [START_REF] Langford | Sparse online learning via truncated gradient[END_REF] and

i∈N E( e [i] 2 |χ [i] ) = γ √ B(1 -γ ρ ) i∈N E( d [i] 2 |χ [i] ) < +∞. (29) 
Altogether, since operator J U B is weakly sequentially continuous because it is continuous and linear, the result follows from [32, Proposition 5.1] when the error term in the computation of J U B is zero.

Remark 1

(i) In Proposition 1, the binary variables ε and s [i] are activated or not at iteration i. Assumption (iv) guarantees that each of the latter variables is activated with a nonzero probability at each iteration. In particular, it must be pointed out that the variables p [i] and q [i] only need to be computed when ε

[i] B+ = 1. (ii) Note that Algorithm 1 may look similar to the stochastic approach proposed in [32, Corollary 5.5] (see also [START_REF] Briceño-Arias | A monotone + skew splitting model for composite monotone inclusions in duality[END_REF]Remark 2.9], and [START_REF] Boţ | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF] for deterministic variants). It exhibits however three key differences. Most importantly, the operator inversions performed at the initial step amount to inverting a set of positive definite selfadjoint operators defined on the spaces (H b ) 1≤b≤B . We will see in our application that this reduces to invert a set of small size symmetric positive definite matrices. Another advantage is that the smoothness of the functions (h ) 1≤ ≤L is taken into account, and a last one is that the dual variables appear explicitly in the iterations.

(iii) If, for every ∈ {1, . . . , L}, ρ = 0 and B = 1, Algorithm 1 simplifies to Algorithm 2, where unnecessary indices have been dropped and we have set

(∀i ∈ N) u [i] = -τ u [i] (∀ ∈ {1, . . . , L} s [i] = -τ s [i] . ( 30 
)
In this case,

C = Id +τ L =1 γ A * A -1 . ( 31 
)
Algorithm 2 Random Douglas-Rachford splitting for solving Problem 1 when ρ = 0 and B = 1

Initialization        Set τ ∈]0, +∞[ and η ∈]0, 1].
For every ∈ {1, . . . , L}, set γ > 0.

u [0] = L =1 A * s [0]
For i = 0, 1, . . .

                      Set µ [i] ∈ ]η, 2 -η[ w [i+1] = w [i] + ε [i] C t [i] + u [i] -w [i] t [i+1] = t [i] + ε [i] µ [i] prox τ f (2w [i+1] -t [i] ) + a [i] -w [i+1] for = 1, . . . , L       q [i] = prox h γ 2A w [i] - s [i] τ γ + d [i] s [i+1] = s [i] + ε [i] +1 µ [i] τ γ q [i] -A w [i] u [i+1] = u [i] + L =1 ε [i] +1 A * s [i+1] -s [i] .
When (∀ ∈ {1, . . . , L}) γ = 1/τ , it turns out this algorithm is exactly the same as the one resulting from a direct application of [32, Corollary 5.5] [START_REF] Chierchia | Approche de Douglas-Rachford aléatoire par blocs appliquée à la régression logistique parcimonieuse[END_REF]. (iv) The situation when, for a given , h ∈ Γ 0 (G ) is not Lipschitz-differentiable can be seen as the limit case when β → +∞. It can then be shown that Algorithm 1 remains valid by setting ρ = 0.

Sparse logistic regression

The proposed algorithm can be applied in the context of binary linear classification.

A binary linear classifier can be modeled as a function that predicts the output y ∈ {-1, +1} associated to a given input x ∈ R N . This prediction is defined through a linear combination of the input components, yielding the decision variable

d w (x) = sign x w , ( 32 
)
where w ∈ R N is the weight vector to be estimated. In supervised learning, this weight vector is determined from a set of input-output pairs

S = (x , y ) ∈ R N × {-1, +1} | ∈ {1, . . . , L} , (33) 
which is called training set. More precisely, the learning task can be defined as the trade-off between fitting the training data and reducing the model complexity, leading to an optimization problem expressed as minimize

w∈R N f (w) + L =1 h y x w , ( 34 
)
where f ∈ Γ 0 (R N ) is a regularization function and h ∈ Γ 0 (R) stands for the loss function. In the context of sparse learning, a popular choice for the regularization is the 1 -norm. Although many choices for the loss function are possible, we are primarily interested in the logistic loss, which is detailed in the next section.

Logistic regression

Logistic regression aims at maximizing the posterior probability density function of the weights given the training data, here assumed to be a realization of statistically independent input-output random variables. This leads us to maximize

w∈R N ϕ(w) L =1 π(y | x , w)θ (x |w), ( 35 
)
where ϕ is the weight prior probability density function and, for every ∈ {1, . . . , L}, θ is the conditional data likelihood of the -th input knowing the weight values, while π(y | x , w) is the conditional probability of the -th output knowing the -th input and the weights. Let us model this conditional probability with the sigmoid function defined as

π(y | x , w) = 1 1 + exp(-y x w) , ( 36 
)
and assume that the inputs and the weights are statistically independent and that ϕ is log-concave. Then, the negative-logarithm of the energy in [START_REF] Chouzenoux | A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation[END_REF] yields an instance of Problem [START_REF]Stochastic majorization-minimization algorithms for large-scale optimization[END_REF] in which

(∀v ∈ R) h(v) = log 1 + exp(-v) (37) 
and, for every w ∈ R N , f (w) = -log ϕ(w). (The term L =1 θ (x |w) can be discarded since the inputs and the weights are assumed statistically independent.) The function in [START_REF] Boţ | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF] is called logistic loss. For completeness, note that other loss functions, leading to different kinds of classifiers, are the hinge loss [START_REF] Cortes | Support-vector networks[END_REF] (∀v ∈ R)

h hinge (v) = max{0, 1 -v} q (38) 
with q ∈ {1, 2}, and the Huber loss [START_REF] Martins | From softmax to sparsemax: A sparse model of attention and multi-label classification[END_REF] (∀v ∈ R)

h huber (v) =      0 if v ≥ 1 -v if v ≤ -1 1 4 (v -1) 2 otherwise. (39) 
These functions can be also handled by the proposed algorithm.

Optimization algorithm

Let us blockwise decompose the weight variable w ∈ R N as

w = w 1 . . . w B , (40) 
where, for every b ∈ {1, . . . , B}, w b ∈ R N b and N 1 , . . . , N B are strictly positive integers such that

N = N 1 + • • • + N B .
Let us also decompose the input vector as x = x 1 . . . x B . Finally, let us assume that the regularization function is block-separable, i.e. f = ⊕ B b=1 f b , where, for every b ∈ {1, . . . , B}, f b ∈ Γ 0 (R N b ). A typical example of such functions is given by

(∀b ∈ {1, . . . , B}) f b = λ • κ b , (41) 
where λ ∈ [0, +∞[ and

• κ b , κ b ∈ [1, +∞], denotes the κ b -norm of R N b .
In particular, when for every b ∈ {1, . . . , B} κ b = 1, f reduces to the standard 1 regularizer, whereas setting κ b ≡ 2 results in a potential promoting group sparsity [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF]. In the context described above, ( 34) is a particular case of Problem 1 where, for every b ∈ {1, . . . , B},

H b = R N b , for every ∈ {1, . . . , L}, G = R, h = h and A ,b = y x ,b . Note that since, for every ∈ {1, . . . , L}, y 2 = 1, A * ,b A ,b = x ,b x ,b . Moreover, h defined in (37) is twice differentiable with (∀v ∈ R) h (v) = - exp(-v) 1 + exp(-v) , ( 42 
)
h (v) = exp(-v) (1 + exp(-v)) 2 . ( 43 
)
Since h is maximized in v = 0, we have sup v∈R |h (v)| = 1/4, which implies that h is 1/4-Lipschitz continuous and we have thus, for every ∈ {1, . . . , L}, β = 1/4. The problem can thus be solved with Algorithm 1, the convergence of which is guaranteed almost surely under the assumptions of Proposition 1.

Proximity operator

An efficient computation of the proximity operators of functions (f b ) 1≤b≤B and h plays a crucial role in the implementation of Algorithm 1. There exists an extensive literature on the computation of the proximity operators of functions like (41) [START_REF] Chierchia | The proximity operator repository (user's guide)[END_REF]. In particular, when κ b = 1 (resp. κ b = 2), this proximity operator reduces to a component-wise (resp. blockwise) soft-thresholding [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. Regarding the logistic loss in [START_REF] Boţ | A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators[END_REF], although some numerical methods exist [START_REF] Parikh | Proximal algorithms[END_REF][START_REF] Wang | Epigraph projections for fast general convex programming[END_REF], to the best of our knowledge, no thorough investigation of the form of its proximity operator has been made. The next proposition will contribute to fill such a void. The result relies on the generalized W-Lambert function recently introduced in [START_REF] Mező | On the generalization of the lambert W function[END_REF][START_REF] Maignan | Fleshing out the generalized lambert W function[END_REF], defined via

(∀v ∈ R)(∀v ∈ R)(∀r ∈ ]0, +∞[) v (exp(v) + r) = v ⇔ v = W r (v). ( 44 
)
When r ∈ [exp(-2), +∞[, W r is uniquely defined and strictly increasing, but when r ∈]0, exp(-2)[, there exist three branches for W r . We will retain the only one which can take nonnegative values (denoted by W r,0 in [39, Theorem 4]) and is also strictly increasing. This function can be efficiently evaluated through a Newton-based method devised by Mező et al. [START_REF] Mező | On the generalization of the lambert W function[END_REF] and available on line.1 

Proposition 2 Let γ ∈ ]0, +∞[ and let h : v → log 1 + exp(-v) . We have

(∀v ∈ R) prox γh (v) = v + W exp(-v) (γ exp (-v)) . ( 45 
)
Proof Let v ∈ R and γ ∈ ]0, +∞[. For every p ∈ R, it follows from the definition of prox γh , ( 42) and ( 44) that

p = prox γh (v) ⇔ v -p = - γ exp(-p) 1 + exp(-p) = - γ exp(p) + 1 (46) 
⇔ (p -v)(exp(p) + 1) = γ ⇔ (p -v)(exp(p -v) + exp(-v)) = γ exp(-v) ⇔ p -v = W exp(-v) (γ exp(-v)) (47) 
and the result follows.

From a numerical standpoint, it must be emphasized that the exponentiation in (45) may be problematic, as it yields an arithmetic overflow when v tends to -∞. To overcome this issue, one can use the asymptotic equivalence2 between the proximity operator of the logistic function and other more tractable functions. Proposition 3 Let γ ∈ ]0, +∞[ and let h : v → log(1+exp(-v)). Then, as v → -∞,

prox γh (v) = v + γ 1 -exp(γ + v) + (1 + γ) exp(2(γ + v)) + ϑ(exp(2v)). (48) Proof Define (∀v ∈ R) ϕ(v) = W exp(-v) (γ exp(-v)). ( 49 
)
According to Proposition 2, ϕ = prox γh -Id . (

It follows from [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF] that ran ϕ = ran(prox γh -Id) ⊂ ]0, γ[. Moreover, from [42, Section 24.2] we deduce that ϕ = -γ prox h * /γ (•/γ), which is decreasing and continuous by virtue of [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 24.31]. Therefore, lim v→-∞ ϕ(v) exists and from [START_REF] Cortes | Support-vector networks[END_REF] we have

(∀v ∈ R) ϕ(v) exp(ϕ(v)) = (γ -ϕ(v)) exp(-v). ( 51 
)
Since the left side of the equality above is bounded, we deduce that lim v→-∞ ϕ(v) = γ. Subsequently, we define

(∀v ∈ R) u(v) = ϕ(v) -γ satisfying lim v→-∞ u(v) = 0. (52) 
Hence, (51) can be rewritten as

(γ + u(v)) exp(γ) exp(u(v)) = -u(v) exp(-v) (53) 
and by using the first order Taylor expansion around ξ = 0, exp(ξ) = 1 + ξ + ϑ(ξ) and the fact that u(v

) 2 + (γ + u(v))ϑ(u(v)) = ϑ(u(v)), we obtain u(v) = -exp(γ + v)(γ + u(v))(1 + u(v) + ϑ(u(v))) = -exp(γ + v)(γ + (γ + 1)u(v) + ϑ(u(v))) = -γ exp(γ + v) -(γ + 1) exp(γ + v)u(v) -exp(γ + v)ϑ(u(v)). ( 54 
)
We deduce from this relation that

u(v) = - γ exp(γ + v) + exp(γ + v)ϑ(u(v)) 1 + (γ + 1) exp(γ + v) . ( 55 
) It follows that lim v→-∞ u(v) exp(-v) = -γ exp(γ), (56) 
which implies that exp(γ + v)ϑ(u(v)) = ϑ(exp(2v)) and, from (55) we obtain

u(v) = - γ exp(γ + v) 1 + (γ + 1) exp(γ + v) + ϑ(exp(2v)). (57) 
Combining ( 50), [START_REF] Rifkin | In defense of one-vs-all classification[END_REF], and (57) yields

prox γh (v) = v + γ 1 - exp(γ + v) 1 + (γ + 1) exp(γ + v) + ϑ(exp(2v)) = v + γ 1 + γ exp(γ + v) 1 + (γ + 1) exp(γ + v) + ϑ(exp(2v)) = v + γ (1 -exp(γ + v) + (1 + γ) exp(2(γ + v))) + ϑ(exp(2v)), (58) 
where the last equality follows from the second order Taylor expansion around ξ = 0.

Experimental results

In order to assess the performance of Algorithm 1, we performed the training on standard datasets 3,4 (see Table 1), and we compared it with the following approaches.

-Stochastic Forward-Backward splitting (SFB) [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF][START_REF] Rosasco | Stochastic forward-backward splitting for monotone inclusions[END_REF][START_REF] Combettes | Stochastic approximations and perturbations in forwardbackward splitting for monotone operators[END_REF][START_REF] Atchadé | On perturbed proximal gradient algorithms[END_REF]]

w [0] ∈ R N For i = 0, 1, . . .      Select L [i] ⊂ {1, . . . , L} w [i+1] = prox γif w [i] -γ i ∈L [i]
y x h y x w [i] where (γ i ) i∈N is a decreasing sequence of positive values. -Regularized Dual Averaging (RDA) [START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF] w

[0] ∈ R N , z [0] = 0 For i = 0, 1, . . .        Select L [i] ⊂ {1, . . . , L} z [i+1] = z [i] + ∈L [i] y x h y x w [i] w [i+1] = prox γif -γ i z [i+1]
where (γ i ) i∈N is a decreasing sequence of positive values.

-Block-Coordinate Primal-Dual splitting (BCPD) [START_REF] Chierchia | Random primal-dual proximal iterations for sparse multiclass SVM[END_REF] w

[0] ∈ R N , v [0] ∈ R L For i = 0, 1, . . .                Select L [i] ⊂ {1, . . . , L} w [i+1] = prox τ f w [i] -τ u [i] (∀ ∈ L [i] ) v [i+1] = prox σh * v [i] + σy x 2w [i+1] -w [i] (∀ / ∈ L i ) v [i+1] = v [i] u [i+1] = u [i] + ∈L [i] v [i+1] -v [i] y x
where τ > 0 and σ > 0 are such that τ σ

L =1 x x ≤ 1.
The algorithmic parameters are reported in Table 2. For all the algorithms, minibatches of size 1000 were randomly selected using a uniform distribution, and the initial vector w [0] was randomly drawn from the normal distribution with zero mean and unit variance. For the datasets with more than two classes (MNIST and RCV1), the "one-versus-all" approach is used [START_REF] Rifkin | In defense of one-vs-all classification[END_REF]. All experiments were carried out with Matlab 2015a on an Intel i7 CPU at 3.40 GHz and 12 GB of RAM.

Table 3 reports the classification performance achieved by the compared algorithms, which includes the classification errors computed on a (disjoint) test set, as well as the sparsity degree of the solution. For all the considered datasets, the regularization parameter λ was selected with a cross-validation procedure. The results show that the proposed algorithm finds a solution that yields the same accuracy as state-of-the-art methods, while being sparser than the ones produced by gradient-like methods (SFB and RDA). [START_REF]Stochastic majorization-minimization algorithms for large-scale optimization[END_REF], and the distance to the solution w [∞] obtained after many iterations for each compared method. The results indicate that the proposed approach converges faster to a smaller value of the objective criterion. This could be related to the implicit preconditioning present in Algorithm 1 through the matrix Q. Another interesting feature of our algorithm is the free choice of parameters γ and µ i . Conversely, in both SFB and RDA, the parameter γ i (also referred to as learning rate) needs to be carefully selected by hand, causing such algorithms to slow down or even diverge if the learning rate is chosen too small or too high.

Conclusion

In this paper, we have proposed a block-coordinate Douglas-Rachford algorithm for sparse logistic regression. In contrast to gradient-like methods, our approach relies on the proximity operator of the logistic loss, for which we derived a closed-form expression that can be efficiently implemented. Thanks to this feature, our approach removes restrictions on the choice of the algorithm parameters, unlike gradient-like methods, for which it is essential that the learning rate is carefully chosen. This is confirmed by our numerical results, which indicate that the training performance of the proposed algorithm compares favorably with state-of-the-art stochastic methods.
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Figure 1

 1 Figure1reports the training performance versus time of the considered algorithms, which includes the criterion in[START_REF]Stochastic majorization-minimization algorithms for large-scale optimization[END_REF], and the distance to the solution w[∞] obtained after many iterations for each compared method. The results indicate that the proposed approach converges faster to a smaller value of the objective criterion. This could be related to the implicit preconditioning present in Algorithm 1 through the matrix Q. Another interesting feature of our algorithm is the free choice of parameters γ and µ i . Conversely, in both SFB and RDA, the parameter γ i (also referred to as learning rate) needs to be carefully selected by hand, causing such algorithms to slow down or even diverge if the learning rate is chosen too small or too high.

Table 1

 1 Training sets used in the experiments (K is the number of classes).

	Dataset	N	L	K
	W8A	300	49749	2
	MNIST	717	60000 10
	RCV1	12560 30879 20

Table 2

 2 Algorithmic parameters used in the experiments.

		SFB / RDA		Algo 1		BCPD		
	Dataset	γ i	γ, τ	µ [i]	ρ	B	τ	σ	
	W8A MNIST RCV1	10 -1 / √ 1/ √ i + 1 i + 1 10/ √ i + 1	1	1.5	0.1	1 1 9	0.1 τ -1	L =1	x x	-1

Table 3

 3 Classification performance on test sets (after training for a fixed number of iterations).

		Algo 1	SFB	RDA	BCPD
	Dataset	Errors -Zeros	Errors -Zeros	Errors -Zeros	Errors -Zeros
	w8a	9.73% -19.60%	9.92% -5.65%	9.99% -0.33%	10.44% -50.50%
	mnist	8.49% -41.57%	8.37% -5.25%	8.60% -11.13%	8.45% -58.64%
	rcv1	6.62% -83.43%	6.67% -35.22%	6.60% -32.90%	6.25% -98.57%

https://sites.google.com/site/istvanmezo81/others

Hereafter, following Landau's notation, we will write thatF (v) = ϑ(G(v)), where F : R → R and G : R → R, if F (v)/G(v) → 0 as v → +∞ (or v → -∞).

http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html

http://yann.lecun.com/exdb/mnist
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