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Optimal Control of Storage under Time Varying Electricity Prices

End users equipped with storage may exploit time variations in electricity prices to earn profit by doing energy arbitrage, i.e., buying energy when it is cheap and selling it when it is expensive. We propose an algorithm to find an optimal solution of the energy arbitrage problem under given time varying electricity prices. Our algorithm is based on discretization of optimal Lagrange multipliers of a convex problem and has a structure in which the optimal control decisions are independent of past or future prices beyond a certain time horizon. The proposed algorithm has a run time complexity of O(N 2 ) in the worst case, where N denotes the time horizon. To show the efficacy of the proposed algorithm, we compare its runtime performance with other algorithms used in MATLAB's constrained optimization solvers. Our algorithm is found to be at least ten times faster, and hence has the potential to be used for in real-time. Using the proposed algorithm, we also evaluate the benefits of doing energy arbitrage over an extended period of time for which price signals are available from some ISO's in USA and Europe.

I. INTRODUCTION

Dynamic pricing of electricity in wholesale electricity markets has the potential to reduce peak demand [START_REF] Borenstein | The long-run efficiency of real-time electricity pricing[END_REF]. An end user operating under such pricing has to alter its consumption pattern to reduce cost of operation by shifting its peak demand to hours of low price. However, it has been observed that consumption patterns of users do not change significantly with real time electricity price variations and hence consumers end-up paying more in their electricity bill [START_REF] Allcott | Rethinking real-time electricity pricing[END_REF]. Installing energy storage by an end user allows them to perform energy arbitrage, i.e., to buy energy when prices are low and sell it when it is expensive. The energy bought can be stored in the battery for later use when the demand arises. Hence, using the battery allows the user to keep the same consumption pattern without increasing their electricity bills under time-varying electricity prices [START_REF] Mokrian | A stochastic programming framework for the valuation of electricity storage[END_REF]. Additionally, if the user is equipped with a renewable generation unit, then a battery also allows the user to reduce energy uncertainty by storing excess generations.

The real time optimal storage arbitrage requires an optimal control algorithm and accurate information about present and future states. Collectively these two requirements affect the end user arbitrage gains. In the present work we focus on the development of optimal energy arbitrage algorithm which allow users to perform energy arbitrage optimally and efficiently under time varying electricity prices. We consider the optimal energy arbitrage problem for an end user as a convex problem and propose a solution based on finding the optimal Lagrange multipliers. The key contributions and insights in the paper are the following:

• Tuning Lagrange multipliers: Exploiting the piecewise linear cost structure of the arbitrage problem we find that the optimal Lagrange multipliers can only take a discrete set of values corresponding to buying and selling prices of electricity. This transforms the continuous optimization problem into a discrete optimization problem. We indicate how to tune the Lagrange multiplier variables to these prices to find their optimal values. • Complexity: Using the discrete nature of the optimization, we explicitly characterize the worst case running time complexity of the proposed arbitrage algorithm. The worst case run-time complexity is found to be quadratic in the number of instants for which price values are available. Numerical simulations show that our algorithm computes the optimal solution at least ten times faster than standard MATLAB optimization solvers.

• Sub-horizon: From the structure of solution obtained using Lagrangian dual, we observe that to find optimal control decisions in a certain period within the total period it is sufficient to consider prices only within a sub-horizon much smaller than the whole duration. In the proposed algorithm, we show how to calculate these sub-horizons.

• Arbitrage: Using the proposed algorithm, we evaluate the benefits of performing energy arbitrage for an extended duration of operation (e.g. 5 years). We use real price data and also incorporate realistic losses in the battery.

The problem of optimal energy arbitrage using storage has been the subject of many recent works e.g., [START_REF] Van De Ven | Optimal control of end-user energy storage[END_REF], [START_REF] Qin | Optimal electric energy storage operation[END_REF], [START_REF] Koutsopoulos | Optimal energy storage control policies for the smart power grid[END_REF], [START_REF] Cruise | Optimal control of storage incorporating market impact and with energy applications[END_REF], [START_REF] Mokrian | A stochastic programming framework for the valuation of electricity storage[END_REF], [START_REF] Anderson | Co-optimizing the value of storage in energy and regulation service markets[END_REF], [START_REF] Xi | A stochastic dynamic programming model for co-optimization of distributed energy storage[END_REF], [START_REF] Kim | Optimal energy commitments with storage and intermittent supply[END_REF], [START_REF] Urgaonkar | Optimal power cost management using stored energy in data centers[END_REF]. In [START_REF] Van De Ven | Optimal control of end-user energy storage[END_REF], the demand and price of electricity are assumed to be correlated and stochastic. However, in this setting the user is not allowed to sell energy to the grid. In [START_REF] Qin | Optimal electric energy storage operation[END_REF], a closed form solution based on stochastic dynamic programming has been found for the arbitrage problem without considering the ramp constraints of the battery. The objective in [START_REF] Koutsopoulos | Optimal energy storage control policies for the smart power grid[END_REF] is to reduce operational cost of the grid, where demands arrive randomly in time. The work closest to the current paper is [START_REF] Cruise | Optimal control of storage incorporating market impact and with energy applications[END_REF], where the energy arbitrage problem has been considered for a single battery user incorporating ramp and capacity constraints of the battery. However, in [START_REF] Cruise | Optimal control of storage incorporating market impact and with energy applications[END_REF] no special property of the cost function other than its convexity is assumed. As a result, characterization of the complexity for the optimal arbitrage algorithm was not possible. In the current paper, we consider a special case where the cost function is piecewise-linear which allows us to discretize the optimal Hence, the Lagrangian dual of (P) is given by 

(LD) max φ(α, β) subject to, α i , β i ≥ 0 ∀i where φ(α, β) = inf xi∈[X min i ,X max i ] L (x,
• µ * i+1 = µ * i , if b min < b * i < b max • µ * i+1 ≤ µ * i , if b * i = b min • µ * i+1 ≥ µ * i , if b * i = b max where b * i = b 0 + i j=1 x * j (4.
) Additionally, the optimal accumulated Lagrange multiplier µ N at the last instant N satisfies

• µ * N = 0, if b min < b * N < b max • µ * N ≥ 0, if b * N = b min
For any pair (x * , µ * ) satisfying the above conditions, x * solves the optimal arbitrage problem (P).

The proof of Therorem III.1 is provided in Appendix A. We note that the optimality conditions stated in Theorem III.1 do not depend on the particular structure of the cost function and are valid as long as C (i) storage (x i ) is a convex function with respect to x i for each i. Next, we characterize, for each instant i, the relationship between the optimal decision x * i and the optimal accumulated Lagrange multiplier µ * i using the particular nature of the cost function C (i) storage (x i ). This will be useful in formulating the optimal arbitrage algorithm.

Remark 1. From condition (2) of Theorem III.1 we have that the optimal control decision x * i in the ith instant minimizes the function 3) we obtain that for a given µ * i = µ the optimal decision x * i (µ) is given by

C (i) storage (x) -µ * i x for x ∈ X min i , X max i . Now from (
x * i (µ) =                X min i , X min i , if µ < p dis (i), X min i , 0 , if µ = p dis (i), [0, 0] , if p ch (i) > µ > p dis (i), [0, X max i ] , if µ = p ch (i), [X max i , X max i ] , if µ > p ch (i), (5) 
where p ch (i) = p i /η ch and p dis (i) = p i η dis . Note that x * i (µ) is a set-valued function in µ: for µ = p ch (i) or µ = p dis (i), x * i (µ) takes an envelope of values and for any other value of µ it is a singleton set. It is also important to note from ( 5)

that if µ 1 ≤ µ 2 then x * i (µ 1 ) x * i (µ 2 )
, where for two sets A and B we say

A B (resp, A ≺ B) if a ≤ b (resp a < b)
for all a ∈ A and for all b ∈ B. The above monotonicity property also holds for the sets b * i (µ), defined recursively as b

* i (µ) = b * i-1 (µ) + x * i (µ) for i ≥ 1 and b * 0 (µ) = b 0 . Here, addition of two intervals [a, b] and [c, d] denotes the interval [a + c, b + d].

A. Proposed Algorithm

We now propose an algorithm which finds a pair (x * , µ * ) that satisfies all the conditions in Theorem III.1 and therefore solves (P). The pseudo code of the proposed algorithm is shown as Algorithm 1 below. Note from Theorem III.1 condition (3) that µ * i+1 may differ from

µ * i only when b * i = b max or b * i = b min .
Hence, if the battery level at the end of a time instant lies strictly within the battery capacity limits, then there is no change in the value of the optimal accumulated Lagrange multiplier. Using this key idea, in the proposed algorithm, we divide the total duration T into groups, indexed as {1, 2, . . . , M }, of consecutive time instants such that for all instants i belonging to the same group K ∈ {1, 2, . . . , M } the value of the accumulated Lagrange multiplier µ * i is the same, denoted as µ K . We call each such group as a sub-horizon. At the end of each sub-horizon, the battery energy level touches either b max or b min . The number M of sub-horizons, the start and end instants of each sub-horizon K, and the value of µ K and optimal actions in each sub-horizon K depend on the problem instance and are determined recursively as described below.

Suppose we have identified the first K -1 (K ≥ 1) subhorizons and the optimal actions in all instants belonging to these sub-horizons. Call the last instant identified to be in the (K -1)th sub-horizon as i K-1 . If i K-1 = N , then we have already covered whole period T . If i K-1 < N , then we proceed to identify the next sub-horizon K, i.e., the values of i K , µ K , and the optimal decisions for the time instants

i ∈ [i K-1 + 1, i K ].
To identify the sub-horizon K, we start with instant i K-1 + 1 and a guess value of µ K ≥ 0 for that sub-horizon. 1 Now, for the chosen value of µ K , the values of x * i (µ K ) and b * i (µ K ) are computed as described in Remark 1 for all consecutive time instants i > i K-1 until we reach a time instant i = i break for which one of the following conditions is satisfied (we call these as the violation conditions):

C1: b * ibreak (µ K ) ≺ {b min }. C2: {b max } ≺ b * ibreak (µ K ). C3: i break = N, b min / ∈ b * N (µ K ), µ K > 0.
If no such i is found even after reaching i = N , then K is identified as the last sub-horizon and we set i K = N (and lines 24-30 of the pseudo code are executed). If

µ K > 0, then b * N = b min ; else b * N is taken to be some value in the set [b min , b max ) ∩ b * N (µ K ) to satisfy condition (4) of Theo- rem III.1. The optimal decisions x * i and b * i for i ∈ [i K-1 +
1, N ] are then found by using the algorithm BackwardStep, shown as in Algorithm 2 below. The proposed algorithm then terminates. The algorithm BackwardStep will be discussed in more detail later. If condition C1 above is satisfied, then for the chosen value of µ K , the battery capacity limit is violated at the instant i break since the set b ibreak (µ) lies strictly below b min . The value of µ K is then increased to min {p > µ : p ∈ (p ch (i), p dis (i

); i K-1 < i ≤ i break )}. Oth- erwise, if C2 or C3 above is satisfied, then µ K is decreased to max {p < µ : p ∈ (p ch (i), p dis (i); i K-1 < i ≤ i break )}.
With the updated value of µ K we again repeat the same process as discussed above to obtain a new value of i break . Since x * i (µ K ) and b * i (µ K ) are monotonically non-decreasing functions in µ K , the potential effect of the update of µ K is that i break is pushed to a later instant. The update of µ K is repeated so long as i break increases (or remains the same) as compared to its old value (stored in i memory ). If the value of i break decreases with an updated value of µ K , then for the previous value µ memory of µ K there must have been an instant i

∈ [i K-1 + 1, i memory ], where b max ∈ b * i (µ K ) (if the violation occurred due to C1) or b min ∈ b * i (µ K ) (if violation occurred due to C2 or C3
). This is because both µ memory and µ K always lie in the range

[p dis (i), p ch (i)] for all i > i K-1 . Since b * i (p dis (i)) ∩ b * i (p dis (i)) = ∅ an update of µ K cannot cause b * i (µ K ) to completely go above b max or below b min if {b min } ≺ b * i (µ memory ) ≺ {b max }.
At this point in the algorithm, µ K and i break are switched back to their previous values stored in µ memory and i memory , respectively. This value of µ K is identified to be the final value of the optimal accumulated Lagrange multiplier in the sub-horizon K. We set i K to be the latest time instant i ∈

[i K-1 + 1, i break ] for which b min ∈ b * i (µ K ) or b max ∈ b * i (µ K ).

The value of b *

i K is chosen to be b min in the former case and b max in the later case.

Finally, for each i in the range i K-1 + 1 ≤ i < i K , the optimal battery level b * i is found from b * i+1 through the function BackwardStep which uses the backward recursion b

* i = (b * i+1 -x * i+1 (µ K )) ∩ b * i (µ K ) ∩ [b min , b max ].
If the above backward recursion returns a set, then any arbitrary value in the set is chosen to be the optimal battery level. We note here that the optimal solution to (P) need not be unique since its objective function is not strictly convex.

Complexity Analysis: In order to derive the worst case time-complexity of the proposed algorithm, we consider the computation of x * i (µ) for a given value of µ, in a given time step i ∈ {1, 2, . . . , N } as the basic operation. Let the length of the K th sub-horizon be denoted by W K , K ∈ {1, 2, . . . , M }. Clearly, in sub-horizon K we may have to update the value of µ K at most 2W K times (for each instant i in the subhorizon two possible values {p ch (i), p dis (i)} may be checked) to obtain the optimal Lagrange multiplier value µ * K . For each update of µ K , the optimal decisions x * i (µ K ) need to be calculated at most for all instants i in the sub-horizon K. Hence, the total number of basic operations in the forward step is W 2 K . Finally, for the BackwardStep the value of x * i (µ * K ) has to be computed for all i in the sub-horizon K.

Hence, the total number of operations in sub-horizon K is O(W 2 K ). Therefore, the total time-complexity of the algorithm is O(

M K=1 W 2 K ) = O(N 2 ) since M K=1 W K = N .

Algorithm 1 Proposed optimal arbitrage algorithm

Inputs: N , T , h = (h1, h2, . . . , hN ), p = (p1, p2, . . . , pN ), b0 Parameters: bmax, bmin, δmax, δmin Outputs:

x * = (x * 1 , x * 2 , . . . , x * N ), b * = (b * 1 , b * 2 , . . . , b * N ), µ * = (µ * 1 , µ * 2 , . . . , µ * K ) Initialize: K = 1; µK = µmemory = 0; iK-1 = iK = imemory = 0; BreakFlag = 0 1: while iK < N do 2:
for i = iK-1 + 1 to N do BackwardStep(µK , iK-1, iK , b * , x * , µ * ) 36:

iK ← max {i ∈ [iK-1 + 1, imemory] : bmax ∈ b * i (µmemory)} 19: b * i K = bmax 20: else if C2 or C3 is True then 21: iK ← max {i ∈ [iK-1 + 1, imemory] : bmin ∈ b * i (µmemory)} 22: b * i K = bmin
end if 37: end while Algorithm 2 BackwardStep(µ K , i K-1 , i K , b * , x * , µ * ) Inputs: µK , iK-1, iK , b * , x * , µ * Function: Computes components of the optimal vectors b * , x * in the range [iK-1 + 1, iK -1] using backward recursion Initialize: i ← iK -1 1: while i ≥ iK-1 + 1 do 2: b * i ← (b * i+1 -x * i+1 (µK )) ∩ b * i (µK ) ∩ [bmin, bmax] 3: xi+1 * ← b * i+1 -b * i 4:
µ * i ← µK 5: end while

IV. NUMERICAL EVALUATION

We solve the optimal arbitrage problem using the proposed algorithm decribed in Section III. The performance of the proposed algorithm is compared with Linear Programming (LP) and Matlab's Fmincon based constrained minimization (function evaluations set to 9600), in terms of run time and energy arbitrage gains. However, LP can only be evaluted for lossless battery as the objective function of (P) is linear in the lossless case. The battery parameters used for numerical evaluation are: b max = 1 kWh, b min = 0.1 kWh, δ max = 0.26 kW, δ min =-0.52 kW. Real-Time locational marginal pricing data for 21st December 2016 from NYISO [START_REF]Real time lmp[END_REF] is used to calculate optimal ramping trajectory. The sampling time of price signal is h = 0.25 hours. Simulations are conducted using a laptop PC with Intel Core i5-4200M, 2.50GHz processor and 8 GB RAM.

Fig 2 shows the results for lossless battery, i.e. η ch = 1, η dis = 1. The first plot of Fig 2b shows the electricity price for a day [START_REF]Real time lmp[END_REF], and the other plots show the optimal trajectory of battery level and the value of µ with time. It can be observed from Fig 2a and2c that the proposed algorithm has not violated the constraints for the battery and the results are using proposed algorithm and Matlab's Fmincon are very similar. However, the run time of the proposed algorithm is significantly lower than other methods as shown in Table I. Table II provides a comparison of results for a lossy battery.

V. FEASIBILITY OF ENERGY STORAGE ARBITRAGE Energy storage will act as energy buffers for future powergrid. However, energy storage being expensive its financially feasibility analysis is essential. We present an approximate methodology to consider the net average capacity of the battery over its entire life. Using this average available capacity, we calculate energy arbitrage gains in a deterministic setting for a 1 kWh rated capacity battery with 1 day as optimization horizon.

A. Net Average Available Capacity of Battery

The average battery capacity available over its entire life to the user will be close to 50 to 70 % of the original storage capacity when the battery is new. Oversizing is a crucial factor jeoparadizing the financial viability of energy storage. We consider following sources of discounting: 

B. Evaluation

The present battery cost is around $ 350 -500 per kWh. One year (2016) simulations for real time electricity prices of Nord Pool, PJM, ISONE, MISO, NYISO, ERCOT, CAISO and PG&E's TOU prices are done to calculate the value of energy storage. The discounted returns calculated for Battery [START_REF]Real time electricity price data[END_REF] Real Time 1 hour PG&E [START_REF]Time-of-use rates[END_REF] ToU -CAISO (Average Price) [START_REF]Energy prices[END_REF] Real Time 5 min PJM (Zone AEP) [START_REF]Energy prices[END_REF] Real Time 1 hour ERCOT (Zone LZ-Huston) [START_REF]Energy prices[END_REF] Real Time 1 hour ISONE (Zone .Z.SEMASS) [START_REF]Energy prices[END_REF] Real Time 1 hour MISO(Zone Michigan Hub) [START_REF]Energy prices[END_REF] into account the net average battery capacity calculated in section V-A. The discounted returns are significantly lower than the present cost of battery. CAISO, NYISO and ERCOT is relatively more profitable but still lower than the initial inverstment made by end user. For small price variations arbitrage could still be profitable if (Selling Price) > (Buying Price)/(Roundtrip Efficiency), but the revenue generated with per cycle of operation of the battery will be small. It is evident from Table IV, V that the arbitrage gains are lower than the cost of battery, therefore subsides would be required for end user participation. For battery model 3, energy arbitrage using CAISO prices tend to over use the battery, which is evident from the cycles of operation shown in Table VI. Note that for other ISOs the gains remain as in Table V, due to the one hour sampling time. Energy storage arbitrage could become more profitable if the price of energy storage decreases drastically or/and the price of electricity becomes more volatile or/and cycle life of batteries increase significantly.

VI. CONCLUSION

We formulate the the optimal arbitrage algorithm for storage operation and propose an efficient algorithm to find an optimal solution. The method transforms a continuous, convex optimization problem into a discrete one by exploiting the piecewise linear structure of the cost function. We show that optimal storage control decisions do not depend on prices beyond a certain sub-horizon. In the proposed algorithm, we indicate a method to calculate these sub-horizons and finding the optimal solution in the sub-horizon using backward step algorithm. The worst case run-time complexity of the proposed algorithm is found to be quadratic in terms of number of time instants for which price values are available.

Using the proposed algorithm, we conducted extended simulations for real price data from several ISOs in USA and Europe for the year 2016. We extrapolate the arbitrage gains for an end user for a five year period, considering detailed losses in the battery. The numerical evaluation suggests that only arbitrage cannot create positive net present value for storage, thus subsidies are required to incentivize investment.
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 3 Fig.3: Comparison for lossy battery evaluation it is observed that the proposed algorithm significantly reduces the run time compared to Matlab's Fmincon with resasonable number of evaluations, 9600 in this case. TableIIprovides a comparison of results for a lossy battery.
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 1 ) Efficiency of Cycling : The losses incurred during cycles of charging and discharging (≈ 70 to 95%) (2.) Efficiency of Converter : AC to DC and DC to AC conversion incurs losses (≈ 90 to 98 %) (3.) Performance Degradation: Battery reaches End-of-Life (EOL) if the maximum battery capacity reduces to 80 % of the rated battery capacity. Life of a battery in years ranges from 5-20 years and in cycles from 1000 to 20000 cycles depending on type of battery, whatever is achieved first marks EOL. (4.) Optimal SoC Band: overcharging or overdischarging a battery significanly affect its life. The discount factors assumed are: (1.) η ch = 0.95, η dis = 0.95, thus the roundtrip battery efficiency equals 0.9025, (2.) Converter Efficiency = 0.95, (3.) Average Capacity due to Degradation = 0.9, (4.) [B max -B min ]/Capacity = [0.98 -0.1]/1 = 0.88. Therefore Net Available Capacity = 0.679. This implies that the earnings of 0.679 kWh available capacity in 5 years should match price paid by end user in buying 1 kWh, for achieving 5 yrs. simple payback period. Discount factors due to maintenance cost and self-discharge will further reduce the net average capacity of the battery.

TABLE I :

 I Comparison of performance for lossless battery Fig 3 shows the results of the proposed algorithm for a lossy battery, i.e. η ch = 0.95, η dis = 0.95. From numerical

	Algorithm Type	Run Time (sec)	Profit ($)
	Proposed Algo	0.1967	0.1403245
	Linear Program	1.4873	0.1403245
	Matlab's Fmincon	23.0526	0.14027568

TABLE II :

 II Comparison of performance for lossy battery

			Algorithm Type	Run Time (sec)		Profit ($)
			Proposed Algo	0.164189		0.1193289
			Matlab's Fmincon	23.41217		0.11923956
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TABLE III :

 III The price signals evaluated are listed below

	Region/ISO	Pricing	Sample
	NordPool		

TABLE IV :

 IV Battery 1: δ max =0.26 kW, δ min =-0.52 kW

	Region	Cumulative	Operational	Discounted
	or ISO	Gains in 2016 Cycles in 2016	Gains in 5 yrs
	NordPool	e0.991	1748	e4.3
	PG&E	$ 4.38	184	$ 18.7
	CAISO	$ 37.9	914	$ 162.0
	PJM	$ 11.2	573	$ 47.9
	ERCOT	$ 18.6	430	$ 79.5
	ISONE	$ 15.3	687	$ 65.4
	MISO	$ 10.5	595	$ 44.9
	NYISO	$ 23.3	700	$ 99.6

TABLE V :

 V Battery 2: δ max = 1kW , δ min = -1kW

	Region	Cumulative	Operational	Discounted
	or ISO	Gains in 2016 Cycles in 2016	Gains in 5 yrs
	NordPool	e1.09	2836	e4.7
	PG&E	$ 4.38	184	$ 18.7
	CAISO	$ 73.2	2008	$ 312.9
	PJM	$ 16.1	825	$ 68.8
	ERCOT	$ 25.02	534	$ 107.0
	ISONE	$ 23.51	1082	$ 100.5
	MISO	$ 15.52	860	$ 66.34
	NYISO	$ 36.32	1225	$ 155.3

TABLE VI :

 VI Battery 3: δ max = 2kW , δ min = -2kW

	Region	Cumulative	Operational	Discounted
	or ISO	Gains in 2016	Cycles in 2016 Gains in 5 yrs
	CAISO	$ 125.03	3240	$ 534.4

For the first sub-horizon K = 1 (that includes the first time instant) the starting guess value of µ 1 is taken to be 0 and for every other sub-horizon K > 1, the starting guess value of µ K is taken to be equal to µ K-1 . Note that these choices are arbitrary and the algorithm does not depend on these choices.

APPENDIX A PROOF OF THEOREM III.1

We first prove existence of (x * , α * , β * ) such that:

1) x * is the primal optimal solution, 2) (α * , β * ) is the dual optimal solution, and 3) the optimality gap is zero (strong duality). Since the constraints of the primal problem are all linear, weak Slater's constraint qualification conditions (which imply strong duality) follow simply from the feasibility of the primal problem. Clearly, under the assumptions b min ≤ b max , δ min ≤ δ max , b 0 ∈ [b min , b max ], 0 ∈ [δ min , δ max ] a feasible solution exists (x i = 0 for all i = 1, 2, . . . , N is feasible). Furthermore, since the primal objective function is continuous and the constraints define a convex compact set, its minimum must be finite and achieved at the some x * in the feasibility region. According to the strong duality theorem, the above facts imply that the dual problem must be maximized at some (α * , β * ) and the duality gap must be zero.

From the above reasoning it also follows that (x * , α * , β * ) must be the saddle point satisfying the KKT conditions. Hence, using RHS inequality of the Saddle Point conditions,

where

. µ * i is the accumulated Lagrange multiplier for time instant i to N . Hence,

The complementary slackness conditions for the Lagrangian are defined as

Equation ( 8) derived above and complementary slackness conditions implies following relation of µ * k and µ * k+1 ,

N = b max Such a x * solves the optimal arbitrage problem (P) and α * , β * solves the dual problem.