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Abstract

We consider a stochastic matching model with a general matching graph, as introduced in [14].
We show that the natural necessary condition of stability of the system exhibited therein is also
sufficient whenever the matching policy is First Come, First Matched (FCFM). For doing so, we
exhibit a stationary distribution under a remarkable product form, by using an original dynamic
reversibility inspired by that of [2] for the bipartite matching model. Second, we observe that
most common matching policies (including FCFM, priorities and random) satisfy a remarkable
sub-additive property, which we exploit to derive in many cases, a coupling result to the steady
state, using a constructive backwards scheme à la Loynes. We then use these results to explicitly
construct perfect bi-infinite matchings.

1 Introduction

Consider a general stochastic matching model (GM), as introduced in [14]: items of various classes
enter a system one by one, to be matched by couples. Two items are compatible if and only if their
classes are adjacent in a compatibility graph G that is fixed beforehand. The classes of the entering
items are drawn following a prescribed probability measure on V, the set of nodes of G. This model
is a variant of the Bipartite Matching model (BM) introduced in [9], see also [1]. In the BM, the
compatibility graph is bipartite (say V = V1 ∪ V2). Along the various natural applications of this
model, the nodes of V1 and V2 represent respectively classes of customers and servers, kidneys and
patients, blood givers and blood receivers, houses and applicants, and so on. The items are matched
by couples of V1×V2, and also arrive by couples of V1×V2. The classes of the elements of the entering
couples are random, and it is assumed in the aforementioned references that the class of the entering
element of V1 is always independent of that of the entering element of V2.

An important generalization of the BM is the so-called Extended Bipartite Matching model (EBM)
introduced in [4], where this independent assumption is relaxed. Possible entering couples are element
of a bipartite arrival graph on the bipartition V1 ∪ V2. Importantly, one can observe that the GM is
in fact a particular case of EBM, taking the bipartite double cover of G as compatibility graph, and
duplicating arrivals with a copy of an item of the same class.

The main question raised in [14] is the shape of the stability region of the model, that is, the set of
probability measures on V rendering the corresponding system stable. Partly relying on the aforemen-
tioned connection between GM and EBM, and the results of [4], [14] show that the stability region
is always included in a designated set, namely the set of measures satisfying the natural necessary
condition (8) below. The form of the stability region is then heavily dependent on the structural prop-
erties of the compatibility graph, and on the matching policy, i.e. the rule of choice of a match for an
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l l1 INTRODUCTION

entering item whenever several possible matches are possible. A matching policy is then said to have
a maximal stability region for G if the system is stable for any measure satisfying (8). It is shown
in [14] that a bipartite G makes the stability region empty, that a designated class of graphs (the
so-called non-bipartite separable ones - precisely defined below) make the stability region maximal for
all matching policies, and that the policy ’Match the Longest’ always has a maximal stability region
for a non-bipartite G. Applying fluid (in)stability arguments to a continuous-time version of the GM,
[15] show that, aside for a very particular class of graphs, whenever G is not separable there always
exists a policy of the strict priority type that does not have a maximal stability region, and that the
’Uniform’ random policy (natural in the case where no information is available to the entering items
on the state of the system) never has a maximal stability region, thereby providing a partial converse
of the result in [14]. A related model is studied in [11], which draws a comparison of matching policies
in the case where the matching structure is a particular hypergraph, that is, items may be matched
by groups of more than two.

In the first part of this work, we are concerned with the stability region of the GM under the ’First
Come, First Matched’ (FCFM) policy, consisting in always performing the match of the entering item
with the oldest compatible item in the system. Compared to the aforementioned stability studies,
this matching policy raises technical problems, mainly due to the infinite dimension of the state space
of its natural Markov representation. In the history of study of the BM, the corresponding ’First
Come, First Served’ (FCFS) policy was the first one considered in the seminal papers [9, 1], where the
existence of a stationary matching under a natural resource pooling condition analog to (8) is shown.
Further, [2] recently show that the stationary state can be obtained in a remarkable product form,
which is obtained using an original dynamic reversibility argument. However, these results cannot be
directly applied to the present context, for the GM is not a particular case of a BM, but of an EBM,
for which the latter reversibility argument is unlikely to hold in general. Moreover the maximality
of the stability region of FCFS for the EBM is conjectured, but left as on open problem in [4]. We
show hereafter that we can in fact construct a reversibility scheme that is closely related to the one
proposed in [2] for the BM, to show that the stability region of FCFM is indeed maximal for the GM,
and that the stationary state of the Markov representation also satisfies a product form.

It is well known since the pioneering works of Loynes [13] and then Borovkov [5], that backwards
schemes and specifically strong backwards coupling convergence, can lead to an explicit construction
of the stationary state of the system under consideration within its stability region. One can then
use pathwise representations to compare systems in steady state, via the stochastic ordering of a
given performance metric (see Chapter 4 of [3] on such comparison results for queues). Moreover, we
know since the seminal work of Propp and Wilson [16] that coupling from the past algorithms (which
essentially use backwards coupling convergence) provide a powerful tool for simulating the steady
state of the system. In the second part of this work, we aim at achieving such results for the general
matching model: under various conditions, we construct a stationary version of the system under
general stationary ergodic assumptions, via a stochastic recursive representation of the system on the
canonical space of its bi-infinite input. For this, we first observe that most usual matching policies (in-
cluding FCFM, the optimal ’Match the Longest’ policy, and - possibly randomized - priorities) satisfy
a remarkable sub-additive property, which allows to construct the appropriate backwards scheme to
achieve this explicit construction. These results lead to stability conditions for various models, under
stationary ergodic assumptions that subsume the markovian (i.e., iid) settings. Second, in some cases
(including iid), we construct a unique (up to the natural parity of the model, in a sense that will be
specified below) stationary perfect matching, by strong backwards coupling.

The paper is organized as follows. In Section 2 we introduce and formalize our model. In Section
3 we develop our reversibility scheme for the FCFM system, leading to our main result of the first
part, Theorem 1 in subsection 3.4, which establishes the existence of a stationary probability under
a product form for the natural Markov representation of the system, under the natural condition
(8). Our coupling result is then presented in Section 4, including the algebraic study of sub-additive
policies in Section 4.2, the construction of renovating events à la Borovkov and Foss in Section 4.4,
and the explicit constructions of perfect bi-infinite matchings for sub-additive policies, in Section 4.6.
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l l2 THE MODEL

2 The model

2.1 General notation

Denote by R the real line, by N the set of non-negative integers and by N+, the subset of positive
integers. For any two integers m and n, denote by Jm,nK = [m,n] ∩ N. For any finite set A, let SA
be the group of permutations of A, and for all permutation s ∈ SA and any a ∈ A, let s[a] be the
image of a by s. Let A∗ be the set of finite words over the alphabet A. Denote by ∅, the empty word
of A∗. For any word w ∈ A∗ and any subset B of A, we let |w|B be the number of occurrences of
elements of B in w. For any letter a ∈ A, we denote |w|a := |w|{a} the number of occurrences of the

letter a in w, and we let |w| =
∑
a∈A |w|a be the length of w. For a word w ∈ A∗ of length |w| = q,

we write w = w1w2...wq, i.e. wi is the i-th letter of the word w. In the proofs below, we understand
the word w1...wk as ∅ whenever k = 0. Also, for any w ∈ A∗ and any i ∈ J1, |w|K, we denote by w[i],
the word of length |w| − 1 obtained from w by deleting its i-th letter. We let [w] := (|w|a)a∈A ∈ NA
be the commutative image of w. Finally, a right sub-word of the word w = w1...wk is a word wj ...wk
obtained by deleting the first j − 1 letters of w, for j ∈ J1, kK.

For any p ∈ N+, a vector x in the set Ap is denoted x = (x(1), ..., x(p)). For any i ∈ J1, pK, we denote
by ei the i-th vector of the canonical basis of Rp, i.e. ei(j) = δij for any j ∈ J1, pK. The `1 norm of
Rp is denoted ‖ . ‖.

Consider a simple graph G = (V, E), where V denotes the set of nodes, and E ⊂ E × E is the set
of edges. We use the notation u−v for (u, v) ∈ E and u 6−v for (u, v) 6∈ E . For U ⊂ V, we define
U c = V \ U and

E(U) = {v ∈ V : ∃u ∈ U, u− v} .

An independent set of G is a non-empty subset I ⊂ V which does not include any pair of neighbors,
i.e.

(
∀i 6= j ∈ I, i6−j

)
. Let I(G) be the set of independent sets of G. An independent set I is said to

be maximal if I ∪ {j} 6∈ I(G) for any j 6∈ I.

2.2 Formal definition of the model

We consider a general stochastic matching model, as was defined in [14]: items enter one by one a
system, and each of them belongs to a determinate class. The set of classes is denoted by V, and
identified with J1, |V|K. We fix a connected simple graph G = (V, E) having set of nodes V, termed
compatibility graph. Upon arrival, any incoming item of class, say, i ∈ V is either matched with an
item present in the buffer, of a class j such that i−j, if any, or if no such item is available, it is stored
in the buffer to wait for its match. Whenever several possible matches are possible for an incoming
item i, a matching policy φ decides what is the match of i without ambiguity. Each matched pair
departs the system right away.

We assume that the successive classes of entering items, and possibly their choices of match, are
random. We fix a probability space (Ω,F ,P) on which all random variables (r.v.’s, for short) are
defined, and view, throughout, the input as a bi-infinite sequence (Vn,Σn)n∈Z that is defined as
follows: first, for any n ∈ Z we let Vn ∈ V denote the class of the n-th incoming item. Second, we
introduce the set

S = SE(1) × ...× SE(|V|),

in other words for any σ = (σ(1), ..., σ(|V|)) ∈ S and i ∈ V, σ(i) is a permutation of the classes of
items that are compatible with i (which are identified with their indexes in J1, |V|K). Any array of
permutations σ ∈ S is called list of preferences. For any n ∈ Z, we let Σn denote the list of preferences
at time n, i.e. if Σn = σ and Vn = v, then the permutation σ(v) represents the order of preference of
the entering v-item at n, among the classes of its possible matches.

3



l2.3 State spaces l2 THE MODEL

Along the various results in this work, we will consider the following statistical assumptions on the
input sequence (Vn,Σn)n∈Z,

(H1) The sequence ((Vn,Σn))n∈Z is stationary and ergodic, drawn at all n from a distribution having
first marginal µ on V and second marginal νφ on S.

(H1’) The sequence ((V2n,Σ2n, V2n+1,Σ2n+1))n∈Z is stationary and ergodic, drawn at all n from a
distribution of first marginal µ0 on V, third marginal µ1 on V, and second and fourth marginals

νφ on S. We denote µ := µ0+µ1

2 .

(H1”) The sequence ((V2n−1,Σ2n−1, V2n,Σ2n))n∈Z is stationary and ergodic, drawn at all n from a
distribution of first marginal µ0 on V, third marginal µ1 on V, and second and fourth marginals

νφ on S. We denote µ := µ0+µ1

2 .

(IID) The sequence ((Vn,Σn))n∈Z is iid from the distribution µ⊗ νφ on V × S.

Under either one of the above conditions, we assume that µ has full support V (we write µ ∈M(V)).

Then, the matching policy φ will be formalized by an operator mapping the system state onto the
next one, given the class of the entering item and the list of preferences at this time. The matching
policies we consider are presented in detail in Section 2.4.

Altogether, the matching graph G, the matching policy φ and the measure µ (under assumptions
(H1) and (IID)) or µ0 and µ1 (under assumptions (H1’) and (H1”)) fully specify the model, which we
denote for short general matching (GM) model associated with (G,µ, φ) under assumptions (H1) and
(IID), or (G, (µ0, µ1), φ) under assumptions (H1’) and (H1”).

2.3 State spaces

Fix the compatibility graph G = (V, E) until the end of this section.

Fix an integer n0 ≥ 1, and two realizations v1, ...vn0
of V1, ..., Vn0

and σ1, ..., σn0
of Σ1, ...,Σn0

. Define
the two words v ∈ V∗ and σ ∈ S∗ respectively by z := v1v2...vn0 and ς := σ1σ2...σn0 . Then, for any
matching policy φ, there exists a unique matching of the word z associated to σ, that is, a graph having
set of nodes {v1, ..., vn0

} and whose edges represent the matches performed in the system until time
n0, if the successive arrivals are given by z and the lists of preferences by σ. This matching is denoted
by Mφ(z, ς). The state of the system is then defined as the word Qφ(z, ς) ∈ V∗, whose letters are the
classes of the unmatched items at n0, i.e. the isolated vertices in the matching Mφ(z, ς), in their order
of arrivals. The word Qφ(z, ς) is called queue detail at time n0. Observe that any admissible queue
detail belongs to the set

W =
{
w ∈ V∗ : ∀(i, j) ∈ E , |w|i|w|j = 0

}
. (1)

As will be seen below, depending on the service discipline φ we can also restrict the available informa-
tion on the state of the system at time n0, to a vector only keeping track of the number of items of the
various classes remaining unmatched at n0, that is, of the number of occurrences of the various letters
of the alphabet V in the word Qφ(z, ς). This restricted state thus equals the commutative image of
Qφ(z, ς), and is called class detail of the system. It takes values in the set

X =
{
x ∈ N|V| : x(i)y(j) = 0 for any (i, j) ∈ E

}
=
{

[w] ; w ∈W
}
. (2)

2.4 Matching policies

We now present and define formally, the set of matching policies which we consider.
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l2.4 Matching policies l2 THE MODEL

Definition 1. A matching policy φ is said admissible if the choice of match of an incoming item
depends solely on the queue detail and the list of preferences drawn upon arrival.

In other words, if a matching policy φ is admissible there exists a mapping �φ : W × (V × S) → W
such that, denoting by w the queue detail at a given time, and by w′ the queue detail if the input is
augmented by the arrival of a couple (v, σ) ∈ V × S, then w′ and w are connected by the relation

w′ = w �φ (v, σ). (3)

2.4.1 FCFM and LFCM

The first two policies we introduce are First Come, First Matched and Last Come, First matched.
For both policies, the order of preference of each class is irrelevant, and so the following construction
is independent of the preference σ.

First Come, First Matched. In First Come, First Matched (fcfm) the map �fcfm is given for
all w ∈W and all couples (v, σ), by

w �fcfs (v, σ) =

{
wv if |w|E(v) = 0;
w[Φ(w,v)] else, where Φ(w, v) = arg min{|wk| : k ∈ E(v)}.

Last Come, First Matched. For the last come, first matched (lcfm) matching policy, the updat-
ing map �lcfm is analog to �fcfm, for Φ(w, v) = arg max{|wk| : k ∈ E(v)}.

2.4.2 Matching policies that only depend on the class detail

A matching policy φ is said to be class-admissible if it can be implemented by knowing only the class
detail of the system. Let us define for any v ∈ V and x ∈ X,

P(x, v) =
{
j ∈ E(v) : x (j) > 0

}
,

the set of classes of available compatible items with the entering class v-item, if the class detail of
the system is given by x. Then, a class-admissible policy φ is fully characterized by the probability
distribution νφ on S, together with a mapping pφ such that pφ(x, v, σ) denotes the class of the match
chosen by the entering v-item under φ for a list of preferences σ, in a system of class detail x such that
P(x, v) is non-empty. Then the arrival of v and the draw of σ from νφ corresponds to the following
action on the class detail,

x}φ (v, σ) =

{
x+ ev if P(x, v) = ∅,
x− epφ(x,v,σ) else.

(4)

Remark 1. As is easily seen, to any class-admissible policy φ corresponds an admissible policy, if
one makes precise the rule of choice of match for the incoming items within the class that is chosen
by φ, in the case where more than one item of that class is present in the system. In this paper,
we always make the assumption that within classes, the item chosen is always the oldest in line, i.e.
we always apply a FCFM policy within classes. Under this convention, any class-admissible policy φ
is admissible, that is, the mapping }φ from X × (V × S) to X can be detailed into a map �φ from
W× (V × S) to W, as in (3), that is such that for any queue detail w and any (v, σ),

[w �φ (v, σ)] = [w]}φ (v, σ).

5
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Random policies. In a random policy, the only information that is needed to determine the choice
of matches for the incoming items, is whether their various compatible classes have an empty queue
or not. Specifically, the order of preference of each incoming item is drawn upon arrival following the
prescribed probability distribution. Then the considered item investigates its compatible classes in
that order, until it finds one having a non-empty buffer, if any. The item is then matched with an
item of the latter class. In other words, a list of preferences σ = (σ(1), ..., σ (|V|)) is drawn from νφ
on S, and we set

pφ(x, v, σ) = σ(v)[k], where k = min
{
i ∈ E(v)K : σ(v)[i] ∈ P(x, v)

}
. (5)

Priority policies. A strict priority policy is such that, for any v ∈ V, the order of preference of v
in E(v) is deterministic. This is thus a particular case of random policy in which a list of preference
σ∗ ∈ Σ is fixed beforehand, in other words νφ = δσ∗ and (5) holds for σ := σ∗.

Uniform. The uniform policy u is another particular case of random policy, such that νφ is the
uniform distribution on S. Consequently, for any i ∈ V and any j such that j−i, σ(i)[j] is drawn
uniformly in E(i).

Match the Longest. In ’Match the Longest’ (ml), the newly arrived item chooses an item of the
compatible class that has the longest line. Ties are broken by a uniform draw between classes having
queues of the same length. Formally, set for all x and v such that P(x, v) 6= ∅,

L(x, v) = max {x(j) : j ∈ E(v)} and L(x, v) = {i ∈ E(v) : x (i) = L(x, v)} ⊂ P(x, v).

Then, set νφ as the uniform distribution on S. If the resulting sample is σ, we have

pml(x, v, σ) = σ(v)[k], where k = min
{
i ∈ E(v) : σ(v)[i] ∈ L(y, c)

}
.

Match the Shortest. The ’Match the Shortest’ policy is defined similarly to ’Match the Longest’,
except that the shortest queue is chosen instead of the longest. It is denoted ms.

2.5 Markov representation

Fix a (possibly random) word w ∈W and a word ς ∈ S∗ having the same length as w. Denote for all

n ≥ 0 by W
[w]
n the buffer content at time n (i.e. just before the arrival of item n) if the buffer content

at time 0 was set to w, in other words

W [w]
n = Qφ (wV0...Vn , ςΣ0...Σn) .

It follows from (3) that the buffer-content sequence is stochastic recursive, since we have that{
W

[w]
0 = w;

W
[w]
n+1 = W

[w]
n �φ (Vn,Σn), n ∈ N,

a.s..

Second, it follows from (4) that for any matching policy φ that only depends on the class detail of
the system (e.g. φ = random,ml or ms), for any initial conditions as above, the X-valued sequence
(Xn)n∈N of class-details also is stochastic recursive: for any initial condition x ∈ X,{

X
[x]
0 = x;

X
[x]
n+1 = X

[x]
n }φ (Vn,Σn), n ∈ N,

a.s.. (6)

6
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3 A product form for the FCFM model

Throughout this section, suppose that the input of the system satisfies assumption (IID). Then, for
any connected graph G and any admissible policy φ, the queue detail (Wn)n∈N is a W-valued Fn-
Markov chains, where (Fn)n∈N is the natural filtration of the sequence ((Vn,Σn))n∈N. This sequence
will be termed natural chain of the system. In line with [14], for any admissible matching policy φ we
define the stability region associated to G and φ as the set of measures

stab(G,φ) :=
{
µ ∈M (V) : (Wn)n∈N is positive recurrent

}
. (7)

Consider also the set

Ncond(G) : {µ ∈M (V) : for any I ∈ I(G), µ (I) < µ (E (I))} (8)

which, from Theorem 1 in [14], is non-empty if and only if G is non-bipartite. From Proposition
2 in [ibid.], we know that stab(G,φ) ⊂ Ncond(G) for any admissible φ. The policy φ is said to
be maximal if these two sets coincide. Theorem 2 in [ibid.] establishes the maximality of ml for
any non-bipartite graph, however priority policies and the uniform policy are in general not maximal
(respectively, Theorem 3 and Proposition 7 in [15]).

This section is devoted to proving the maximality of First Come, First Matched, by constructing
explicitly the stationary distribution of the natural chain on W. Interestingly enough, this probability
distribution has a remarkable product form, detailed in (9).

Theorem 1. Let G = (V, E) be a non-bipartite graph. Then the sets stab(G, fcfm) and Ncond(G)
coincide, in other words the general stochastic matching model (G,µ, fcfm) is stable if and only if
µ satisfies condition (8). In that case, the following is the only stationary probability of the natural
chain (Wn)n∈N:

ΠW (w) = α

q∏
`=1

µ(w`)

µ
(
E ({w1, ..., w`})

) , for any w = w1...wq ∈ V∗, (9)

where α is the normalizing constant of the measure ΠB defined by (11) below.

The remainder of this Section is devoted to the proof of Theorem 1, which, as will be demonstrated
below, is based on a subtle reversibility scheme that is related to the proof of reversibility for the BM
model in [2]. Observe however that the GM model is not a particular case of BM model, so the proof
below presents many specificities with respect to [2].

3.1 Other notation

Before proceeding, we first need to introduce an additional piece of notation. For w = w1w2 ... wq ∈ V∗,
we denote by ~w the reversed version of w, i.e.

~w = wqwq−1...w2w1.

Let V be an independent copy of the set V, i.e., V is a set of cardinality |V| and we define the bijection{
V −→ V;
a 7−→ a.

For any a ∈ V, let us also denote a = a. Then, we say that a is the counterpart of a and vice-versa.

Let V := V ∪ V. For any word w ∈ V∗, denote by V(w) (respectively, V(w)) the set of letters of V
(resp., V) that are present in w, in other words

V(w) =
{
a ∈ V : |w|a > 0

}
; V(w) =

{
a ∈ V : |w|a > 0

}
.

7



l3.2 Auxiliary Markov representations l3 A PRODUCT FORM FOR THE FCFM MODEL

For any w ∈ V∗, the restriction of w to V (respectively, to V) is the word w|V ∈ V∗ (resp., w|V ∈ V
∗
)

of size |w|V (resp. of size |w|V), obtained by keeping only the letters belonging to V (resp. to V) in w,
in the same order. The dual w of the word w = w1w2...wq ∈ V∗ is the word obtained by exchanging
the letter of w belonging to V with their counterpart in V, and vice-versa. In other words,

w = w1 w2 ...wq.

Example 1. Take for instance w = a b a c b c b d a. Then we obtain

V(w) = {a, b, c, d} , V(w) =
{
a, b, c

}
;

w|V = a b c d a, w|V = a b c b;

w = a b a c b c b d a, ~w = a d b c b c a b a.

3.2 Auxiliary Markov representations

We now introduce two auxiliary Markov representations of the system: the V∗-valued Backwards and
Forwards detailed chains, similar in construction to the backwards and forwards ’pair by pair detailed
FCFS matching processes’, introduced in subsection 5.1 of [2].

Backwards detailed chain. We define the V∗-valued backwards detailed process (Bn)n∈N as fol-
lows: B0 = ∅ and for any n ≥ 1,

• if Wn = ∅ (i.e. all the items arrived up to time n are matched at time n), then we set Bn = ∅
as well;

• if not, we let i(n) ≤ n be the index of the oldest item in line. Then, the word Bn is of length
n− i(n) + 1, and for any ` ∈ J1, n− i(n) + 1K, we set

Bn(`) =

{
Vi(n)+`−1 if Vi(n)+`−1 has not been matched up to time n;
Vk if Vi(n)+`−1 is matched at of before time n, with item Vk (where k ≤ n).

In other words, the word Bn gathers the class indexes of all unmatched items entered up to n, and
the copies of the class indexes of the items matched after the arrival of the oldest unmatched item at
n, at the place of the class index of the item they have been matched to. Observe that we necessarily
have that Bn(1) = Vi(n) ∈ V. Moreover, the word Bn necessarily contains all the letters of Wn. More
precisely, we have

Bn = Wn|V , n ≥ 0. (10)

It is easily seen that (Bn)n∈N also is a Fn-Markov chain: for any n ≥ 0, the value of Bn+1 can be
deduced from that of Bn and the class Vn+1 of the item entered at time n+ 1.

Forward detailed chain. The V∗-valued forward detailed process (Fn)n∈N is defined as follows:
F0 = ∅ and for any n ≥ 1,

• if Wn = ∅, then we also set Fn = ∅;

• if not, let j(n) > n be the largest index of an item that is matched with an item entered up
to n (j(n) necessarily exists, otherwise all items entered up to n would be have been matched
by time n, and we would have Wn = ∅). Then, the word Fn is of size j(n) − n and for any
` ∈ J1, j(n)− nK, we set

Fn(`) =

{
Vn+` if Vn+` is not matched with an item arrived up to n;
Vk if Vn+` is matched with item Vk, where k ≤ n.

8
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In other words, the word Fn contains the copies of all the class indexes of the items entered up to
time n and matched after n, together with the class indexes of all unmatched items entered before the
last item matched with an item entered up to n. Observe that Fn (j(n)− n) ∈ V since by definition,
the item Vj(n) is matched with some Vk for k ≤ n, and therefore Fn (j(n)− n) = V k. It is also clear
that (Fn)n∈N is a Fn-Markov chain, as for any n ≥ 0, the value of Fn+1 depends solely on Fn and the
class index Vn+j(n)+1 of the item entered at time n+ j(n) + 1.

Example 2. Consider the matching graph of Figure 1, addressed in Section 5 of [14] (this is the
smallest graph that is neither bipartite nor separable). An arrival scenario together with successive
values of the natural chain, the backwards and the forwards chain are represented in Figure 2.

1

2

3 4

Figure 1: Matching graph of Example 2.

1 3 4 2 3 1 3 2 2 1 4
W0 = ∅, B0 = ∅, F0 = ∅

1 3 4 6 2 1̄ 3 1 3 2 2 1 4
W1 = 1, B1 = 1, F1 = 341̄

1 3 6 4 3̄ 6 2 1̄ 3 1 3 2 2 1 4
W2 = 13, B2 = 13, F2 = ∅3̄1̄

1 6 3 4̄ 6 4 3̄ 6 2 1̄ 3 1 3 2 2 1 4
W3 = 1, B3 = 14̄3̄, F3 = 1̄

1 3 4 2 3 1 3 2 2 1 4
W4 = ∅, B4 = ∅, F4 = ∅

1 3 4 2 3 1 3 6 2 3̄ 2 1 4
W5 = 3, B5 = 3, F5 = 133̄

1 3 4 2 3 1 3 6 2 3̄ 6 2 1̄ 1 4
W6 = 31, B6 = 31, F6 = 33̄1̄

1 3 4 2 3 1 3 6 2 3̄ 6 2 1̄ 1 6 4 3̄
W7 = 313, B7 = 313, F6 = 3̄1̄13̄

1 3 4 2 3 1 3 6 2 3̄ 6 2 1̄ 1 6 4 3̄
W8 = 13, B7 = 133̄, F6 = 1̄13̄

Figure 2: An arrival scenario on the matching graph of Figure 1, and the trajectories of the three
Markov chains.

9
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3.3 Reversibility

For both chains (Bn)n∈N and (Fn)n∈N, a state w ∈ V∗ is said admissible if it can be reached by the
chain under consideration under fcfm. We denote

admB :=
{

w ∈ V∗ : w is admissible for (Bn)n∈N

}
;

admF :=
{

w ∈ V∗ : w is admissible for (Fn)n∈N

}
.

We have the following result,

Proposition 1. Suppose that condition (8) holds. Then the Backwards detailed Markov chain (Bn)n∈N
and the Forwards detailed Markov chain (Fn)n∈N both admit the following unique stationary distribu-
tion (defined up to a constant):

ΠB (w) =

p∏
i=1

µ(i)‖w‖i+‖w‖i , (11)

for any admissible state w ∈ V∗ of the respective chain.

Observe that by the very definition (11), the measure of a word w does not change whenever any of
its letters a is exchanged with a. In particular, we have ΠB( ~w) = ΠB(w) for any w. Before showing
Proposition 1 we need to introduce a couple of technical results. Let us first observe that

Lemma 1. Let w = w1...wq ∈ V∗. Then w ∈ admB if, and only if the following two conditions
hold,

∀k, ` ∈ J1, qK such that wk ∈ V and w` ∈ V, wk 6−wj ; (12)

∀k ∈ J1, qK, ∀j ∈ Jk + 1, qK such that wk ∈ V, wj ∈ V, wk 6−wj . (13)

Proof of Lemma 1. The necessity of (12) is obvious: would an element w of admB contain two com-
patible letters in V, the two corresponding items would have been matched. Let us prove the necessity
of (13). Fix two such indexes k and j in J1.qK. This means that Vi(n)+j−1 is matched with an item V`
of class wj . Suppose that wk−wj . Then we have the following alternative,

• if ` < i(n) + k − 1, then V` is present in the system when the item Vi(n)+k−1 of class wk enters.
As wj−wk, these two items would have been matched;

• if ` ∈ Ji(n) + k − 1, i(n) + j − 2K, then V` finds Vi(n)+k−1 available in the system, and thus the
two items would have been matched;

• if ` ∈ Ji(n) + j, qK, then V` finds both Vi(n)+k−1 and Vi(n)+j−1 available in the system, and as
the policy is FCFM, choses the oldest one: again, V` and Vi(n)+k−1 are matched.

Consequently, wk−wj would imply in all cases that V` is matched with Vi(n)+k−1, an absurdity since
Vi(n)+k−1 of class wk is still unmatched at n. This completes the proof of necessity.

Regarding sufficiency, fix a state w satisfying both (12) and (13):

w = b1 a11 a12 ... a1k1 b2 a21...a2k2 b3....bq aq1...aqkq ,

where q ≥ 1, kq ∈ N for all q, b` ∈ V for all ` and a`j ∈ V for all `, j. In particular, from (12) we have
that bi 6−bj for any i 6= j whereas from (13), a`,j 6−bi for any j and any i ≤ `. Let us show that the
chain (Bn)n∈N can reach the state w. For this we construct inductively an arrival vector V leading
to w from the state ∅. At first, set

V := (Vn−q+1, Vn−q+2, ..., Vn) = (b1, ..., bq) .

Then, we investigate all elements a`j from left to right, as follows. We start from a11:

10
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(1) if there is no element a`′j′ to the right of a11 such that a11−a`′j′ , then set Vn−q−1 = a11,
Vn−q = b1, Vn−q+1 = c ∈ E (a11), in a way that the vertex of class a11 is matched with that of
class b, and we retrieve the letter a11 to the right of b1 because the item of class c is matched
with a11;

(2) if there exists an element a`′j′ to the right of a11 such that a11−a`′j′ , we investigate all terms
a`′′j′′ to the left of a`′j′ . If one of them, a`′′j′′ is such that a`′′j′′−a`′j′ , then a`′j′ could be matched
in FCFM with another item arrived before a11. Then we do as in case (1): Vn−q−1 = a11,
Vn−q = b1, Vn−q+1 = c ∈ E (a11);

(3) if there exists an element a`′j′ to the right of a11 such that a11−a`′j′ , and no term a`′′j′′ to the
left of a`′,j′ is such that a`′′j′′−a`′j′ , we interpose a term a`′j′ in V between b1 and b2 (or at the
extreme right of V if q = 1), and a term a`j between b`′ and b`′+1 (or at the extreme right of V
if q = `′), in a way that the two corresponding items are matched.

Then, by induction we investigate in the same way all the terms a`j not yet considered:

(1) if there is no element a`′j′ to the right of a`j such that a`j−a`′j′ , then in V we interpose a letter
a`j just to the left of b1, and a letter c ∈ E (a`j) to the left of b`+1 if ` < q (or at the extreme
right of V if ` = q); the items of classes c and a`,j are matched and a term a`j appears at the
right place in the detailed state of the system;

(2) we do as in case (1) if there exists an element a`′j′ to the right of a`j such that a`j−a`′j′ , but
one of the non yet investigated terms a`′j′ to the left of a`′j′ is such that a`′′j′′−a`′j′ .

(3) if there exists an element a`′j′ to the right of a`j such that a`j−a`′j′ , and no term a`′′j′′ to the
left of a`′j′ is such that a`′′j′′−a`′j′ , then in V we interpose a term a`′j′ just to the left of b`+1

(or at the extreme right of V if ` = q), and a term a`j to the immediate left of b`′+1 (or at the
extreme right of V if `′ = q), in a way that the two corresponding items are matched.

We continue this construction on and on, until all the letters a`j ∈ w|V are investigated and the
corresponding items are matched. The final arrival vector V that we obtain is of size q′, where

q′ ∈

t

q +

q∑
`=1

k`, q + 2

q∑
`=1

k`

|

.

Indeed, the number of items added to V is at least equal to the number of letters of w|V , and at
most equal to twice the latter number (which is the case if all the corresponding items entered the
system before the item of class b1 and are matched after the arrival time of the latter). Finally, for
any n ≥ q+ 2

∑q
`=1 k`, if Bn−q′ = ∅, an arrival scenario V for the q′ following time epochs yields to a

state Bn = w. This concludes the proof. �

As a consequence,

Lemma 2. The two subsets admB and admF are isomorphic. More precisely, the following is a
one-to-one relation, {

admB ←→ admF
w ←→ ~w.

Proof. From Lemma 1, it is sufficient to prove that a state w belongs to admF if and only if ~w satisfies
both (12) and (13). The proof of this statement is similar to that of Lemma 1. �

We can now state the following strong connexion between the dynamics of (Bn)n∈N and (Fn)n∈N,

11
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Proposition 2. Let ΠB be the measure on V∗ defined by (11). Then for any two admissible states

w,w′ ∈ V∗ for (Bn)n∈N, the states ~w and ~w′ are admissible for (Fn)n∈N and we have that

ΠB(w)P [Bn+1 = w′|Bn = w] = ΠB

(
~w′
)
P
[
Fn+1 = ~w|Fn = ~w′

]
. (14)

Proof of Proposition 2. Fix w ∈ admB (so that ~w ∈ admB from Lemma 2). We address the 5
possible cases for the transition of (Bn)n∈N. In cases (1)-(4) hereafter, we assume that w 6= ∅ and set
w = w1...wq ∈ V∗. Remember that w1 ∈ V.

(1) Let us first address the case where w′ = wa, for some a ∈ V. Plainly, such a state is admissible
if and only if a ∈ E (V(w))

c
. The backwards chain moves from w to wa at n+ 1 whenever Vn+1 = a,

so we have that
P [Bn+1 = wa|Bn = w] = µ(a).

On the other hand, Fn = ~wa = awq wq−1...w2 w1 entails that the item entering at n+ 1 is matched
with an item of class a entered before or at time n. Therefore we necessarily have that Fn+1 =
wq wq−1...w2 w1 = ~w, in other words

ΠB

(
~wa
)
P
[
Fn+1 = ~w|Fn = ~wa

]
= ΠB

(
~wa
)

= ΠB

(
~w
)
µ(a)

= ΠB(w)µ(a) = ΠB(w)P [Bn+1 = wa|Bn = w] .

(2) Suppose now that w′ = w1...wk−1 awk+1...wqwk. This means that wk ∈ V and that the item
Vn+1 is of class a, where a ∈ E (wk) ∩ E (V (w1....wk−1))

c
, so that in FCFM, Vn+1 is matched with

the item Vi(n)+k−1 of class wk. Suppose that

Fn = ~w′ = wkwq wq−1 ...wk+1 awk−1 ...w1.

Then from Lemma 1, wk is not adjacent to any of the elements of V (wq wq−1 ...wk+1). But wk−a,
so the item Vn+1 of class wk is matched with the item Vn+k+2 of class a, and we have with probability
1,

Fn+1 = wq wq−1 ...wk+1 wk wk−1 ...w1 = ~w.

Therefore, in this case,

ΠB

(
~w′
)
P
[
Fn+1 = ~w|Fn = ~w′

]
= ΠB

(
~w′
)

= ΠB

(
~w
)
µ(a)

= ΠB(w)µ(a) = ΠB(w)P [Bn+1 = w′|Bn = w] .

(3) Now, suppose that w′ = wkwk+1...wqw1 for some k ∈ J1, qK. This means that the class of item
Vn+1 belongs to E (w1), so Vn+1 is matched with the oldest item in line Vi(n). Then w2,w3, ...,wk−1

all belong to V, and so wk ∈ V and is the class of the oldest item in line after Vi(n), now becoming
the new oldest one. Suppose that

Fn = ~w′ = w1wq wq−1 ...wk+1 wk.

Applying again Lemma 1, we obtain that w1 is not adjacent to any of the elements of the set

V (wq wq−1 ...wk), so the state ~w′ is admissible. All the same, again in view of Lemma 1, w1 is
not adjacent to any of the elements w2,w3, ....,wk−1, which are all of V. So we obtain

Fn+1 = wq wq−1 ...wk+1 wk wk−1 ...w2 w1 = ~w

12
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if the incoming items Vn+2,...,Vn+k−1 are of respective classes w2, ...,wk−1 and Vn+k−2 is of a class
belonging to E (w1). This occurs with probability

µ
(
w2

)
µ
(
w3

)
...µ
(
wk−1

)
µ
(
E (w1)

)
.

Gathering all the above we obtain that

ΠB

(
~w′
)
P
[
Fn+1 = ~w|Fn = ~w′

]
= ΠB

(
~w′
)
µ
(
w2

)
µ
(
w3

)
...µ
(
wk−1

)
µ
(
E (w1)

)
= ΠB

(
~w
)
µ
(
E (w1)

)
= ΠB(w)µ

(
E (w1)

)
= ΠB(w)P [Bn+1 = w′|Bn = w] .

(4) Suppose now that w′ = ∅, which is possible only if w1 ∈ V, the incoming item Vn+1 belongs to
E (w1), and if q ≥ 2, w2, ...,wq ∈ V, which implies again from Lemma 1 that w1 6−wj for any j ∈ J2, qK.
Thus, Fn = ∅ leads to the state Fn+1 = ~w = wq wq−1 ....w2 w1 if and only if Vn+1 is of class w1, and
then Vn+2 is of class wq, Vn+3 is of class wq−1, and so on ..., Vn+q is of class w2 and Vn+q+1 is of a
class belonging to E (w1) . This event occurs with probability µ(1)µ (wq) ....µ (w2)µ (E (w1)) . So we
obtain

ΠB (∅)P
[
Fn+1 = ~w|Fn = ∅

]
= µ (w1)µ

(
w2

)
µ
(
w3

)
...µ
(
wq

)
µ
(
E (w1)

)
= ΠB(w)µ

(
E (w1)

)
= ΠB(w)P [Bn+1 = w′|Bn = w] .

(5) The only case that remains to be treated is when w = ∅. Then for any a ∈ V, we obtain Bn+1 = a
provided that Vn+1 is of class a, which occurs with probability µ(a). Then, Fn = a means that Vn+1 is
matched with an item of class a that was entered before n. Then we necessarily have that Fn+1 = ∅,
and thus

ΠB (a)P [Fn+1 = ∅|Fn = a] = ΠB (a) = µ(a) = ΠB(∅)P [Bn+1 = a|Bn = ∅] .
This completes the proof. �

We can now turn to the proof of Proposition 1.

Proof of Proposition 1. We first show that the measure ΠB defined by (11) is finite on admB under
condition (8). From Lemma 1, we know that for any word w in admB , the letters of V present in w
form an independent set of V, that is V(w) ∈ I(G), and intermediate letters of V̄ whose counterparts
in V are not adjacent of any prior letter of w in V. Therefore we have that

ΠB (admB) = ΠB(∅)

+
∑
I∈I(G)

∑
q∈N+

∑
(b1,...,bq)∈Iq,

(k1,k2,...,kq)∈Nq

∑
(ai1,..,aiki ,a21,..,aq1,..,aqkq )∈V

∑q
l=1

kl :

aij∈E({b1,...,bi})cfor all i∈J1,qK,j∈J1,kiK

ΠB

(
b1a11a12...a1k1b2....bqaq1...aqkq

)

= 1 +
∑
I∈I(G)

∑
q∈N+

∑
(b1,...,bq)∈Iq

q∏
i=1

µ(bi)

1 +
∑
k∈N+

∑
(ai1,...,aik)∈(E({b1,...,bi})c)k

k∏
`=1

µ(ai`)


≤ 1 +

∑
I∈I(G)

∑
q∈N+

1 +
∑
k∈N∗

∑
(a1,...,ak)∈(E(I)c)k

k∏
`=1

µ(a`)

q ∑
(b1,...,bq)∈Iq

q∏
i=1

µ(bi)


≤

∑
I∈I(G)

∑
q∈N

(∑
k∈N

µ (E (I)
c
)
k

)q
µ(I)q

=
∑
I∈I(G)

∑
q∈N

(
µ(I)

µ (E(I))

)q
,

13
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which is clearly finite under (8).

Let α be the normalizing constant of ΠB . Then it suffices to apply Kelly’s Lemma ([12], Section 1.7):
define for any two admissible states w,w′ ∈ admB ,

Pw′,w =
P [Bn+1 = w′ | Bn = w]αΠB(w)

αΠB(w′)
. (15)

Then, ΠB is the only stationary distribution of (Bn)n∈N if P defines a transition operator on V∗. But
this is a simple consequence of Proposition 2: for any w′ ∈ V∗, we have that∑

w∈V∗
Pw′,w =

∑
w∈V∗

P [Bn+1 = w′ | Bn = w]αΠB(w)

αΠB(w′)

=
∑

w∈V∗

ΠB

(
~w′
)
P
[
Fn+1 = ~w|Fn = ~w′

]
ΠB(w′)

=
∑

w∈V∗
P
[
Fn+1 = ~w|Fn = ~w′

]
= 1,

where we use the fact that (Fn)n∈N is a Markov chain and Lemma 2. This concludes the proof for
(Bn)n∈N. We can now reverse the argument by exchanging the roles of Bn, Bn+1 and Fn, Fn+1 in the
definition (15). This entails that (Fn)n∈N is the reversed Markov chain of (Bn)n∈N, on a sample space
where arrivals are reversed in time and exchanged with their match. In particular (Fn)n∈N also has
the same stationary probability ΠB . �

3.4 Proof of Theorem 1

We are now in position to prove the main result of this section. As ΠB is the only stationary
distribution of (Bn)n∈N, from (10) it is clearly sufficient to check that

ΠW (w) =
∑

w∈admB :w|V=w

ΠB(w) for any w ∈ V∗.

Let w = w1...wq ∈ V∗. Then, from Lemma 1, any w ∈ admB such that w|V = w is of the form

w = w1a11 a12 ... a1k1 w2 a21...a2k2 w3 ... wqaq1 ... aqkq ,

where any of the elements a`j is such that a`j 6−wi for any i ≤ `. We therefore obtain that

∑
w∈admB :w|V=w

ΠB(w) = α

q∏
`=1

µ(w`)

1 +
∑
k∈N+

∑
(a`1,...,a`k)∈(E({w1,...,w`})c)k

k∏
j=1

µ (a`j)


= α

q∏
`=1

(
µ(w`)

∑
k∈N

(
µ

(
E
(
{w1, ..., w`}

)c))k)

= α

q∏
`=1

µ(w`)

µ

(
E
(
{w1, ..., w`}

)) = ΠW (w),

which concludes the proof of Theorem 1.
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4 Coupling in the General Matching model

In this Section we construct explicitly for a wide range of models, a stationary version of the buffer-
content process (Wn)n∈N. This will be done beyond the iid case, by the strong backwards coupling
method of Borovkov and Foss. By doing so, we show in which cases a unique stationary buffer content
exists and thereby, a unique stationary complete matching, in a sense that will be specified below.
The argument will be more easily developed in an ergodic-theoretical framework that we introduce
in Section 4.1. Then, we show in Section 4.2 that many matching policies (including ml and fcfm)
satisfy a remarkable property of sub-additivity, which will be the essential tool of our proofs, together
with the existence of (strong) erasing words in non-bipartite graphs, introduced in Section 4.3. Our
coupling results will then be given in Section 4.4 under assumption (H1’) or (H1”), and in Section 4.5
under assumption (IID).

4.1 General settings

The general matching model is intrinsically periodic: arrivals are simple but departure are pairwise,
so the size of the system has the parity of the original size at all even times - in particular a system
started empty can possibly be empty only every other time, and two systems cannot couple unless
their initial sizes have almost surely the same parity. To circumvent this difficulty, at first we track
the system only at even times. Equivalently, we change the time scale and see the arrivals by pairs of
items (as in the original bipartite matching model [9, 4, 2]) which play different roles: the first one
investigates first all possible matchings in the buffer upon its arrival according to φ, before possibly
considering the second one if no match is available, whereas the second one applies φ to all available
items, including the first one. By doing so, it is immediate to observe that we obtain exactly a GM
model as presented thus far, only do we track it at even times.

Throughout this sub-section, suppose that assumption (H1’) holds. To formalize the above observa-
tion, we let (Un)n∈N be the buffer content sequence at even times (we will use the term ”even buffer
content”), that is, Un = W2n, n ∈ N. We will primarily construct a (possibly unique) stationary ver-
sion of the sequence (Un)n∈N of even buffer content, by coupling. For this, we work on the canonical

space Ω0 := (V × S × V × S)
Z

of the bi-infinite sequence ((V2n ,Σ2n, V2n+1,Σ2n+1))n∈Z, on which we
define the bijective shift operator θ by θ ((ωn)n∈Z) = (ωn+1)n∈Z for all (ωn)n∈Z ∈ Ω. We denote by
θ−1 the reciprocal operator of θ, and by θn and θ−n the n-th iterated of θ and θ−1, respectively, for all
n ∈ N. We equip Ω0 with a sigma-field F 0 and with the image probability measure P0 of the sequence
((V2n ,Σ2n, V2n+1,Σ2n+1))n∈Z on Ω0. Observe that under (H1’), P0 is compatible with the shift, i.e.

for any A ∈ F , P0 [A ] = P0
[
θ−1A

]
and any θ-invariant event B (i.e. such that B = θ−1B) is

either P0-negligible or almost sure. Altogether, the quadruple Q0 :=
(
Ω0,F 0,P0, θ

)
is thus stationary

ergodic, and will be referred to as Palm space of the input at even times. For more details about this
framework, we refer the reader to the monographs [8], [3] (Sections 2.1 and 2.5) and [17] (Chapter 7).

Let the r.v.
(
V 0,Σ0, V 1,Σ1

)
be the projection of sample paths over their 0-coordinate. Thus(

V 0,Σ0, V 1,Σ1
)

can be interpreted as the input brought to the system at time 0, i.e. at 0 an item of
class V 0 and then an item of class V 1 enter the systems, having respective lists of preference Σ0 and
Σ1 over V, and the order of arrival between the two is kept track of (V 0 and then V 1). Then for any
n ∈ Z, the r.v.

(
V 0 ◦ θn, Σ0 ◦ θn, V 1 ◦ θn, Σ1 ◦ θn

)
corresponds to the input brought to the system

at time n. Define the subset
W2 = {w ∈W : |w| is even } .

For any W2-valued r.v. Y , we define on Ω0 the sequence
(
U

[Y ]
n

)
n∈N

as the even buffer content sequence

of the model initiated at value Y , i.e.{
U

[Y ]
0 = Y ;

U
[Y ]
n+1 =

(
U

[Y ]
n �φ (V 0 ◦ θn,Σ0 ◦ θn)

)
�φ (V 1 ◦ θn,Σ1 ◦ θn), n ∈ N,

P0 − a.s. (16)
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A stationary version of (16) is thus a recursion satisfying (16) and compatible with the shift, i.e. a
sequence (U ◦ θn)n∈Z, where the W2-valued r.v. U satisfies the equation

U ◦ θ =
(
U �φ (V 0,Σ0)

)
�φ (V 1,Σ1), P0 − a.s., (17)

see Section 2.1 of [3] for details. To any stationary buffer content (U ◦ θn)n∈Z corresponds a unique
stationary probability for the sequence (W2n)n∈N on the original probability space (Ω,F ,P). Moreover,
provided that P0 [U = ∅] > 0, the bi-infinite sequence (U ◦ θn)n∈Z corresponds on Q0 to a unique
stationary matching by φ (we write a φ-matching), that is obtained by using the (bi-infinite) family of
construction points {n ∈ Z : U ◦ θn = ∅}, and matching the incoming items by φ, within each finite
block between construction points.

In other words, obtaining constructively a stationary buffer-content at even times and thereby, a
stationary φ-matching on Z, amounts to solving on Q0 the almost-sure equation (17). This will be
done by constructing the associated backwards scheme, as in [13]: for a W2-valued r.v. Y and any

fixed n ≥ 0, the r.v. U
[Y ]
n ◦ θ−n represents the even buffer content at time 0, whenever initiated at

value Y , n time epochs in the past. Loynes’ theorem shows the existence of a solution to (17), as

the P0-almost sure limit of the non-decreasing sequence
(
U

[∅]
n ◦ θ−n

)
n∈N

, whenever the random map

driving the recursion (Un)n∈N is almost surely non-decreasing in the state variable. As the present
model does not exhibit any particular monotonic structure, such a result is a pariori out of reach. We
thus resort to Borovkov’s and Foss theory of Renovation, see [6, 7].

Following [5], we say that the buffer content sequence
(
U

[Y ]
n

)
n∈N

converges with strong backwards

coupling to the stationary buffer content sequence (U ◦ θn)n∈N if, P0-almost surely there exists N∗ ≥ 0

such that for all n ≥ N∗, U
[Y ]
n = U . Note that strong backwards coupling implies the (forward)

coupling between
(
U

[Y ]
n

)
n∈N

and (U ◦ θn)n∈N, i.e. there exists a.s. an integer N ≥ 0 such that

U
[Y ]
n = U ◦ θn for all n ≥ N . In particular the distribution of U

[Y ]
n converges in total variation to that

of U , see e.g. Section 2.4 of [3].

4.2 Sub-additivity

We show hereafter that most of the models we have introduced above satisfy a sub-additivity property
that will prove crucial in the main results of this section.

Definition 2 (Sub-additivity). An admissible matching policy φ is said to be sub-additive if, for all
z′, z′′ ∈ V∗, for all ς ′, ς ′′ ∈ S∗ whose letters are drawn by νφ and such that |ς ′| = |z′| and |ς ′′| = |z′′|,
we have that

|Qφ(z′z′′, ς ′ς ′′)| ≤ |Qφ(z′, ς ′)|+ |Qφ(z′′, ς ′′)| .

Proposition 3. The matching policies fcfs, lcfs, Random (including Priorities and u) and ml are
sub-additive.

Before turning to the proof of Proposition 3 in the remainder of this section, let us show by a counter-
example that, on the other hand, the policy ’Match the Shortest’ is not sub-additive:

Example 3 (ms is not sub-additive). Take as a matching graph, the graph of Figure 1, and the arrival
scenario depicted in Figure 3.

In the first case above we let z′ = 11 and z′′ = 133224. Then, for any ς ′ and ς ′′ we get Qms(z
′, ς ′) = 11

and Qms(z
′′, ς ′′) = ∅, whereas performing Qms(z

′z′′, ς ′ς ′′) = 1114. So

4 = |Qms(z
′z′′, ς ′ς ′′)| = 4 > 2 = |Qms(z

′, ς ′)|+ |Qms(z
′, ς ′)| = 2.
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1 1 1 3 3 2 2 4

1 1 1 3 3 2 2 4

Figure 3: ’Match the Shortest’ is not sub-additive.

4.2.1 Non-expansiveness

In the framework of stochastic recursions, the non-expansiveness property with respect to the `1-norm,
as introduced by Crandall and Tartar [10], amounts to the 1-Lipschitz property of the driving map of
the recursion. Similarly,

Definition 3 (Non-expansiveness). A class-admissible policy φ is said non-expansive if for any x and
x′ in X, any v ∈ V and any σ ∈ S that can be drawn by νφ,

‖x′ }φ (v, σ)− x}φ (v, σ)‖ ≤ ‖x′ − x‖. (18)

Proposition 4. Any random matching policy (in particular, priority and u) is non-expansive.

Proof. The result has been proven for priority and u in [15]: this is precisely the inductive argument,
respectively in the proofs of Lemma 4 and Lemma 7 therein. As is easily seen, the same argument can
be generalized to any random policy φ, once the list of preference that is drawn from νφ is common to
both systems. Indeed, the following consistency property holds: for any states x and x′, any incoming
item v and any list of preferences σ drawn from νφ,[{

pφ(x, v, σ), pφ(x′, v, σ)
}
⊂ P(x, v) ∩ P(x′, v)

]
=⇒

[
pφ(x, v, σ) = pφ(x′, v, σ)

]
, (19)

in other words, the choice of match of v cannot be different in the two systems, if both options were
available in both systems. The result follows for any random policy. �

Proposition 5. ml is non-expansive.

Proof. The proof is similar to that for random policies, except for the consistency property (19),
which does not hold in this case. Specifically, an entering item can be matched with items of two
different classes in the two systems, whereas the queues of these two classes are non-empty in both
systems. Let us consider that case: specifically, a v-item enters the system, and for a common draw
σ according to the (uniform) distribution νml, we obtain pml(x, v, σ) = k and pml(x

′, v, σ) = k′ for
{k, k′} ⊂ P(x, v) ∩ P(x′, v) and k 6= k′. Thus we have

‖x′ }ml (v, σ)− x}ml (v, σ)‖ =
∑
i6=k,k′

|x(i)− x′(i)|+R, (20)

where
R = |(x(k)− 1)− x′(k)|+ |x(k′)− (x′(k′)− 1)| .

We are in the following alternatives,

1. if x(k) > x′(k) and x′(k′) > x(k′), then

R = (x(k)− 1− x′(k)) + (x′(k′)− 1− x(k′)) = |x(k)− x′(k)|+ |x(k′)− x′(k′)| − 2.

17
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2. if x(k) ≤ x′(k) and x′(k′) > x(k′), then

R = (x′(k)− x(k) + 1) + (x(k′)− 1− x′(k′)) = |x(k)− x′(k)|+ |x(k′)− x′(k′)| .

3. if x(k) > x′(k) and x′(k′) ≤ x(k′), we also have

R = (x(k)− 1− x′(k)) + (x(k′)− x′(k′) + 1) = |x(k)− x′(k)|+ |x(k′)− x′(k′)| .

Observe that the case x(k) ≤ x′(k) and x′(k′) ≤ x(k′) cannot occur. Indeed, by the definition of ml
we have that

x(k′) ≤ x(k) and x′(k) ≤ x′(k′),

which would imply in turn that

x(k) = x(k′) = x′(k) = x′(k′).

This is impossible since, in that case, under the common list of preferences σ both systems would
have chosen the same match for the new v-item.

As a conclusion, in view of (20), in all possible cases we obtain that

‖x′ }ml (v, σ)− x}ml (v, σ)‖ ≤
∑
i 6=k,k′

|x(i)− x′(i)|+ |x(k)− x′(k)|+ |x(k′)− x′(k′)| = ‖x′ − x‖,

which concludes the proof. �

4.2.2 Proof of Proposition 3 for Non-expansive policies

As we prove below, the non-expansiveness for the `1-norm, which is satisfied by all random policies
(Proposition 4) and ml (Proposition 5), entails simply the sub-additivity of the corresponding model.

Fix a non-expansive matching policy φ. Keeping the notations of Definition 2, let us define the two
arrays (xi)i=1,...,|v′′| and (x′i)i=1,...,|v′′| to be the class details of the system at arrival times, starting

respectively from an empty system and from a system of buffer content w′, and having a common
input (v′′i , σ

′′
i )i=1,...,|v′′|, where (σ′′i )i=1,...,|u′′| are drawn from νφ on S. In other words, we set{

x0 = 0;
x′0 = [w′]

and by induction, {
xn+1 = xn }φ

(
v′′n+1, σ

′′
n+1

)
, n ∈ {0, . . . , |v′′| − 1} ;

x′n+1 = x′n }φ
(
v′′n+1, σ

′′
n+1

)
, n ∈ {0, . . . , |v′′| − 1} .

Applying (18) at all n, we obtain by induction that for all n ∈ {0, . . . , |v′′|},

‖x′n − xn‖ ≤ ‖x′0 − x0‖ = |w′|. (21)

Now observe that by construction, x|v′′| = [w′′] which, together with (21), implies that

|w| =
∥∥∥x′|v′′|∥∥∥ ≤ ∥∥∥x′|v′′| − x|v′′|∥∥∥+

∥∥x|v′′|∥∥ ≤ |w′|+ |w′′|,
hence the sub-additivity of φ.
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4.2.3 Proof of Proposition 3 for fcfm and lcfm

For the disciplines fcfm and lcfm, we cannot exploit a non-expansiveness property similar to (18).
Indeed, it is straightforward that a given common arrival can very well increase the distance between
the commutative images of the queue details of two systems:

Example 4. Consider the graph of Figure 1. Then, regardless of σ we have for instance that

‖[133�fcfm (2, σ)]− [311�fcfm (2, σ)]‖
= ‖[33]− [11]‖ = ‖(0, 0, 2, 0)− (2, 0, 0, 0)‖ = 4 > 2 = ‖(1, 0, 2, 0)− (2, 0, 1, 0)‖ = ‖[133]− [311]‖

whereas for lcfm,

‖[331�lcfm (2, σ)]− [113�lcfm (2, σ)]‖ = ‖[33]− [11]‖ = 4 > 2 = ‖[331]− [11]‖ ,

see Figure 4.

1 3 3 2

3 1 1 2

3 3 1 2

1 1 3 2

Figure 4: FCFM (left) and LCFM (right) are not non-expansive.
.

As we cannot apply the arguments of Section 4.2.2 we resort to a direct proof for both fcfm (for
which our argument is related to the proof of Lemma 4 in [2]), and lcfm. We keep the notation of
Definition 2, where we drop for short the dependence on ς in the notations Mfcfm(.) and Mlcfm(.), as
the various fcfm and lcfm matchings do not depend on any list of preferences.

FCFM. Start with the policy fcfm. We proceed in two steps,

Step I: Let |z′| = 1, and assume that Mfcfm(z′′) has K unmatched items. We need to show that
Mfcfm(z′z′′) has at most K + 1 unmatched items. There are three possible cases:

(a) The item u′1 is unmatched in Mfcfm(z′z′′) = Mfcfm(z′1z
′′). Then, by the definition of fcfm

z′1 6−z′′j for any letter z′′j of z′′. Again from the definition of fcfm, the presence in line of this
incompatible item z′1 does not influence the choice of match of any subsequent item of the word
z′′. Thus the matched pairs in Mfcfm(z′z′′) are exactly the ones in Mfcfm(z′′), so there are K+1
unmatched items in Mfcfm(z′z′′).

(b) The item z′1 gets matched in Mfcfm(z′z′′) with an unmatched item z′′j1 of Mfcfm(z′). Then, any
unmatched item in Mfcfm(z′′) remains unmatched in Mfcfm(z′z′′). On another hand, for any
matched item z′′i in Mfcfm(z′′) (let z′′j be its match), either z′′i 6−z′′j1 , and thus choses its match
in Mfcfm(v) regardless of whether z′′j1 is matched or not, and thus choses again z′′j , or z′′i −z′′j1
and thus from the fcfm property, we have j < j1 and in turn z′′j remains matched with z′′j
in Mfcfm(z′z′′). Therefore the matching induced by the letters of z′′ in Mfcfm(z′z′′) remains
precisely Mfcfm(z′′), so Mfcfm(z′z′′) has K − 1 unmatched items.

(c) The item z′1 gets matched with an item z′′j1 that was matched in Mfcfm(z′′) to some item z′′i1 .
The fcfm matching of z′1 with z′′j1 breaks the old match (z′′i1 , z

′′
j1

), so we now need to search a
new match for z′′i1 . Either there is no fcfm match for z′′i1 and we stop, or we find a match z′′j2 .
The new pair (z′′i1 , z

′′
j2

) potentially broke an old pair (z′′i2 , z
′′
j2

). We continue on and on, until
either z′′ik cannot find a new match or z′′jk was not previously matched, and consequently, with
K unmatched items in the first case and K − 1 in the second. Observe that due to the fcfm
property, we have i` ≤ i`+1 and j` ≤ j`+1 for all ` ≤ k.
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Step II: Consider now an arbitrary finite word z′. Observe, that if (z′i, z
′
j) ∈ Mfcfm(z′), then

(z′i, z
′
j) ∈ Mfcfm(z′z′′), as is the case for any admissible policy. Thus, denoting w′ = Qfcfm(z′),

we have Qfcfm(z′z′′) = Qfcfm (w′z′′). Denote w′ = w′1 . . . w
′
p. We will consider one by one the items in

w′, starting from the right to the left. If we denote for all 1 ≤ i ≤ p, M i
fcfm = Mfcfm(w′p−i+1 . . . w

′
pz
′′)

and Ki, the number of unmatched items in M i
fcfm, Step I entails by an immediate induction that for

all 1 ≤ i ≤ p, Ki ≤ i+ |Qφ(z′′)| . Hence we finally have

|Qφ(z′z′′)| = Kp ≤ p+ |Qφ(z′′)| = |Qφ(z′)|+ |Qφ(z′′)| ,

which concludes the proof for fcfm.

LCFM. We now turn to lcfm, for which we apply the same procedure as above,

Step I: Set |z′| = 1 and assume that Mfcfm(z′′) has K unmatched items. The three different cases
are the same as above,

(a) If z′1 is unmatched in Mlcfm(z′z′′), then z′1 is incompatible with z′′1 , otherwise the two items
would have been matched. In turn, if follows from the definition of lcfm that the presence in
line of z′1 does not influence the choice of match of any item z′′j that is matched in Mlcfm(z′′),
even though z′1−z′′j . So Mlcfm (z′z′′) has exactly K + 1 unmatched customers items.

(b) Whenever z′1 is matched in Mlcfm(z′z′′) with an item z′′j1 that was unmatched in Mlcfm(z′′),
any matched item z′′i in Mlcfm(z′′) that is compatible with z′′j1 has found in z′′ a more recent
compatible match z′′j . The matching of z′′i with z′′j still occurs in Mlcfm(z′z′′). Thus, as above
the matching induced in Mlcfm(z′z′′) by the nodes of z′′ is not affected by the match (z′1, z

′′
j1

),
so there are are K − 1 unmatched items in Mlcfm(z′z′′).

(c) Suppose now that z′1 is matched with a server z′′j1 that is matched in Mlcfm(z′′). We proceed as

for fcfm, by constructing the new corresponding matchings
(
z′1, z

′′
j1

)
,
(
z′′i1 , z

′′
j2

)
,
(
z′′i2 , z

′′
j3

)
, and

so on, until we reach the same conclusion as for fcfm (with the only difference that in lcfm
the indexes i1, i2, ... and j1, j2, ... are not necessarily ordered increasingly).

Therefore, at Step I we reach the same conclusions as for fcfm.

Step II: The construction for fcfm remains valid for any admissible policy, and in particular for
lcfm.

4.3 Erasing words

The concepts of erasing words and strong erasing words will also be useful in the construction below.

Definition 4. Let G = (V, E) be a connected graph, and φ be an admissible matching policy. Let
u ∈ W2. We say that the word z ∈ V∗ is an erasing word of u for (G,φ) if |z| is even and for any
two words ς ′ and ς possibly drawn by νφ on S∗ and having respectively the same size as z and u, we
have that

Qφ (z, ς ′) = ∅ and Qφ (uz, ςς ′) = ∅. (22)

In other words, an erasing word of u has the twofold property of being perfectly matchable by φ alone,
and together with u. The following proposition guarantees the existence of erasing words for any
stabilizable graph and any sub-additive policy.

Proposition 6. Let G be a non-bipartite graph and φ be a sub-additive matching policy. Then any
word u ∈W2 admits an erasing word for (G,φ).
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Proof. As will be clear below, the arguments of this proof do not depend on the drawn lists of
preferences, as long as they are fixed upon arrival. For notational convenience, we thus skip this
parameter from all notations (i.e. we write for instance Qφ(u) instead of Qφ(u, ς), and so on). We
first show that any admissible word of size 2 admits an erasing word y; so let us consider a word ij
where i6−j.

As G is connected, i and j are connected at distance, say, p ≥ 2, i.e. there exists a minimal path
i−i1−...−ip−1−j connecting i to j. If p is odd, then just set y = i1i2...ip−1. Clearly, Qφ(w) = ∅ and
as the path is minimal, in Mφ(ijz) i1 is matched with i, i3 is matched with i2, and so on, until ip−1

is matched with j. So Qφ(ijy) = ∅, and (22) follows.

We now assume that p is even. Set y1 = i1i2...ip−1ip−1. Then, in Mφ(ijy1) i1 is matched with i, i3
with i2, and so on, until both j and ip−2 are matched with an ip−1 item. So Qφ(ijy1) = ∅, however
Qφ(y1) = ip−1ip−1. But as G is non-bipartite, it contains an odd cycle. Thus (see e.g. the proof of
Lemma 3 in [15]) there necessarily exists an induced odd cycle in G, say of length 2r+ 1, r ≥ 1. As G
is connected, there exists a path connecting ip−1 to any element of the latter cycle. Take the shortest
one (which may intersect with the path between i to j, or coincide with a part of it), and denote it
ip−1−j1−j2−...−jq−k1, where k1 is the first element of the latter path belonging to the odd cycle,
and by k1−k2−...−k2r+1−k1, the elements of the cycle. See an example in Figure 5.

i

i1
i2 i3 ip−3

ip−2

ip−1

j

j1
j2
j3

jq

k1

k2r+1

k2

k2r

kr+3

k3

kr+2

kr+1kr

Figure 5: The path from i to j and then to an odd cycle

Then set
y2 = j1j1j2j2...jqjqk1k1k2k3...k2rk2r+1.

We are in the following alternative:

• if q is even, then in Mφ(y1y2) the two nodes ip−1 are matched with the two noded j1, the two
j2 with the two j3, and so on, until the two jq are matched with the two k1, and then, as the
cycle is induced, k2 is matched with k3, k4 with k5 and so on, until k2p is matched with k2p+1.
On the other hand, in Mφ(y2), the two j1 are matched with the two j2, the two j3 with the two
j4, and so on, until the two jq−1 are matched with the two jq. Then, a k1 is matched with k2,
k3 with k4 and so on, until k2p−1 is matched with k2p and k2p+1 is matched with the remaining
k1.

• if q is odd, then the edges of Mφ(y1y2) are as in the first case, until the two nodes jq−1 are
matched with the two nodes jq. But then, whatever φ is, one of the two nodes k1 is matched
with k2, k3 with k4, and so on, until k2p−1 is matched with k2p, and k2p+1 is matched with the
remaining k1. Also, in Mφ(y2), the two j1 are matched with the two j2, the two j3 with the two
j4, and so on, until the two jq−2 are matched with the two jq−1. Then, the two jq are matched
with the two k1, k2 is matched with k3, and so on, until k2p is matched with k2p+1.

In both cases, we obtain that both Qφ(y1y2) = ∅ and that Qφ(y2) = ∅. In particular, as Qφ(ijy1) = ∅
we have Qφ(ijy1y2) = ∅. Therefore y = y1y2 is an erasing word for ij. See an example in Figure 6.
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i j i1 i2 i3

...
ip−2 ip−1ip−1 j1 j1 j2 j2

...
jq−1 jq−1 jq jq k1 k1 k2 k3 k4

...
k2r−1k2rk2r+1

i1 i2 i3 i4

...
ip−3 ip−2 ip−1 ip−1 j1 j1 j2 j2 j3 j3

...
jq−2 jq−2 jq−1 jq−1 jq jq k1 k1 k2 k3

...
k2rk2r+1

Figure 6: The two perfect matchings Mfcfm(ijy1y2) and Mfcfm(y1y2), for an even p and an odd q.

We now consider any word u ∈W2, say u = u1u2...u2r1 . First, as we just proved, there exists an erasing
word, say z1, for the two-letter word u2r1−1u2r1 . In particular, we have that Qφ

(
u2r1−1u2r1z

1
)

= ∅.
Thus, the sub-additivity of φ entails that∣∣Qφ (uz1

)∣∣ ≤ |Qφ (u1u2...u2r1−2)|+
∣∣Qφ (u2r1−1u2r1z

1
)∣∣ = |Qφ (u)| − 2,

in other words the input of z1 strictly decreases the size of the buffer content u, that is, if we let
u2 = Qφ

(
uz1
)
, then u2 is of even length 2r2, where r2 < r1. We then apply the same argument as

above for u2 instead of u: there exists an erasing word z2 for the two-letter word u2
2r2−1u

2
2r2 gathering

the last two letters of u2, so as above,∣∣Qφ (uz1z2
)∣∣ =

∣∣Qφ (u2z2
)∣∣ ≤ ∣∣Qφ (u2

)∣∣− 2.

We can continue this construction by induction, until we reach an index ` such that

Qφ
(
uz1z2...z`

)
= ∅. (23)

Observe that, as z1, ...z` are all erasing words, we have that Qφ(z1) = Qφ(z2) = ... = Qφ(z`) = ∅.
Thus Qφ(z1z2...z`) = ∅, which shows, together with (23), that z = z1z2...z` is an erasing word for u.
�

Clearly, uniqueness of the erasing does not hold true. In particular, if z1 and z2 are both erasing
words of the same word u for (G,φ), then z1z2 also is. Hence the following definition,

Definition 5. Let u ∈ W2. An erasing word z of u for (G,φ) is said to be reduced, if z cannot be
written as z = z1z2, where z1 and z2 are both non-empty erasing words of u. A reduced erasing word
z of u is said to be minimal, if it is of minimal length among all reduced erasing words of u.

Definition 6. A word z ∈ V∗ of even length 2p is said to be a strong erasing word for the graph
G = (V, E) and the matching policy φ if

1. z is completely matchable by φ together with any two-letter word, i.e. for any i, j ∈ V such
that i6−j, and any two words ς ′ and ς of S∗ whose letters can be possibly drawn by νφ, and of
respective length 2 and 2p, we have that Qφ (ijz, ςς ′) = ∅;

2. any right sub-word of z of even length is completely matchable by φ, i.e. for any ` ∈ J0, p−1K and
any ς ′ of length 2p and whose letters can possibly be drawn by νφ, Qφ

(
z2`+1...z2p, ς

′
2`+1...ς

′
2p

)
= ∅.

Plainly, a strong erasing word for (G,φ) is a an erasing word for any two-letter word ij with i6−j. Also
observe that condition 2 above is typically met whenever the letters of z form a cycle of G - this fact
will be exploited below.

Lemma 3. Let φ be a sub-additive matching policy and z be a strong erasing word for G = (V, E)
and φ. Then for any ς ′ ∈ S∗ of length |z|, any word u ∈ W2 and any ς ∈ S∗ of length |u|, we have
that |Qφ(uz, ςς ′)| ≤ |Qφ(u, ς)| − 2.
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Proof. From the sub-additivity of φ, if |u| = 2r,

|Qφ(uz, ςς ′)| ≤ |Qφ (u1...u2r−2, ς1...ς2r−2)|+ |Qφ (u2r−1u2rz, ς2r−1ς2rς
′)|

= |Qφ (u1...u2r−2, ς1...ς2r−2)| = |Qφ(u, ς)| − 2,

using the fact that u1...u2r−2 ∈W2. �

To address the question of existence of strong erasing words for a given pair (G,φ), we need the
following Lemma,

Lemma 4. Any connected non-bipartite graph G = (V, E) can be spanned by an odd cycle, i.e. there
exists a cycle of odd length in which all the nodes of V appear at least once.

Proof. As G is non-bipartite, G contains an odd cycle C := c1−c2− ... c2q+1. Let p ∈ N be the number
of nodes of V which do not appear in the latter cycle, and denote by i1, ..., ip, these nodes. By
connectedness, there exists for any j ∈ J1, pK, a minimal path Pj of length, say, `j , from k1 to ij .
Then, we can connect k1 to itself by following, first, the cycle C, and then all the paths Pj from k1 to
ij and then the reversed path of Pj from ij to k1, successively for all j ∈ J1, pK. The resulting path is
a cycle connecting to k1 to itself and spanning the whole set V, and its length is 2q + 1 +

∑p
j=1 2`j ,

an odd number. �

Let us recall (see [14] for details), that a connected graph G = (V, E) is said to be separable of order
p, p ≥ 2, if there exists a partition of V into maximal independent sets I1, . . . , Ip, such that

∀i 6= j, ∀u ∈ Ii, ∀v ∈ Ij , u−v .

In particular, a separable graph G is non-bipartite if and only if its order is at least 3.

Proposition 7. The following conditions are sufficient for the existence of a strong erasing word for
(G,φ):

(i) G is non-bipartite separable and φ is any admissible policy;

(ii) G is non-bipartite and φ = lcfm.

Proof. (i) Suppose that G is separable of order p ≥ 3, and let I1, ..., Ip be the corresponding
maximal independent sets. Let z be a word of length 2p which contains exactly two letters of
each maximal independent set, but whose last two letters do not represent the same independent
set. Then it is immediate that z, and any even right sub-word of z is completely matchable by
any φ. Second, if we let i and j ∈ V such that i 6−j, which is true if and only if i and j belong
to the same maximal independent set, say I`. Then it is immediate that Qφ(ijz) = ∅ for any φ,
since any incoming item of a class in any other independent set than I` can be matched on the
fly with any element of I`.

(ii) As an immediate consequence of Lemma 4, there exists a cycle C = c1−c2−...−c2q+1 such that

E ({c1, c2, ..., c2q+1}) = V, (24)

which is true in particular for the odd cycle that spans V. We let z be the word consisting of
all the nodes of C visited 4 times in that order, i.e.

z = c1c2...c2q+1c1...c2q+1c1...c2q+1c1...c2q+1.

We drop again the lists of permutations from all notation. First observe that, as C is a cycle
we clearly get Qlcfm(z) = ∅, as for any admissible policy. Second, as C is a cycle it is also clear
that any right sub-word of z of even size is completely matchable by any admissible policy. Now
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fix i and j in V such that i 6−j. We need to show that Qlcfm(ijz) = ∅. For this let us define the
following sets for k ∈ {i, j},

H(k) = {even indexes 2` in J1, 2q + 1K : c2`−k} ;

O(k) = {odd indexes 2`+ 1 in J1, 2q + 1K : c2`+1−k} .

We are in the following alternative:

Case 1: O(i) ∪ O(j) 6= ∅, i.e. i or j (or both) neighbor a node of odd index in C . Let 2p + 1 =
minO(i) ∪ O(j). First observe that, by the definition of lcfm all items of even indexes in
J1, 2pK are matched with the immediate preceding item of odd index, so the entering c2p+1

item finds only i and j in the system, and is matched with j if c2p+1−j, or with i if j 6−c2p+1

and i−c2p+1. Let us assume that we are in the first case, the second one can be treated
analogously. So we have Qlcfm (ijc1...c2p+1) = i. Let us now define

H̃(i) = {even indexes 2` in J2p+ 2, 2qK : c2`−i} .

We have three sub-cases:

Sub-case 1a: H̃(i) 6= ∅. Set 2r = min H̃(i). Then the i item is matched with c2r. Indeed, in lcfm
all items of odd indexes in J2p+2, 2rK are matched with the immediate preceding item,
even if they are compatible with i. Then, after the i item is matched with the c2r
item, all items of odd indexes in J2r+ 1, 2q− 1K (if the latter is non-empty) in the first
exploration of C are matched with the immediate following item, until the first c2q+1

item is matched with the second c1 item. After that, in the second exploration of C
all items of even nodes are matched with the following item of odd index, until the
second c2q item is matched with the second 2q + 1 item, so we get a perfect matching
of ij with the first two explorations of C . Then the last two visits of C are perfectly
matched on the fly, since C is a cycle. So Qlcfm(ijz) = ∅.

Sub-case 1b: H̃(i) = ∅ and O(i) 6= ∅. Due to the lcfm policy, in the first exploration of C all odd
items are matched with the immediate preceding item of even index, until c2q+1, in a
way that Qlcfm(ijc1...c2q+1) = i. Let 2s+ 1 = minO(i). Then the remaining i item is
matched with the second c2s+1, since in lcfm, all items of even indexes less than 2s+1
that are compatible with i, are matched with the preceding item of odd index. After
that, if s < q then all remaining items of even indexes in the second exploration of C
are matched with the immediate following item, until the second c2q item is matched
with the second c2q+1. Thus Qφ(ijz) = ∅, and we conclude as in 1a.

Sub-case 1c: H̃(i) = ∅ and O(i) = ∅. From (24) there necessarily exists an even index (take the
smallest one) 2u ∈ J2, 2pK such that i−c2u. Then, as in 1b we haveQlcfm (ijc1...c2q+1) =
i. Then, in the second exploration of C , in lcfm all items of even indexes are matched
with the preceding item of odd index, until the second c2q+1 remains unmatched, i.e.
Qlcfm (ijc1...c2q+1c1...c2q+1) = ic2q+1. Then the remaining c2q+1 item is matched with
the third c1, and in the third visit of C , all items of even indexes are matched with
the following item of odd index, until c2u is matched with i. To finish the third ex-
ploration, if u < q then all items of odd index in J2u + 1, 2q − 1K are matched with
the following item of even index, until the third c2q+1 remains alone unmatched, i.e.
Qlcfm (ijc1...c2q+1c1...c2q+1c1...c2q+1) = c2q+1. At this point, the forth c1 is matched
with the third c2q+1, and then in the fourth exploration of C all items of even index
are matched with the following item of odd index, until the last c2q is matched with
the last c2q+1 item. We end up again with Qlcfm(ijz) = ∅.

Case 2: O(i) ∪ O(j) = ∅. In that case i and j both have only neighbors of even indexes in C ,
in particular from (24) H(i) and H(j) are both non-empty. Let 2p = minH(i) and 2p′ =
minH(j). Again from the definition of lcfm, in the first exploration of C , all items of even
indexes are matched with the preceding item of odd index, until c2q+1 remains unmatched,
so Qlcfm (ijc1...c2q+1) = ijc2q+1. Then the first c2q+1 item is matched with the second
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c1, and if 2 < min(2p, 2p′), in the second exploration of C all items of even index in
J2,min(2p, 2p′)− 2K are matched with the following item of odd index. We have again, two
sub-cases:

Sub-case 2a: p′ ≤ p, so in lcfm the j-item is matched with the second c2p. In the second ex-
ploration of C , after the c2p item has been matched with the j item, if p < q all
items of odd indexes in J2p + 1, 2q − 1K are matched on the fly with the immediate
following item of even index, until only the second c2q+1 item remains unmatched,
so Qlcfm (ijc1...c2q+1c1...c2q+1) = ic2q+1. Then the second c2q+1 is matched with the
third c1. In the third exploration, if p > 2, all items of even indexes in J2, 2p − 2K
are matched with the following item, until the c2p item is matched with i. We then
conclude as in 1c, and end up again with Qlcfm(ijz) = ∅.

Sub-case 2b: p < p′, so the i-item is matched with the second c2p. Then the j item remains to be
matched, and we conclude exactly as in 2a, by matching the j item with the third c2p′

(instead of i with the third c2p). This concludes the proof.

�

Remark 2. Observe that the conclusion of (ii) of Proposition 7 clearly hold true for any policy φ that
emulates lcfm on the input ijz, for z = c1...c2q+1c1....c2q+1c1...c2q+1c1...c2q+1 (keeping the notation
of the above proof), and for any i6−j ∈ V. This is true in particular if φ is a priority policy such that
for any index j ≥ 2, cj prioritizes cj−1 over any other node, and c1 prioritizes c2q+1 over any other
node.

4.4 Renovating events

Define the following family of events for any W2-valued r.v. Y ,

An(Y ) =
{
U [Y ]
n = ∅

}
=
{
Qφ(Y V 0V 1V 0 ◦ θ V 1 ◦ θ ... V 0 ◦ θn−1V 1 ◦ θn−1) = ∅

}
, n ≥ 0.

Let us first observe that

Proposition 8. Let G = (V, E) be a matching graph and φ be an admissible matching policy. Suppose
that assumption (H1’) holds, and let Y be a W2-valued random variable. If the following condition
holds:

lim
n→∞

P0

[ ∞⋂
k=0

n⋃
l=0

Al(Y ) ∩ θkAl+k(Y )

]
= 1, (25)

then
(
U

[Y ]
n

)
n∈N

converges with strong backwards coupling to a stationary buffer content sequence

(U ◦ θn)n∈N.

Proof. Clearly, (An(Y ))n∈N is a sequence of renovating events of length 1 for
(
U

[Y ]
n

)
n∈N

(see [6, 7]).

The result then follows from Theorem 2.5.3 of [3]. �

The above result applies to any initial word of even size, however it does not guarantee the uniqueness
of a solution to (17). As we now demonstrate, this stronger property holds at least under the additional
assumption

(H2) There exists a strong erasing word for (G,φ).

Let us define the following sets of random variables:

Y r
2 = {W2 − valued r.v. Y : |Y | ≤ 2r a.s.} , r ∈ N+,
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and let

Y ∞2 :=

+∞⋃
r=1

Y r
2 .

Lemma 5. Let G = (V, E), φ be a sub-additive policy, and suppose that (H2) holds. Fix a positive
integer r, and define the events

Br(z1, ..., zr) =
{
V 0V 1 V 0 ◦ θ V 1 ◦ θ .... V 0 ◦ θm−1V 1 ◦ θm−1 = z1z2...zr

}
; (26)

C r
n (z1, ..., zr) = An(∅) ∩ θ−nBr(z1, ..., zr), (27)

where the zi’s are (possibly identical) strong erasing words for (G,φ) and m =
∑r
i=1 |zi|/2. Then for

any any r.v. Y ∈ Y r
2 and n ≥ 1, up to a negligible event we have that C r

n (z) ⊂ An+m(Y ).

Proof. Fix n ≥ 1, r ≥ 1 and Y ∈ Y r
2 . All the arguments in this proof hold for any fixed sequence of

lists of preferences, so we drop again that parameter of all notations for short. Throughout this proof,

let us also fix a sample in C r
n (z). First, as U

[∅]
n = ∅, the matching of the arrivals up to n is complete,

i.e. we have that Qφ
(
V 0 V 1 V 0 ◦ θ V 1 ◦ θ ... V 0 ◦ θn−1 V 1 ◦ θn−1

)
= ∅. Thus from the sub-additivity

of φ we have∣∣∣U [Y ]
2n

∣∣∣ =
∣∣Qφ(Y V 0 V 1 V 0 ◦ θ V 1 ◦ θ ... V 0 ◦ θn−1 V 1 ◦ θn−1)

∣∣
≤ |Qφ(Y )|+

∣∣Qφ(V 0 V 1 V 0 ◦ θ V 1 ◦ θ ... V 0 ◦ θn−1 V 1 ◦ θn−1)
∣∣ = |Y | ≤ 2r. (28)

Now, as z is a strong erasing word for (G,φ), from Lemma 3 for any l ∈ J1, rK we have that∣∣∣U [Y ]

n+
∑l
i=1 |zi|/2

∣∣∣ =
∣∣∣Qφ (U [Y ]

n+
∑l−1
i=1 |zi|/2

zl
)∣∣∣ ≤ ∣∣∣Qφ (U [Y ]

n+
∑l−1
i=1 |zi|/2

)∣∣∣− 2 =
∣∣∣U [Y ]

n+
∑l−1
i=1 |zi|/2

∣∣∣− 2,

where we understand
∑0
i=1 . as 0. This together with (28) and the fact that

∣∣∣U [Y ]
n

∣∣∣ is even, entails

that for some index n′ ∈ Jn + 1, n + mK (take the smallest one), we have U
[Y ]
n′ = ∅. Let k ∈ J0, rK

be the largest integer such that n′ ≥ n +
∑k
i=1 |zi|/2, that is, such that k full strong erasing words

z1, z2, ...zk (or none if k = 0) have entered the system until time n′. Let also, if k < r, j ∈ J0, zk+1K
be the (even) number of letters of zk+1 that have entered the system up to time n′ − 1 included. In
other words the input of letters between times n and n′ − 1 reads

V 0 ◦ θn V 1 ◦ θn ... V 0 ◦ θn
′−1 V 1 ◦ θn

′−1 =

 z1z2...zkzk+1
1 zk+1

2 ...zk+1
j , if k < r;

z1z2...zr, else.

If k < r, as for any right sub-word of zk+1 of even size, zk+1
j+1 z

k+1
j+2 ...z

k+1
|zk+1| is completely matchable by

φ. Thus, as the following strong erasing words (if k < r − 1) are also perfectly matchable, we obtain
that

U
[Y ]
n+rm = Qφ

(
zk+1
j+1 z

k+1
j+2 ...z

k+1
|zk+1|z

k+2...zr
)

= ∅,

which completes the proof. �

We thus have the following

Proposition 9. Let G = (V, E), φ be a sub-additive policy, and suppose that (H1’) holds together with
(H2). Let r ∈ N+. Suppose that there exists a family of (possibly identical) r strong erasing words
z1, ...zr such that

lim
n→∞

P0

[ ∞⋂
k=0

n⋃
l=0

Al(∅) ∩ θkAl+k(∅) ∩ θ−lBr(z1, ..., zr)

]
= 1, (29)

for Br(z1, ..., zr) defined by (26). Then, there exists a solution Ur to (17) in Y ∞2 , to which all

sequences
(
U

[Y ]
n

)
n∈N

, for Y ∈ Y r
2 , converge with strong backwards coupling.
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Proof. Lemma 5 shows that the events
(
C r
n (z1, ..., zr)

)
n∈N defined by (27) form a a sequence of

renovating events of length m =
∑r
i=1 |zi|/2 for the recursion

(
U

[Y ]
n

)
n∈N

, for any Y ∈ Y r
2 . Indeed,

for any n, on C r
n (z1, ..., zr) the value of

(
U

[Y ]
n+m

)
n∈N

equals the empty set and does not depend on the

input up to n. Observe that, by θ-invariance, (29) is equivalent to the sufficient condition in Theorem
2.5.3 of [3] applied to

(
C r
n (z1, ..., zr)

)
n∈N. It thus follows again from that Theorem, that all such

sequences
(
U

[Y ]
n

)
n∈N

converge with strong backwards coupling to a solution Ur to (17). �

Consequently,

Theorem 2. If the conditions of Proposition 9 are satisfied for any r ∈ N+, then the solution U

to (17) is unique in Y ∞2 , and all sequences
(
U

[Y ]
n

)
n∈N

, Y ∈ Y ∞2 , converge with strong backwards

coupling to U .

Proof. For any r ≥ 1 we can apply Proposition 9, and then the same argument to r+ 1, yielding that

all sequences
(
U

[Y ]
n

)
n∈N

for Y ∈ Y r+1
2 , also converge with strong backwards coupling to a solution

Ur+1. As this is true in particular for any Y ∈ Y r
2 , and by uniqueness of the backwards coupling

limit, Ur and Ur+1 coincide P0-almost surely. We conclude by and immediate induction on r that
all solutions Ur, r ≥ 1, coincide almost surely, and let U∗ be this common limit. Uniqueness of the
solution of (17) can be shown using Remark 2.5.3 in [3]: any two solutions U∗ and U∗∗ in Y ∞2 , belong
to some set Y r

2 , r ≥ 0. Thus for some strong erasing words z1, ..., zr for (G,φ),
(
C r
n (z1, ..., zr)

)
n∈N

forms a sequence of renovating events for both sequences (U∗ ◦ θn)n∈N and (U∗∗ ◦ θn)n∈N which, as
they converge with strong backwards coupling to the same limit and are both stationary, necessarily
coincide almost surely. �

The renovation conditions (25) and (29) have the following intuitive interpretation: in (25), with
overwhelming probability, any recursion started at Y at some point in the past, couples at value ∅
with the recursion started at Y at time 0, before a future horizon that goes large. In condition (29),
for an initially empty system the first m arrivals after this coupling time form a sequence of r strong
erasing word for (G,φ). As will be shown in Section 4.5, these conditions take a much simpler form
whenever the input is i.i.d.. On another hand, in Example 5 we show a simple case where Theorem 2
applies, for a separable graph G and a non-independent input.

We conclude this section by observing that these renovation conditions cannot be satisfied unless the
measure µ introduced in assumption (H1’) is an element of Ncond(G) (defined by (8)).

Proposition 10. Under assumption (H1’), conditions (25) and (29) entail that µ ∈ Ncond(G).

Proof. If for some independent set I of G,

µ(I) =
µ0(I) + µ1(I)

2
>
µ0(E(I)) + µ1(E(I))

2
,

Birkhoff’s Theorem entails the total number of arrivals of elements of I (from elements of
(
V 0 ◦ θn

)
n∈Z

and
(
V 1 ◦ θn

)
n∈Z almost surely exceeds the total number of arrivals of elements of the neighboring

classes of I by a quantity that is of order n in the long run . All the same, if we replace the inequality
above by an equality, the Markov chain is at most null recurrent, as in the proof of Theorem 2 in [14].

So
(
U

[Y ]
n

)
n∈N

cannot visit zero infinitely often with probability one. Hence (25) for Y = ∅ a.s., and

thereby (29), cannot hold. �
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4.5 Independent Case

In this section, we reformulate the renovation condition (25), in the particular case where the input is
iid and thereby, where the recursion (Un)n∈N is a Markov chain, under a natural stability condition
which we now specify. Denote for any W2-valued r.v. Y and any j ∈ N∗, by τj(Y ) the j-th visit time

to ∅ (or return time if Y ≡ ∅) for the process
(
U

[Y ]
n

)
n∈N

, that is

τ1(Y ) := inf{n > 0, U [Y ]
n = ∅}, τj(Y ) := inf{n > τj−1(Y ), U [Y ]

n = ∅}, j ≥ 2.

We define the following stability condition depending on the initial condition Y ,

(H3) The stopping time τ1(Y ) is integrable.

Under assumption (IID), the Markov chain (Un)n∈N is clearly irreducible on W2. So (H3) holds true
whenever the chain is positive recurrent. Therefore applying Theorem 1 for fcfm, and Theorem 2 of
[14] we obtain the following list of sufficient conditions for (H3):

Proposition 11. Condition (H3) holds true for any W2-valued initial condition Y , whenever G is
non-bipartite, (IID) holds, µ ∈ Ncond(G), and in either one of the following cases:

1. φ = fcfm;

2. φ = ml;

3. φ is any admissible policy and G is separable.

We have the following result,

Proposition 12. If (IID) holds and Y ∈ Y ∞2 , then (H3) entails (25).

Proof. Fix throughout ε > 0, and r ∈ N+ such that Y ∈ Y r
2 . First observe that, as a consequence of

(H3) the random variable
κ = sup

{
k ∈ N : τ1(Y ) ◦ θ−k > k

}
that is, the largest horizon in the past from which the first visit to ∅ takes place after time 0, is a.s.
finite. In particular there exists a positive integer Kε such that

P0 [κ > Kε] <
ε

5
. (30)

Again in view of (H3), there exists an integer Tε > 0 such that

P0 [τ1(Y ) > Tε] <
ε

5
, (31)

and let us denote
Hε := 2Kε + 2r + Tε.

We know from Proposition 6 that any word admits at least one minimal erasing word. Also, there
are finitely many words in W2 of size less than Hε, and thus finitely many minimal erasing words of
those words. So the following integer is well defined, and depends only on Hε,

`ε =
1

2
max

u∈W2:|w|≤Hε
min
z∈V∗:

z minimal erasing word of u

|z|. (32)
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We now define the sequence (τ̃i)i∈N+
(where we drop the dependence on Y for notational convenience),

as the following subsequence of (τi(Y ))i∈N+
:

τ̃1 := τ1(Y ), τ̃i := inf{n > τ̃i−1 + `ε, U
[Y ]
n = ∅}, i ≥ 2.

Also define the following family of events: for all k ∈ N and i ∈ N+,

Dki (Y ) =

`ε⋃
m=1

{
V 0 ◦ θτ̃i+k V 1 ◦ θτ̃i+k ... V 0 ◦ θτ̃i+k+m−1 V 1 ◦ θτ̃i+k+m−1 is an erasing word of U

[Y ]
τ̃i+k

}
,

and for any k, n ∈ N,

Dk,n(Y ) =
⋃
i∈N+:

τ̃i+`ε≤2n

Dki (Y ), k ∈ N, n ∈ N+. (33)

For any k ∈ N and i ∈ N+, on θkDki (Y ) we first have that for some (unique, and even) integer m ≤ `ε,
U

[Y ]
τ̃i+k+m ◦ θ−k = ∅, and second, that U

[Y ]
τ̃i+m

= ∅, since∣∣∣U [Y ]
τ̃i+m

∣∣∣
=
∣∣Qφ (Y V 0 V 1 ... V 0 ◦ θτ̃i−1 V 1 ◦ θτ̃i−1V 0 ◦ θτ̃i V 1 ◦ θτ̃i ... V 0 ◦ θτ̃i+m−1 V 1 ◦ θτ̃i+m−1

)∣∣
≤
∣∣Qφ (Y V 0 V 1 ... V 0 ◦ θτ̃i−1 V 1 ◦ θτ̃i−1

)∣∣+
∣∣Qφ (V 0 ◦ θτ̃i V 1 ◦ θτ̃i ... V 0 ◦ θτ̃i+m−1 V 1 ◦ θτ̃i+m−1

)∣∣ = 0,

where the two terms in the third line above are zero from the very definitions of τ̃i and an erasing
word. Consequently, we have that

θkD−k,n(Y ) ⊆
n⋃
l=0

Al(Y ) ∩ θkAl+k(Y ), k, n ∈ N. (34)

Second, fix n ∈ N and a sample ω ∈ {κ ≤ Kε} ∩
⋂Kε
k′=0 θ

k′Dk′,n(∅) and an integer k ≥ K + 1. By
the definition of κ, U0

(
θ−kω

)
= Y (θ−kω) entails that Uk−k′

(
θ−kω

)
= ∅ for some k′ ≤ Kε; in other

words U
[∅]
n

(
θ−k

′
ω
)

equals U
[Y ]
n+k−k′

(
θ−kω

)
for any n ≥ 0. But as θ−k

′
ω ∈ Dk′,n(∅) by assumption,

we obtain that θ−kω ∈ Dk,n(Y ). Consequently we have that

{κ ≤ Kε} ∩
Kε⋂
k=0

θk
′
Dk
′,n(∅) ⊆ {κ ≤ Kε} ∩

∞⋂
k=K+1

θkDk,n(Y )

and thereby

{κ ≤ Kε} ∩
Kε⋂
k=0

θk
(
Dk,n(Y ) ∩ Dk,n(∅)

)
⊆ {κ ≤ Kε} ∩

∞⋂
k=0

θkDk,n(Y ).

This, together with (34), yields to

{κ ≤ Kε} ∩
Kε⋂
k=0

θk
(
Dk,n(Y ) ∩ Dk,n(∅)

)
⊆ {κ ≤ Kε} ∩

∞⋂
k=0

n⋃
l=0

Al(Y ) ∩ θkAl+k(Y ), n ∈ N. (35)

Now recall (32). In words, `ε is (half of) the minimal length of word that can accommodate at least
one erasing word of any admissible word of even size bounded by Hε. Therefore, in view of the iid
assumptions the following is a well defined element of ]0, 1[:

βε = min
u∈W2 : |u|≤Hε

P0

[
`ε⋃
m=1

{
V 0 V 1 V 0 ◦ θ V 1 ◦ θ ... V 0 ◦ θm−1 V 0 ◦ θm−1 is a minimal erasing word of u

}]
.

(36)
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Let

Mε =

⌈
Logε− Log5− Log(Kε + 1)

Log(1− βε)

⌉
,

that is, the least integer that is such that

(1− βε)Mε <
ε

5(Kε + 1)
. (37)

Again from (H3) and (IID), there exists a positive integer Nε such that

P0 [τ̃Mε + `ε > Nε] <
ε

5
. (38)

All in all, we obtain that for all n > Nε,

P0

[ ∞⋂
k=0

n⋃
l=0

Al(Y ) ∩ θkAl+k(Y )

]

≤ P0

[ ∞⋂
k=0

n⋃
l=0

Al(Y ) ∩ θkAl+k(Y ) ∩ {τ̃Mε
+ `ε ≤ Nε} ∩ {κ ≤ Kε} ∩ {τ1(Y ) ≤ Tε}

]
+ P0 [τ̃Mε

+ `ε > Nε] + P0 [κ > Kε] + P0 [τ1(Y ) > Tε]

≤ P0

Kε⋂
k=0

θk (Dk,n(Y ) ∩ Dk,n(∅)) ∩ {τ̃Mε + `ε ≤ Nε} ∩ {τ1(Y ) ≤ Tε}

+
3ε

5

≤
Kε∑
k=0

P0

[(
Mε⋂
i=1

θkDki (Y )

)
∩ {τ1(Y ) ≤ Tε}

]
+

Kε∑
k=0

P0

[(
Mε⋂
i=1

θkDki (∅)

)
∩ {τ1(Y ) ≤ Tε}

]
+

3ε

5
, (39)

where we use (30), (31), (35) and (38) in the second inequality, and recalling (33).

Now let uε be an element of W2 such that |uε| ≤ Hε and that achieves the minimum in (36), that is

βε = P0

[
`ε⋃
m=1

{
V 0 V 1 V 0 ◦ θ V 1 ◦ θ ... V 0 ◦ θm−1 V 0 ◦ θm−1 is a minimal erasing word of uε

}]
,

and define the events

Ďi =

`ε⋃
m=1

{
V 0 ◦ θτ̃i V 1 ◦ θτ̃i ... V 0 ◦ θτ̃i+m−1 V 0 ◦ θτ̃i+m−1 is a minimal erasing word of uε

}
, i ∈ N.

From assumption (IID), the events Ďi, i ∈ N, are iid of probability βε. On another hand, on the event
{τ1(Y ) ≤ Tε}, for any 0 ≤ k ≤ Kε,∣∣∣U [Y ]

τ1(Y )+k ◦ θ
−k
∣∣∣ ≤ |Y |+ 2k + τ1(Y ) ≤ 2r + 2Kε + Tε = Hε.

Thus, as Qφ
(
V 0 ◦ θτ̃i V 1 ◦ θτ̃i ... V 0 ◦ θτ̃i+1−1 V 1 ◦ θτ̃i+1−1

)
= ∅ for all i, the sub-additivity of φ and

an immediate induction entail that
∣∣∣U [Y ]
τ̃i+k

◦ θ−k
∣∣∣ ≤ Hε for all i ≥ 1. Therefore, for any k ≤ Kε and

any i ∈ N+, by the very definition of βε we have that P0
[
θkDki (Y )

]
≥ P0

[
Ďi
]

= βε, and in turn by

independence of the Ďi’s, that for all k ≤ Kε,

P0

[(
Mε⋂
i=1

θkDki (Y )

)
∩ {τ1(Y ) ≤ Tε}

]
≤

Mε∏
i=1

P0
[
Ďi
]

= (1− βε)Mε . (40)
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All the same, on the event {τ1(Y ) ≤ Tε}, for any 0 ≤ k ≤ Kε we have that∣∣∣U [∅]
τ1(Y )+k ◦ θ

−k
∣∣∣ ≤ 2k + τ1(Y ) ≤ Hε,

thus we can conclude similarly that

P0

[(
Mε⋂
i=1

θkDki (∅)

)
∩ {τ1(Y ) ≤ Tε}

]
≤ (1− βε)Mε .

Injecting this together with (40) and (37) in (39) entails that, for any n > Nε,

P0

[ ∞⋂
k=0

n⋃
l=0

Al(Y ) ∩ θkAl+k(Y )

]
< ε,

which concludes the proof. �

We now prove the uniqueness of the solution using the following forward coupling result,

Proposition 13. Suppose that (IID) and (H3) holds. Let Y and Y ∗ be two elements of Y ∞2 . Then

there is forward coupling between
(
U

[Y ]
n

)
n∈N

and
(
U

[Y ∗]
n

)
n∈N

.

Proof. We aim at proving that the stopping time

ρ(Y, Y ∗) := inf
{
n ≥ 0 : U

[Y ]
l = U

[Y ∗]
l for all l ≥ n

}
is a.s. finite, that is

lim
n→∞

P0 [ρ(Y, Y ∗) ≤ n] = 1. (41)

Observe that, as the two recursions
(
U

[Y ]
n

)
n∈N

and
(
U

[Y ∗]
n

)
n∈N

are driven by the same input, they

coalesce as soon as they meet for the first time. Hence, (41) holds true in particular if

lim
n→∞

P0

[
n⋃
l=0

{
U

[Y ]
l = U

[Y ∗]
l = ∅

}]
= lim
n→∞

P0

[
n⋃
l=0

Al(Y ) ∩Al(Y
∗)

]
= 1. (42)

From Proposition 12, the latter holds true whenever we replace Y ∗ by U
[Z]
0 ◦ θ−k for any finite W2-

valued r.v. Z and any k ∈ N. The proof of (42) for any finite Y ∗ is analog. �

Consequently,

Theorem 3. If the policy φ is sub-additive and assumptions (IID) and (H3) hold, there exists a

unique solution U to (17) in Y ∞2 , to which all sequences
(
U

[Y ]
n

)
n∈N

, for Y ∈ Y ∞2 , converge with

strong backwards coupling.

Proof. Fix a r.v. Y ∈ Y ∞2 , and let r be such that Y ∈ Y r
2 . From Proposition 12, (25) holds true. Thus,

as (H1’) subsumes assumption (IID), we can apply Proposition 8: Y converges with strong backwards
coupling, and thereby also in the forward sense, to a stationary sequence (U ◦ θn)n∈N, where U ∈ Y ∞2 .
Now, Proposition 13 entails in particular that any couple of such stationary sequences (U ◦ θn)n∈N
and (U∗ ◦ θn)n∈N couple, and therefore coincide almost surely. Thus there exists a unique solution U
to (17) in Y ∞2 . �
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4.6 Stationary perfect φ-matchings

Let us summarize the results of Section 4 thus far: a unique (bounded, even) stationary buffer content
exists whenever G is non-bipartite, φ is sub-additive (which is the case for fcfm, lcfm, ml and u),
and in either one of the following cases:

• (H1’) holds for µ ∈ Ncond(G), and (H2) holds (which is true in particular if G is separable or
φ = lcfm - see Proposition 7) together with (29) for any r ∈ N+ - see Theorem 2;

• (IID) holds for µ ∈ Ncond(G), and (H3) holds true (which, from Proposition 11, is the case if
φ is fcfm or ml, or if φ is separable) - see Theorem 3.

With these results in hands, we now address the problem of constructing a stationary bi-infinite perfect
matching on the original time scale,

Proposition 14. Suppose that G is non-bipartite, φ is sub-additive, and either one of the following
is true:

• (H1), (H1’), (H1”), (H2) and (29) hold for any r ∈ N+;

• (IID) and (H3) hold.

Then there exists exactly two bi-infinite perfect matchings under φ.

Proof. In both cases, (H1) and (H1”) hold true, so we can construct two stationary ergodic quadruples
Q1 :=

(
Ω0,F 0,P1, θ

)
and Q̄ :=

(
Ω̄, F̄ , P̄, θ̄

)
analogously to Q0, as follows:

• P1 is the image measure on Ω0 of the sequence ((V2n−1,Σ2n−1, V2n,Σ2n))n∈Z;

• Ω̄ = (V × S)Z, F̄ is the Borel sigma-algebra on Ω̄, P̄ is the image measure of ((Vn,Σn))n∈Z on

Ω̄ and the shift θ̄ is defined by θ̄
(
(ω̄n)n∈Z

)
= (ω̄n−1)n∈Z for all samples (ω̄n)n∈Z.

In words, Q̄ is the ergodic quadruple corresponding to the canonical space of the original input, and
Q0 (respectively, Q1) corresponds to the canonical space of the input of pairs started at even (resp.,
odd) times in the original time scale.

Our aim is to construct a φ-matching on the original quadruple Q̄. First observe that in both cases,
(H1’) is satisfied, and there exists on Q0 (from Theorem 8 in the first case, Theorem 3 in the second),

a unique even θ-stationary buffer content U0 ∈ Y ∞2 , to which all sequences
(
U

[Y ]
n

)
n∈N

for Y ∈ Y ∞2

converge with strong backwards coupling, and such that P0
[
U0 = ∅

]
> 0.

We can apply the exact same arguments on Q1, leading to the existence of a unique θ-stationary even
buffer content U1 on that space, that is such that P1

[
U1 = ∅

]
> 0. Now observe that we can identify

Ω0 to Ω̄ via the one-to-one relation
Ω0 ←→ Ω̄(
(v0
n, σ

0
n, v

1
n, σ

1
n)
)
n∈Z ←→ ((vn, σn))n∈Z such that

(v2n, σ2n) = (v0
n, σ

0
n) and (v2n+1, σ2n+1) = (v1

n, σ
1
n), n ∈ Z.

Up to this bijective transformation, we can also identify θ to θ̄ ◦ θ̄, and construct two different buffer
contents

(
W 0
n

)
n∈Z and

(
W 1
n

)
n∈Z on Ω̄, as follows:{

W 0
2n = U0 ◦ θ̄2n

W 0
2n+1 =

(
U0 ◦ θ̄2n

)
�φ
(
V 0 ◦ θ̄2n,Σ0 ◦ θ̄2n

) n ∈ Z, P̄− a.s.; (43)
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{
W 1

2n =
(
U1 ◦ θ̄2n−1

)
�φ
(
V 0 ◦ θ̄2n−1,Σ0 ◦ θ̄2n−1

)
W 1

2n+1 = U1 ◦ θ̄2n+1,
n ∈ Z, P̄− a.s., (44)

which correspond respectively to a buffer content sequence that is stationary on W2 at even times, and
to a buffer content sequence that is stationary on W2 at odd times. By construction, both sequences(
W 0
n

)
n∈Z and

(
W 1
n

)
n∈Z have infinitely many construction points (the first one at even times, the

second at odd times), therefore we can construct from each one, a unique perfect φ-matching on Ω̄,
the first one depleting at even times and the second one at odd times. The proof is complete. �

An example of the above construction for a separable graph of order 3 is given in Example 5.

Example 5. Consider the following separable compatibility graph on V = {1, 2, ... , 6},

1
2

3

4
5

6

Figure 7: A separable graph of order 3.

Set Ω̄ := {ω̄1, ... , ω̄6}, where 

ω̄1 = ...142356142356...,
ω̄2 = ...423561423561...,
ω̄3 = ...235614235614...,
ω̄4 = ...356142356142...,
ω̄5 = ...561423561423...,
ω̄6 = ...614235614235....,

(45)

in which the 0-coordinate is marked in bold. Equipped with the power-set F̄ of Ω̄, the shift θ̄ defined
by θ̄ωi = θ̄ωi+1 for i ≤ 5 and θ̄ω6 = ω̄1 and P̄ the uniform probability on Ω̄ (which correspond to µ the
uniform probability on V), it is immediate that Q̄ =

(
Ω̄, F̄ , P̄, θ̄

)
is a stationary ergodic quadruple.

Following the construction in the proof of Proposition 14, the canonical space of the ”paired” input
at even and odd times is given by Ω0 = {ω0

1 , ω
0
2 , ω

0
3}, where (emphasizing again the 0-coordinate in

bold)  ω0
1 = ...14 23 56 14 23 56 ...,
ω0

2 = ...23 56 14 23 56 14 ...,
ω0

3 = ...56 14 23 56 14 23 ...

in a way that at time 0, a 1-item and then a 4-item enter the system for the sample ω0
1 , a 2-item and

then a 3-item for ω0
2 , and a 5-item and then a 6-item for ω0

3 . All the same, the canonical space of the
paired input at odd times is Ω1 = {ω1

1 , ω
1
2 , ω

1
3}, where ω1

1 = ...42 35 61 42 35 61 ...,
ω1

2 = ...35 61 42 35 61 42 ...,
ω1

3 = ...61 42 35 61 42 35 ...

Whenever furnished with the uniform probability, both quadruples Q0 and Q1 thereby obtained are
stationary and ergodic. Set φ = fcfm. It is immediate to observe that both words 142356 and 423561
are strong erasing words for (G,φ) (assertion (i) of Proposition 7) and that (29) holds. Thus from
Theorem 8 there exists a unique stationary buffer content U0 on Q0 and a unique buffer content U1

on Q1, which are respectively given by

U0(ω0
1) = ∅, U0(ω0

2) = 14, U0(ω0
3) = ∅,

U1(ω1
1) = ∅, U1(ω1

2) = ∅, U1(ω1
3) = ∅.
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We then construct two buffer content sequences
(
W 0
n

)
n∈Z and

(
W 1
n

)
n∈Z on Q̄ from (43) and (44),

whose valuation e.g. at sample point ω̄1 are respectively given by{
W 0

6n(ω̄1) = ∅, W 0
6n+1(ω̄1) = 1, W 0

6n+2(ω̄1) = 14,
W 0

6n+3(ω̄1) = 4, W 0
6n+4(ω̄1) = ∅, W 0

6n+5(ω̄1) = 5 ; n ∈ Z,

{
W 1

6n(ω̄1) = 6, W 1
6n+1(ω̄1) = ∅, W 1

6n+2(ω̄1) = 4,
W 1

6n+3(ω̄1) = ∅, W 1
6n+4(ω̄1) = 3, W 1

6n+5(ω̄1) = ∅ ; n ∈ Z.

Both
(
W 0
n

)
n∈Z and

(
W 1
n

)
n∈Z determine uniquely a bi-infinite perfect matching on Q0. These two

matchings are represented in Figure 8.

4 2

4 2

3 5

3 5

6 1

6 1

4 2

4 2

3 5

3 5

6 1

|
0

6 1

4 2

4 2

3 5

3 5

6 1

6 1

4 2

4 2

3 5

3 5

6

6

Figure 8: The two stationary matchings corresponding to the graph of Figure 7 and the input (45)
.

4.7 Perfect fcfm-matchings in reverse time

To conclude, let us comeback to the FCFM model, for which bi-infinite perfect matchings have an
interesting property.

First, observe that we can complete the ”exchange” mechanism introduced in the definition of the
backwards and the forwards chains in Section 3.2, using construction points as follows: start from a
construction point, and then replace all items from left to right by the copy of the class of their match,
on the fly, as soon as they are matched. We illustrate this procedure in Figure 9, by the completion
of the exchanges over two perfectly matched blocks, for the compatibility graph of Figure 1 and the
arrival scenario of Figure 2.

1 3 4 2 3 1 3 2 2 1 4 2

1 3 4 2 3 1 3 2 2 1 4 2

2̄ 4̄ 3̄ 1̄ 2̄ 2̄ 4̄ 3̄ 1̄ 2̄ 3̄ 1̄

Figure 9: Top: the arrival scenario of Figure 2 (augmented with a 2 item). Middle: the two cor-
responding blocks, perfectly matched in fcfm with the compatibility graph of Figure 1. Bottom:
completion of the exchanges by matchings.

Now observe the following: after completion of the exchanges on any perfectly matched block by
fcfm, for any arrival scenario, by reading the arrivals on the matched block from right to left, we see
nothing but a fcfm matching of the items of classes in V. To prove this, let the four nodes i, j, k and
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` be such that in G, i−k, j−k and i−`, and suppose that, after the exchange, four copies i, j, k and
` are read in that order, in reverse time, i.e. from right to left. Let us also assume that the fcfm rule
in reverse time is violated on this quadruple: then the k item is matched with the j item while the i
item is still unmatched, and then the latter item is matched with the ` item. This occurs if and only
if, in direct time, the four items of classes i, j, k and ` arrive in that order, and the k item choses the
j item over the i item for its match, and then the unmatched i item is matched with the ` item. This
violates in turn the fcfm policy, according to which the k item should have been matched with the
i item instead of the j item. Hence the assertion above: over any perfectly matched block in fcfm,
the block of exchanged items read in reverse time is also perfectly matched in fcfm - see the bottom
display of Figure 9.

Now assume that the conditions of Proposition 14 are satisfied for φ = fcfm. Then there exist
exactly two bi-infinite perfect fcfm-matchings of the input. Generalizing the above observation to
all perfectly matched blocks on Z, we conclude that there exist exactly two perfect fcfm-matchings
of the exchanged items in reverse time, corresponding respectively to the two aforementioned perfect
fcfm-matchings in direct time, after complete exchanges over blocks, read from right to left.
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