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with Stationary Inputs

Yue Chen, Ana Bušić, and Sean Meyn∗†

April 5, 2017

Abstract

Consider a stochastic process X on a finite state space X = {1, . . . , d}. It is conditionally
Markov, given a real-valued ‘input process’ ζ. This is assumed to be small, which is modeled
through the scaling,

ζt = εζ1t , 0 ≤ ε ≤ 1 ,

where ζ1 is a bounded stationary process. The following conclusions are obtained, subject to
smoothness assumptions on the controlled transition matrix and a mixing condition on ζ:

(i) A stationary version of the process is constructed, that is coupled with a stationary
version of the Markov chain X• obtained with ζ ≡ 0. The triple (X,X•, ζ) is a jointly
stationary process satisfying

P{X(t) 6= X•(t)} = O(ε)

Moreover, a second-order Taylor-series approximation is obtained:

P{X(t) = i} = P{X•(t) = i}+ ε2π(2)(i) + o(ε2), 1 ≤ i ≤ d,

with an explicit formula for the vector π(2) ∈ Rd.

(ii) For any m ≥ 1 and any function f : {1, . . . , d} × R → Rm, the stationary stochastic
process Y (t) = f(X(t), ζ(t)) has a power spectral density Sf that admits a second order

Taylor series expansion: A function S(2)

f : [−π, π]→ Cm×m is constructed such that

Sf (θ) = S•
f (θ) + ε2S(2)

f (θ) + o(ε2), θ ∈ [−π, π]

in which the first term is the power spectral density obtained with ε = 0. An explicit
formula for the function S(2)

f is obtained, based in part on the bounds in (i).

The results are illustrated with two general examples: mean field games, and a version of the
timing channel of Anantharam and Verdu.
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1 Introduction

This paper concerns second-order ergodic theory for a controlled Markov chain. Consider for the sake
of illustration a stochastic process X on a finite state space X = {1, . . . , d}, which evolves together
with a real-valued stationary sequence ζ and an i.i.d. sequence N according to the recursion,

Xt+1 = ϕ(Xt, ζt, Nt+1), t ∈ Z (1)

where ϕ : X×R2 → X is Borel measurable. The solution is denoted X• in the special case ζ ≡ 0: a
time-homogeneous Markov chain.

In the generality of this paper we cannot expect to compute exact statistics of X, such as the
marginal distribution. We instead obtain conditions under which a stationary solution to (1) exists,
and obtain approximations of the statistics of X. Under the assumptions imposed in this paper,
the joint stationary process (X,X•, ζ) is constructed on the same probability space. This makes it
possible to compare the statistics of X with the stationary Markov chain X•.

It is assumed that ζ is small: It is simplest to consider a family of processes, parameterized by
a small constant ε > 0,

ζt = εζ1
t ,

where ζ1 = {ζ1
t } is a bounded sequence. The construction of (X,X•, ζ) is obtained so that

P{Xt 6= X•t } = O(ε) (2)

In order to apply techniques from second-order statistics, the process is lifted to the simplex in
Rd through the following notational convention

Γt = [ej ]T, when Xt = j, (3)

where ej denotes the jth standard basis element in Rd, and hence Γt is a row vector. This is a
standard construction; it is useful since the evolution of {Γt} can be expressed as a linear state
space model driven by an uncorrelated “noise process” (see (8) below). This linear representation is
used in [14] to construct a Kalman filter for a time-homogeneous Markov chain (without the input
ζ), and these results are extended to a class of controlled Markov chains in [7].

The initial motivation for [7], as well as the research described here, is application to distributed
control for the purposes of “demand dispatch” using distributed resources in a power grid. The
results of the present paper are applied in [4, 5] to obtain performance approximations in the same
power grid model. Similar bounds were previously obtained in [6], but this is the first paper to
obtain an exact second-order Taylor series approximation for second-order statistics.

The main contribution of this paper is to obtain tight approximations for the joint auto-
correlation function for (Γ, ζ), and hence also its power spectral density. To obtain these results
requires the coupling bound (2), a second order Taylor series expansion for πε = E[Γt] in steady-state,
and surprisingly complex calculations for a linearized model.

The goals of the present work are similar to elements of singular perturbation theory for Markov
chains (see [11, 21] and their references). In some of our approximations we borrow one technique
from [19] – the use of the fundamental matrix appears in the approximation of πε; see (19) for a
definition, and further explanation following this equation.

The main results are summarized in Section 2, with all of the technical proofs contained in
appendices. Application to mean-field games is discussed in Section 3, and Section 4 contains nu-
merical results for an application to information theory – a variant of the timing channel introduced
in [2]. Conclusions and directions for future research are contained in Section 5.

Acknowledgement: We are grateful for the timely and thorough reviews that greatly improved
the final paper.

2



2 Model and main results

Consider an irreducible and aperiodic Markov chain X• evolving on a finite state space X =
{1, . . . , d}, with transition matrix P0. This admits a stationary realization on the two sided time-
interval Z, whose marginal distribution π0 is the invariant probability mass function (pmf) for P0,
satisfying π0P0 = π0. The goal of this paper is to investigate how the statistics change when the
dynamics are subject to an exogenous disturbance.

2.1 Controlled Markov model

The stochastic process X considered in this paper also evolves on the finite state space X. The
“disturbance” in the controlled model is a one-dimensional stationary process denoted ζ = {ζt :
−∞ < t <∞}. A controlled transition matrix {Pζ : ζ ∈ R} describes the dynamics of the process:

P{Xt+1 = k | ζs, Xs : s ≤ t} = Pζ(j, k) when ζt = ζ, Xt = j. (4)

It is assumed that Pζ is a smooth function of ζ, and that P0 is the transition matrix for X•.

Pζt Γtζt

Figure 1: Controlled Markov model.

Since X is no longer Markovian, we cannot apply standard
Markov chain theory to investigate properties of a stationary ver-
sion of X. Instead we apply linear systems theory, and for this we
require a linear systems representation for the controlled stochastic
process.

This is obtained by embedding the process in Rd through the
indicator process Γt defined in (3). Linear dynamics are obtained
by considering a specific realization of the model. We assume that there is a d × d matrix-valued
function G and an i.i.d. sequence N for which,

Γt+1 = ΓtGt+1, Gt+1 = G(ζt, Nt+1) (5)

It is assumed moreover that N is independent of ζ, and that the entries of G are zero or one, with

d∑
k=1

Gj,k(z, n) = 1, for all j, z, n.

We have Gj,k(z, n) = I{ϕ(j, z, n) = k} for the nonlinear state space model (1). In general, it follows
from (4) that for each t,

E[G(ζt, Nt+1) | ζ∞−∞] = Pζt . (6)

The random linear system (5) illustrated in Fig. 1 is the focus of study in this paper. The
sequence Γ = {Γt} is viewed as a state process, that is driven by the disturbance (or “input”) ζ.
The state process evolves on the extreme points of the simplex in Rd. We let Γ• = {Γ•t } denote the
stationary Markov chain obtained with ζ ≡ 0.

The main assumptions are summarized in the following:

A1: The transition matrix P0 is irreducible and aperiodic. The matrix valued function Pζ is
twice continuously differentiable (C2) in a neighborhood of ζ = 0, and the second derivative
is Lipschitz continuous.

A2: ζt = εζ1
t where ζ1 = {ζ1

t : t ∈ Z} is a real-valued stationary stochastic process with zero
mean. The following additional assumptions are imposed:
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(i) It is bounded, |ζ1
t | ≤ 1 for all t with probability one. Hence σ2

ζ1 = E[(ζ1
t )2] ≤ 1.

(ii) Its auto-covariance is absolutely summable:

∞∑
t=0

|Rζ1(t)| <∞

The power spectral density Sζ1 exists and is continuous under Assumption A2 (ii). It also admits
a spectral factor, denoted Hζ1 :

Sζ1(θ) = Hζ1(ejθ)Hζ1(e−jθ), −π ≤ θ ≤ π. (7)

See [3] for background.
Assumption A1 is used to obtain the approximation of (5) by an LTI (linear time invariant)

system. The following intermediate step is an extension of Lemma 1 in [14], which is used to derive
a Kalman filter for an uncontrolled Markov chain.

Proposition 2.1. The random linear system (5) can be represented as

Γt+1 = ΓtPζt + ∆t+1, (8)

where ∆t+1 = Γt(Gt+1 − Pζt). This is a martingale difference sequence, with covariance matrix

Σ∆ = Cov (Γt[Gt+1 − Pζt ]) = E
[
ΛΓ
t+1 − P T

ζtΛ
Γ
t Pζt

]
(9)

where ΛΓ
t is the diagonal matrix with diagonal entries {Γt(i) : 1 ≤ i ≤ d}. Moreover,

R∆,ζ(t) = 0, for all t. (10)

That is, ∆ and ζ are uncorrelated.

We next apply the second-order Taylor series approximation:

Pζt = P0 + Eζt +
1

2
Wζ2

t +O(ε3) ,

where E and W denote the first and second derivatives of Pζ , evaluated at ζ = 0:

d

dζ
Pζ

∣∣∣∣
ζ=0

= E , d2

dζ2
Pζ

∣∣∣∣
ζ=0

=W.

The O(ε3) bound holds under the Lipschitz condition for the second derivative of Pζ . The following
identities will be useful: E1 =W1 = 0. This follows from the definitions and the fact that Pζ1 = 1
for all ζ. In particular,

E1 =
d

dζ
Pζ

∣∣∣
ζ=0

1 =
d

dζ
Pζ1

∣∣∣
ζ=0

=
d

dζ
1 = 0. (11)

The recursion (8) can be approximated as

Γt+1 = Γt(P0 + Eζt +
1

2
Wζ2

t ) + ∆t+1 +O(ε3).

This is the LTI approximation:
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Proposition 2.2. The recursion (5) can be approximated as follows:

Γt+1 = ΓtP0 +Dt+1 +O(ε3) , (12)

where, Dt+1 = BT
t ζt + V T

t ζ
2
t + ∆t+1, with

BT
t = ΓtE , V T

t = 1
2ΓtW . (13)

Applying the LTI approximation (12), an approximation for the auto-correlation of (Γ, ζ) is
obtained from an approximation for the pair process (D, ζ). Since D is taken as a row vector, we
use the following notation for the auto-correlation of (D, ζ):

R(t) =

[
RD(t) RD,ζ(t)

RD,ζ(−t)T Rζ(t)

]
(14)

where RD(t) = E[D(t)TD(0)], RD,ζ(t) = E[D(t)Tζ(0)], and the expectations are taken in steady-
state.

The existence of a steady-state solution is established in Prop. 2.3 that follows.

2.2 Correlation formulae and approximations

Under Assumptions A1 and A2 we obtain a coupling result, which plays a crucial role in the
approximations that follow. We write Γt = Γ•t + Õ(ε) if

E[‖Γt − Γ•t ‖] = O(ε) ,

which implies that (2) also holds. We adopt similar notation for other random variables. The
following result is proven in Appendix A:

Proposition 2.3. Under Assumptions A1 and A2, there exists ε0 > 0 such that the following
holds for each ε ∈ (0, ε0]: the two process Γ and Γ• can be constructed so that (Γ,Γ•, ζ) is jointly
stationary on the two-sided time interval Z, Γ•t is independent of ζ, and moreover

Γt = Γ•t + Õ(ε) (15)

E[Γtζt] = O(ε2) (16)

Consequently, for the stationary process,

Bt = B•t + Õ(ε), Vt = V •t + Õ(ε), ∆t = ∆•t + Õ(ε) (17)

The following strengthening of Assumption A2 is useful in computations:

A3: The transfer functionHζ1 in (7) is rational, with distinct poles {ρ1, . . . , ρnz} satisfying |ρi| < 1
for each i.
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Under A2 and A3 the auto-covariance function for ζ can be expressed as a sum of geometrically
decaying terms,

Rζ(t) = ε2
nz∑
k=1

akρ
|t|
k , (18)

where the {ak} can be determined from Hζ1 . Approximations for the auto-correlation functions
RD,ζ(t) and RD(t) in (14) are given in Theorem 2.4.

As in the perturbation theory of [19], one component in these approximations is based on the
fundamental matrix,

U1 = [I − P0 + 1⊗ π0]−1 (19)

where 1 ⊗ π0 denotes the matrix whose rows are identical, and equal to π0. Because the chain is
irreducible and aperiodic, this can be expressed as a power series expansion,

U1 = I +
∞∑
k=1

[P0 − 1⊗ π0]k

The summand can also be expressed [P0 − 1 ⊗ π0]k = [P k0 − 1 ⊗ π0], k ≥ 1. Hence convergence of
the sum follows from the mean ergodic theorem,

lim
k→∞

P k0 = 1⊗ π0 (20)

where the rate of convergence is geometric.

Theorem 2.4. Suppose that Assumptions A1 and A2 hold, and consider the stationary process
(Γ,Γ•, ζ) constructed in Proposition 2.3, with ε ∈ (0, ε0]. Then, for each t,

RD,ζ(t) = BRζ(t− 1) +O(ε3) (21)

RD(t) = RBζ(t) (22a)

+R∆(t) (22b)

+RBζ,∆(t− 1) +RT
Bζ,∆(−t− 1) (22c)

+RV ζ2,∆(t− 1) +RT

V ζ2,∆(−t− 1) (22d)

+O(ε3)

in which BT = π0E in (21), and each component shown on the right hand side of (22a)–(22d) is
given below:

(a) The auto-correlation RBζ(t) = E[BtζtB
T
0 ζ0] in (22a) admits the approximation,

RBζ(t) = (P t0E)TΠ0ERζ(t) +O(ε3), t ≥ 0 (23)

where Π0 = diag(π0).

(b) The covariance for the martingale-difference sequence ∆ is given by R∆(t) = 0 for t 6= 0.
When ε = 0 we have

R∆•(0) = Σ∆• = Π0 − P T
0 Π0P0 , (24)
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and for non-zero ε this admits the approximation

R∆(0) = Σ∆ = Πε − P T
0 ΠεP0

−
[
P T

0 diag(RΓ,ζ(0))E + ET diag(RΓ,ζ(0))P0

]
− 1

2Rζ(0)
[
P T

0 Π0W + 2ETΠ0E +WTΠ0P0

]
+O(ε3)

(25)

where Πε = diag(πε), with πε = E[Γt], and

RΓ,ζ(t) = E[Γ(t)Tζ(0)], t ∈ Z . (26)

(c) The cross-covariance RBζ,∆(t) = E[Btζt∆0] admits the approximation,

RBζ,∆(t) =


0 t < 0

ETR∆2,ζ(0) +O(ε3) t = 0

ETAtR∆2,ζ(−t) + ET
∑t−1

i=0 A
t−1−iETAiRζ(t− i)Σ∆• +O(ε3) t ≥ 1

(27)

where A = P T
0 and

R∆2,ζ(t) = E[∆T
t ∆tζ0] (28)

(d) The cross-covariance RV ζ2,∆(t) = E[Vtζ
2
t ∆0] admits the approximation,

RV ζ2,∆(t) =

O(ε3) t < 0

1
2σ

2
ζ (P

t
0W)TΣ∆• +O(ε3) t ≥ 0

(29)

The derivation of Theorem 2.4 is given in Appendix E.
Theorem 2.4 leaves out an approximation for πε that is required in (25). It also leaves out an

approximation for RΓ,ζ(0) required in (25), and approximations for {R∆2,ζ(t) : t ≤ 0} in (27). These
are obtained in the following:

Proposition 2.5. The following hold under Assumptions A1 and A2:

(i) The steady state mean admits the approximation,

πε = π0 + ξU1 +O(ε3) (30)

where U1 is the fundamental matrix (19), and

ξ =
(
RΓ,ζ(0)

)TE + 1
2σ

2
ζπ0W. (31)

(ii) For t ≥ 0 we have,

R∆2,ζ(−t) = diag(RΓ,ζ(−t− 1)P0)

− P T
0 diag(RΓ,ζ(−t− 1))P0 +Rζ(t+ 1)E[X (1)

• ] +O(ε3)
(32)

where E[X (1)
• ] := diag(π0E)− (P T

0 Π0E + [P T
0 Π0E ]T).
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(iii) The correlation RΓ,ζ is approximated as the infinite sum,

RΓ,ζ(t) = ε2
∞∑
i=1

(
BTP i−1

0

)T
Rζ1(t− i) +O(ε3), t ∈ Z , (33)

in which ‖BTP i−1
0 ‖ → 0 geometrically fast as i→∞.

The proposition shows that the Taylor-series coefficient π(2) := ε−2ξU1 depends on the entire
auto-covariance sequence Rζ , along with the first and second derivatives of Pζ .

The proof of (30) is given in Appendix C, (32) is given in Appendix D.2, and (33) is established
in Appendix D.4. The geometric bound on the limit ‖BTP i−1

0 ‖ → 0 follows from the ergodic limit
(20), and the formula BT1 = π0E1 = 0 (see (11)).

Rζ

RD

RD,ζ

RBζ

R∆RBζ,∆

RV ζ2,∆

πεRΓ,ζ

R∆2,ζ

Figure 2: Dependency of autocorrelation functions involved in the approximations of R(t) in (14).

The directed graph shown in Fig. 2 summarizes the dependency between all of these terms. For
example, the approximation of RD,ζ only requires Rζ , and the covariance Σ∆ that defines R∆ is a
function of RΓ,ζ and πε. The approximation of RD is a function of the four correlation functions
shown (as can also be seen from (22a)–(22d)). The five boxed terms are those that are of interest to
us directly; the remaining five terms are introduced only to obtain a closed set of algebraic equations.

Closed-form expressions for the approximations in Proposition 2.5 are possible under A3. The
proof of Proposition 2.6 is given in Appendix D.4.

Proposition 2.6. Under A1–A3, the row vector ξ in (31) has the approximation,

ξ = ε2BT

nz∑
k=1

akρk[I − ρkP0]−1E + 1
2ε

2σ2
ζ1π0W +O(ε3). (34)

2.3 Power spectral density approximations

Theorem 2.4 provides a second-order approximation of the auto-covariance function {R(t)} defined
in (14), which we denote {R̂(t)}. In particular, R̂D(t) is defined as the sum of (22a)–(22d). Based
on this and Proposition 2.2 we obtain a second-order approximation {R̂tot(t)} of the auto-covariance
function {Rtot(t)} for the triple (Γ,D, ζ).

The power spectral density (PSD) of a stationary process is the Fourier transform of its auto-
covariance. This matrix-valued function is denoted

S(θ) =
∞∑

t=−∞
Σtot(t)e−jθt, θ ∈ R
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in which Σtot(t) :=Rtot(t)− µµT, t ≥ 0, with µT = E[(Γt, Dt, ζt)].
To define an approximation for S we must obtain an approximation {Σ̂(t)} that is summable. It

turns out that this is obtained from {R̂(t)} without normalization. For each t, the (2d+1)×(2d+1)
matrix is decomposed as follows:

Σ̂tot(t) =

[
Σ̂Γ(t) Σ̂Γ,(D,ζ)(t)

Σ̂(D,ζ),Γ(t) Σ̂(t)

]

in which Σ̂(t) = R̂(t), and the remaining terms are what would be obtained by ignoring the O(ε3)
error term appearing in (12), and replacing P0 by its deviation P0−1⊗π0. Denote Ã = (P0−1⊗π0)T,
and

Σ̂Γ(t) =
∞∑

i,j=0

ÃiR̂D(t− i+ j)(Ãj)T

The matrix Σ̂Γ,(D,ζ)(t) is the (d+ 1)-dimensional column vector whose first d components are

Σ̂Γ,D(t) =
∞∑
i=0

ÃiR̂D(t− i)

and the final component is defined by the right hand side of (33), ignoring the approximation error.
This can be equivalently expressed,

Σ̂Γ,ζ(t) = ε2
∞∑
i=1

Ãi−1BRζ1(t− i)

where we have used the fact that ÃkB = (P T
0 )kB since 1TB =

∑
Bi = 0. Finally, Σ̂(D,ζ),Γ(t) =

Σ̂Γ,(D,ζ)(−t)T.
Denote

Ŝ(θ) =
∞∑

t=−∞
Σ̂tot(t)e−jθt, θ ∈ R

It can be shown that the sequence {R̂tot(t)} is absolutely summable, so that the approximation Ŝ is
a continuous bounded function of θ. The following is an immediate corollary to Theorem 2.4:

Proposition 2.7. The approximation of the power spectral density of the stationary sequence
{Dt+1 = ∆t+1 +BT

t ζt + V T
t ζ

2
t } can be expressed as the sum,

ŜD(θ) = Ŝ∆(θ) + ŜBζ(θ) + e−jθŜBζ,∆(θ) +
[
e−jθŜBζ,∆(θ)

]∗
+ e−jθŜV ζ2,∆(θ) +

[
e−jθŜV ζ2,∆(θ)

]∗ (35)

in which each approximation on the right hand side is obtained from the Fourier transform of the
corresponding approximations (23)–(29) in Theorem 2.4, and where “∗” denotes complex-conjugate
transpose.

The power spectral density approximation for Γ is given by,

ŜΓ(θ) = [Ie−jθ − Ã]−1ŜD(θ)[Iejθ − ÃT]−1

9



and the cross-power spectral density approximations are

ŜΓ,D(θ) = [Ie−jθ − Ã]−1ŜD(θ)

ŜΓ,ζ(θ) = ε2
∞∑

t=−∞

∞∑
i=1

Ãi−1BRζ1(t− i)e−jθt

Under slightly stronger assumptions we obtain a uniform bound for this approximation. The
proof of Proposition 2.8 is given in Section E.4.

Proposition 2.8. Suppose that Assumptions A1 and A2 hold, and in addition Rζ(t)→ 0 geomet-
rically fast as t→∞. Then, the uniform approximation holds: For any % ∈ (0, 1),

Ŝ(θ) = S(θ) +O(ε2+%), θ ∈ R

3 Example: individual in a mean-field limit

The theory of mean field games is an active area of research today. While some of the basic concepts
can be found in statistical physics, much of the current research has been inspired by more recent
contributions [1,12,13,15,20] with applications to control and economics, and applications to power
systems in [16,17].

The initial motivation for the research reported in this paper is the mean-field model of [18]; as
in [17], the setting is not a game since no local optimization is assumed. Instead, each “agent” (an
electric load) responds to a global command signal, and at each discrete time t, it changes its state
at time t+ 1 based on this information and its local state. The goal of [17, 18] is demand dispatch:
power consumption from the collection of loads is varied automatically and continuously to provide
service to the grid, without impacting QoS (quality of service) to the consumers.

...

Load 1
Balancing
Authority

Reference (MW)
Load 2

Load N

 

+

Gc

Power
Consumption (MW) 

ζNt yN
trt

Figure 3: Demand Dispatch model of [5, 18].

Fig. 3 illustrates the control architecture, in which r = {rt} is a reference signal that the
normalized aggregate power deviation yN = {yNt } is intended to track (perhaps scaled by a constant
depending on N). It is assumed that yNt is a linear function of the histogram of states µNt : for a
function U : X→ R,

yNt = 〈µN ,U〉 :=
∑
x∈X
U(x)µNt (x) , where µNt (x) =

1

N

N∑
i=1

I{Xi(t) = x}, x ∈ X.
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The pair (r,yN ) is transformed to create a signal ζN via the block Gc shown in the figure, which
is assumed to be a causal linear transfer function in [4, 5, 18]. Each load evolves probabilistically
according to a controlled transition matrix. For each load, the only departure from Fig. 1 is that
the signal ζN depends on N since it is a functional of r and yN .

Gc UPζt yt = µt,Urt
ζt µt

Figure 4: Mean field model obtained from Fig. 3 as the limit as N tends to infinity.

It is shown under general conditions that a limiting model exists:

µt = lim
N→∞

µNt , ζt = lim
N→∞

ζNt t ≥ 0, a.s.,

in which the row vectors {µt} evolve according to the mean-field equation

µt+1 = µtPζt , t ≥ 0.

It follows that ζ is a deterministic functional of r and the initial distribution µ0. This limiting
model is illustrated in Fig. 4.

In the aforementioned work on mean field games, the limiting model is used to understand
aggregate behavior such as y and µ. Here and in [5], the mean field model is used to approximate
the statistics of an individual load in this demand dispatch architecture.

There is no space here to present any detailed numerical examples, so we show results from one
numerical experiment from the dissertation [4]; full details can be found in [4, Section 5.3.2]. In
these experiments the stochastic process r is assumed stationary and scaled by ε > 0. A stationary
realization of ζ is defined consistently so that it is scaled by the same factor.

In these experiments, QoS for an individual load is defined to be a discounted sum of the deviation
of power consumption from its nominal mean value Ū :

QoS(t) =
∞∑
k=0

βk{U(X(t− k))− Ū} , t ∈ Z ,

with β < 1. An approximation for the power spectral density of {U(X(t)) : t ∈ Z} can be obtained
from Prop. 2.8, and based on this we obtain an approximation for the power spectral density of QoS.
The resulting variance approximations are illustrated in Fig. 5: the histograms of QoS are based on
104 independent experiments.

Even with ε = 1, the approximation of the mean and variance obtained from Prop. 2.8 is
remarkably accurate. The approximations are nearly exact with ε = 0.3. The histograms appear
Gaussian because β is close to unity in these experiments.

4 Example: bits through queues

The following example is motivated by the communication model of [2]. There is a sender that
wishes to send data to a receiver. Neither has access to a communication channel in the usual sense.
Instead, the sender manipulates the timing of packets to a queue, and the receiver gathers data
through observations of the timing of departures from the queue.
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Figure 5: Histogram of QoS and its approximation obtained from Prop. 2.8 (plots based on Fig. 5-8 of [4]).

4.1 Timing channel model

To obtain a finite state-space model it is assumed that the queue size is bounded by q̄, and arrivals
are rejected if they cause an overflow. The dynamics of the queue are described as a reflected random
walk,

Qt+1 = min{q̄,max(0, Qt − St+1 +At+1)}, t ≥ 0 (36)

In the nominal model in which ζ ≡ 0, the pair process (S,A) is i.i.d. on Z2
+. The sender wishes

to manipulate the arrival process A, and the receiver observes the departure process S. This
manipulation is modeled through a scalar input sequence ζ.

For simplicity, for the nominal model we restrict to the M/M/1 queue: The usual model evolves
in continuous time, but after sampling using uniformization one obtains (36), in which A a Bernoulli
sequence, and St = 1−At for each t. For each integer n ∈ X = {0, 1, . . . , q̄}, denote n+ = min(n+1, q̄)
and n− = max(n− 1, 0). If 0 < λ < 1

2 is the probably of success for A, we then have,

P{Q(t+ 1) = n+ | Q(t) = n} = 1− P{Q(t+ 1) = n− | Q(t) = n} = λ

Its steady-state pmf is given by
πQ0 (n) = κρn

where ρ = λ/(1− λ), and κ > 0 is a normalizing factor.
Recall that the receiver observes departures from the queue, which is equivalent to observations

of the sequence S. To estimate joint statistics we expand the state space to X(t) = (Q(t), S(t)),
which evolves on the state space X = {0, 1, . . . , q̄}×{0, 1}. The nominal transition matrix is defined
as follows,

P0((n, s), (n+, 0)) = λ

P0((n, s), (n−, 1)) = 1− λ
The first identity holds because a transition from (n, s) to (n+, 0) means that At+1 = 1, in which
case St+1 = 1 − At+1 = 0. The justification for the second identity is symmetrical. The transition
matrix is sparse: P0(x, x′) = 0 for all but at most two values of x′, regardless of x.

The sender wishes to the manipulate timing of arrivals, which motivates the following formulation
for the controlled transition matrix:

Pζ((n, s), (n
+, 0)) = λ(1 + ζ)

Pζ((n, s), (n
−, 1)) = 1− λ(1 + ζ)

12



in which ζ is constrained to the interval [−1, 1]. The state process evolves as the nonlinear state
space model (1), with

Qt+1 = min{q̄,max(0, Qt − 1 + 2I{Nt+1 ≤ λ(1 + ζt))}
St+1 = I{Nt+1 > λ(1 + ζt)}, t ≥ 0

in which N is i.i.d., with marginal equal to the uniform distribution on [0, 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 6: Mean queue length grows approximately linearly in ε2, for ε2 ≤ 0.2. The error for ε = 1 is approximately 25%.

Fig. 6 shows a comparison of the steady-state mean queue length as a function of ε2 for a
numerical example. The linear approximation is obtained from the approximation of πε given in
Prop. 2.5. Other statistics are shown in Fig. 7. Details can be found in Section 4.3.

4.2 Second-order bound for mutual information

The mutual information rate I(S, ζ) between S and ζ defines the capacity of this channel. Letting
χN denote the joint distribution of {S1, . . . , SN , ζ1, . . . , ζN}, and denoting the marginals {S1, . . . , SN} ∼
χNS , {ζ1, . . . , ζN} ∼ χNζ , the mutual information rate is defined as the limit

I(S, ζ) = lim
N→∞

1

N
D(χN ‖χNS × χNζ )

where D denotes relative entropy (i.e., K-L divergence) [8]. In the following an approximation D̂ is
introduced, and based on this an approximation to mutual information,

Î(S, ζ) = lim
N→∞

1

N
D̂(χN ‖χNS × χNζ ). (37)

The approximation of relative entropy is given here in a general setting. Let ψa and ψb be
probability measures on an abstract measurable space (E ,B). For a measurable function f : E → R
we let ψa(f) denote the mean

∫
f(x)ψa(dx). The approximation is the non-negative functional

defined as follows:

D̂(ψa‖ψb) = 1
2 sup

{ψa(f)2

ψb(f2)
: ψb(f) = 0, ψa(|f |) <∞, and 0 < ψb(f

2) <∞
}

(38)

The proof of Prop. 4.1 is contained in Appendix F

Proposition 4.1. The following hold for any two probability measures ψa and ψb on an abstract
measurable space (E ,B). Let f∗ = log(dψa/dψb) denote the log-likelihood ratio.
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Figure 7: Experiments using γ = 0.4. The approximation for the cross power spectral density SS,ζ appears to be exact for the
entire range of ε. The approximation for the steady-state distribution of Q is accurate for ε2 ≤ 0.5, but is very poor for ε = 1.

(i) The maximum in (38) is given by f̂∗ = ef
∗ − 1 = dψa/dψb − 1, whenever D̂(ψa‖ψb) is

finite.

(ii) There is a convex, increasing function κ : R+ → R+ that vanishes only at the origin,
and such that the following bound holds for any two probability measures with bounded log-
likelihood ratio:

|D̂(ψa‖ψb)−D(ψa‖ψb)| ≤ κ(‖f∗‖3∞)

where ‖f∗‖∞ denotes the supremum norm.

Returning to the stochastic process setting, in the context of (37), we have for fixed N the
following correspondences:

ψa = χN , ψb = χNS × χNζ
Consider for 0 ≤ n < N the function

f(S1, . . . , SN , ζ1, . . . , ζN ) =
N−n∑
k=1

S̃k+nζk

in which S̃t = St − E[St]. This has mean zero under ψb, and its mean under ψa is,

ψa(f) = EχN [f(S1, . . . , SN , ζ1, . . . , ζN )] = (N − n)ΣS,ζ(n)
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The second moment is also expressed in terms of autocorrelation functions:

ψb(f
2) = EχNS ×χNζ [f2(S1, . . . , SN , ζ1, . . . , ζN )]

=

N−n∑
k=1

N−n∑
`=1

EχNS ×χNζ E[S̃k+nS̃`+nζkζ`]

=
N−n∑
k=1

N−n∑
`=1

ΣS(k − `)Σζ(k − `)

For fixed n and N � n this admits the approximation ψb(f
2) ≈ (N − n)SS×ζ(0), where

SS×ζ(0) =

∞∑
m=−∞

ΣS(m)Σζ(m) .

This gives the large-N approximation,

D̂(ψa‖ψb) ≥ 1
2

ψa(f)2

ψb(f2)
= 1

2

ΣS,ζ(n)2

SS×ζ(0)
N +O(1)

While the derivation was performed for n ≥ 0, similar arguments establish the same bound for any
integer n. The approximation for mutual information rate is thus lower bounded,

Î(S, ζ) ≥ 1
2 sup
−∞<n<∞

ΣS,ζ(n)2

SS×ζ(0)
(39)

This function class is of course highly restrictive. A larger class of functions can be obtained by
defining for each n and each α, β ∈ Rn+1,

f(S1, . . . , SN , ζ1, . . . , ζN ) =
N−n∑
k=1

Sαk ζ
β
k , with Sαk =

n∑
m=0

αmS̃k+m, ζβk =
n∑

m=0

βmζk+m.

Formulae for ψa(f) and ψb(f
2) can be obtained as in the foregoing, yielding

Î(S, ζ) ≥ 1
2

ΣSα,ζβ (0)2

SSα×ζβ (0)

4.3 Numerical experiments

In all of the numerical examples described here, λ is chosen so that ρ = λ/(1 − λ) = 0.9, and the
upper bound appearing in (36) is q̄ = 18.

A Markovian model was chosen for ζ1 so that exact computations can be obtained for the larger
Markov chain. A simple model was chosen, in which ζ1 evolves on the three states {−1, 0, 1}. The
larger Markov chain Ψt = (Qt, St, ζ

1
t ) then evolves on a state space of size 6(1 + q̄).

The three states are labeled {zi : i = 1, 2, 3} = {−1, 0, 1}. For a fixed parameter γ ∈ (0, 1
2), the

transition matrix K is defined as follows. First, P{ζt+1 = zj | ζt = zi} = γ whenever |zj − zi| = 1:

K1,2 = K2,1 = K2,3 = K3,2 = γ

The remaining transition probabilities are K1,1 = K3,3 = 1−γ, and K2,2 = 1−2γ. The steady-state
pmf µ0 is uniform, so the steady-state variance is

σ2
ζ = ((−1)2 + 02 + 12)/3 = 2/3
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Figure 8: The top row shows results from numerical experiments with γ = 0.2, and the bottom row γ = 0.8. The approximation

for πQε (n) is nearly perfect in the latter case, even with ε = 1. With γ = 0.2, the second order approximation is poor for ε ≥ 0.5.

Its autocorrelation is equal to its autocovariance: Rζ(m) = σ2
ζ (1− γ)|m|.

Unless explicitly stated otherwise, the results that follow use γ = 0.4, so that the asymptotic
variance (the variance appearing in the Central Limit Theorem) is

asym. variance = Sζ(0) =

∞∑
k=−∞

Rζ(k) =
(2

γ
− 1
)
σ2
ζ = 4σ2

ζ

Let π̂ε = π0 + ξU1 (with ξ and U1 defined in (2.5)). The approximate pmf illustrated in the
plots on the right hand side of Fig. 7 are defined by the first marginal, π̂Qε (n) =

∑
s=0,1 π̂ε(n, s), for

n = 0, . . . , 18. The approximate steady-state queue length plotted in Fig. 6 is defined by

Ê[Q] =
18∑
n=0

nπ̂Qε (n)

The steady state pmf for Ψ was computed to obtain the exact steady-state mean E[Q], which is the
concave plot shown in Fig. 6. The approximations are accurate for ε ≤ 0.7.

The approximations for the cross power spectral density shown on the left hand side of Fig. 7
are remarkable.

The statistics of Q and its approximations are highly sensitive to the parameter γ. For γ = 0.8,
the approximation of the steady-state mean E[Q] and approximations of πQε (n) are nearly exact for
the entire range of ε. For 0 < γ ≤ 0.2 the approximations are accurate only for a very narrow range
of ε ∼ 0. Results for γ = 0.2 and γ = 0.8 are shown in Fig. 8.

The approximation for mutual information in (39) is defined as a maximum, which was achieved
at n = 1 in each experiment:

Î(S, ζ) ≥ 1
2 max
−∞<n<∞

ΣS,ζ(n)2

SS×ζ(0)
= 1

2

ΣS,ζ(1)2

SS×ζ(0)

Plots for four different values of γ are shown in Fig. 9.
The plots in Fig. 9 use the approximations obtained in Section 2. However, plots obtained using

the exact values of ΣS,ζ(1) and SS×ζ(0) are indistinguishable.
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Figure 9: Lower bound for Î(S, ζ) as a function of ε2 for three values of γ.

Unfortunately, we cannot compare Î(S, ζ) with the true mutual information rate. This is a
computational challenge that is beyond the scope of this paper.

5 Conclusions

It is very surprising to obtain an exact second order Taylor series expansion for these second or-
der statistics with minimal assumptions on the controlled Markov model. The accuracy of the
approximations obtained in numerical examples is also fortunate. The companion paper [5] and
dissertation [4] contain more numerical work related to distributed control. Further work is needed
to see if this will lead to useful bounds in applications to information theory.
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A Coupling

We present here the proof of Proposition 2.3.
We first obtain a recursion for the joint process Ψ :=(Γ,Γ•), driven by ζ, and two i.i.d. sequences

N◦ and N•, each with marginal distribution uniform on [0, 1]. The three sequences ζ,N◦,N• are
mutually independent.

Letting W denote the 3-dimensional stationary stochastic process (ζ,N◦,N•), we construct a
function F for which,

Ψt+1 = F (Ψt,Wt+1) (40)

Since Ψ evolves on a finite set, the existence of a stationary solution follows from [10] (see Theorem 5
and the discussion that follows).

To construct the function F it is enough to define the matrix sequence G that appears in (5), and
also the sequence G• that defines the dynamics of Γ•. Each are based on the following definition:
for ζ ∈ R and s ∈ [0, 1], denote

Gi,j(ζ, s) = I
{j−1∑
k=1

Pζ(i, k) ≤ s <
j∑

k=1

Pζ(i, k)
}

with the convention that “
∑0

k=1[·]k = 0”. We then take, for any t,

G•t = G(0, N•t )

A third i.i.d. sequence N is obtained by sampling:

Nt+1 =

{
N•t+1 if Γt = Γ•t
N◦t+1 else

(41)

We then take Gt = G(ζt−1, Nt).
Based on these definitions, the evolution equation (40) holds for some F ; we now focus analysis

on a stationary solution defined for all t ∈ Z.
Choose T0 ≥ 1, δ0 > 0, ε0 > 0, so that

P{Xt+1 = X•t+1 | Xt = X•t } ≥ 1− δ0ε

P{Xt+T0 = X•t+T0 | Xt 6= X•t } ≥ δ0, t ∈ Z, ε ≤ ε0

This is possible by the construction of the joint evolution equations, and the assumption that X•

is irreducible and aperiodic. The first bound may be extended to obtain,

P{Xt+T = X•t+T | Xt = X•t } ≥ (1− δ0ε)
T ≥ 1− Tδ0ε, T ≥ 1.

We then have by stationarity,

P{X0 = X•0} = P{XT0 = X•T0} = P{XT0 = X•T0 | X0 = X•0}P{X0 = X•0}
+ P{XT0 = X•T0 | X0 6= X•0}P{X0 6= X•0}

Now, substitute the prior bounds, giving

P{X0 = X•0} ≥ (1− T0δ0ε)P{X0 = X•0}
+ δ0P{X0 6= X•0}
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Substituting P{X0 6= X•0} = 1− P{X0 = X•0} and rearranging terms gives,

P{X0 = X•0} ≥
1

1 + T0ε
≥ 1− T0ε

which completes the proof of (15).
The approximation (16) follows from (15) and independence of ζ and Γ•:

E[Γtζt] = E[ζtΓ
•
t ] + E[ζt(Γt − Γ•t )] = E[ζt]E[Γ•t ] +O(ε2) = O(ε2)

The remaining bounds in (17) follow directly from (15) and the smoothness assumptions on Pζ .

B Martingale difference sequence

This appendix contains the proof of Proposition 2.1.
Define the σ-algebra Ft = σ{ζ∞−∞, N t

−∞}. The random vector ∆t is Ft-measurable for each t,
and it follows from (6) that

E[∆t+1|Ft] = E[Γt{G(ζt, Nt+1)− Pζt}|Ft] = 0 ,

where G(ζt, Nt+1) = Gt+1. This proves that ∆t is a martingale difference sequence. Moreover, using
the smoothing property of conditional expectation, for any t and τ ,

E[∆t+1ζτ ] = E[Γt[G(ζt, Nt+1)− Pζt ]ζτ ]

= E[Γtζτ E[{G(ζt, Nt+1)− Pζt}|Ft]] = 0.

This establishes R∆,ζ(k) = 0 for any k, which is (10).
The covariance of ∆ is obtained by applying the representation ΓT

t Γt = diag(Γt) := ΛΓ
t . This

follows from the fact that ΓT
t is a standard basis vector for each t. Consequently,

Cov (∆t+1) = E[(ΓtGt+1)T(ΓtGt+1)]− E[(ΓtPζt)
T(ΓtPζt)]

= E[ΓT
t+1Γt+1]− E[(Pζt)

TΓT
t ΓtPζt ]

= E[ΛΓ
t+1]− E[(Pζt)

TΛΓ
t Pζt ]

which is (9).

C Approximating the steady-state mean

The approximation (30) is obtained here, starting with the approximate evolution equation that was
used to obtain (12):

Γt+1 = ΓtPζt + ∆t+1

= Γt[P0 + ζtE + 1
2ζ

2
tW] + ∆t+1 +O(ε3)

Taking the mean of each side, and using stationarity,

E[Γt] = E[Γt+1] = E[Γt]P0

+ E[ζtΓt]E
+ 1

2E[ζ2
t Γt]W +O(ε3)

(42)
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To approximate E[ζ2
t Γt] we use Γt = Γ•t + Õ(ε). This combined with independence of Γ•, ζ gives,

E[ζ2
t Γt] = E[ζ2

t Γ•t ] + E[ζ2
t (Γt − Γ•t )] = E[ζ2

t ]E[Γ•t ] +O(ε3) = σ2
ζπ0 +O(ε3)

Substituting this into (42) gives the approximate fixed-point equation,

π̃ε = π̃εP0 + ξ +O(ε3) (43)

where π̃ε = πε − π0, and ξ is defined in (31).
The matrix I − P0 is not invertible since it has eigenvalue at 0. To obtain an invertible matrix

we note that π̃ε[1⊗ π0] = 0 for any ε, and hence (43) is equivalent to the vector equation,

π̃ε[I − P0 + 1⊗ π0] = π̃ε[I − P0] = ξε2 +O(ε3)

The desired result (30) is obtained by inversion:

π̃ε = ξ[I − P0 + 1⊗ π0]−1 +O(ε3) = ξU1 +O(ε3)

D Cross-covariance with ζ

Approximations for RD,ζ and RBζ are relatively simple because ζt = O(ε).

D.1 Cross-covariance between D and ζ

Using the coupling result we obtain an approximation for the cross-correlation function,

RD,ζ(t) = E[DT
t+1ζ1]

= E[(BT
t ζt + ∆t+1)Tζ1] +O(ε3)

= E[B•t ζtζ1] +O(ε3)

= BRζ(t− 1) +O(ε3).

(44)

D.2 Cross-covariance between ∆∆T and ζ

Recall the σ-algebra Fs = σ{ζ∞−∞, N s
−∞} introduced in Appendix B. Taking s = −1 we obtain from

the smoothing property of the conditional expectation,

R∆2,ζ(−t) = E[∆T
0∆0ζt] = E[ζtE[∆T

0∆0 | F−1]] , t ∈ Z .

The conditional expectation is a matrix that is denoted

X = E[∆T
0∆0|F−1] = diag(Γ−1Pζ−1)− P T

ζ−1
ΛΓ
−1Pζ−1 (45)

Lemma D.1. For t ≥ 0 we have

R∆2,ζ(−t) = E[ζtX ]

= diag(RΓ,ζ(−t− 1)P0)− P T
0 diag(RΓ,ζ(−t− 1))P0 +Rζ(t+ 1)E[X (1)

• ] +O(ε3) ,

where E[X (1)
• ] is defined below (32).
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Proof. A first order Taylor series approximation gives X = X (0) + ζ−1X (1) +O(ε2), where

X (0) = diag(Γ−1P0)− P T
0 diag(Γ−1)P0

X (1) = diag(Γ−1E)− (P T
0 diag(Γ−1)E + [P T

0 diag(Γ−1)E ]T) .

Hence, for t ≥ 0,

E[ζtX ] = E[ζt(X (0) + ζ−1X (1) +O(ε2))]

= E[ζtX (0)] + E[ζtζ−1X (1)
• ] +O(ε3)

= E[ζtX (0)] +Rζ(t+ 1)E[X (1)
• ] +O(ε3)

where, in the second equality we used X (1) = X (1)
• + Õ(ε) with

X (1)
• = diag(Γ•−1E)−

(
P T

0 diag(Γ•−1)E + [P T
0 diag(Γ•−1)E ]T

)
,

and also used the fact that Γ•−1 is independent of ζ. We have by the definitions,

E[ζtX (0)] = diag(RΓ,ζ(−t− 1)P0)− P T
0 diag(RΓ,ζ(−t− 1))P0.

Substitution into the previous approximation for E[ζtX ] completes the proof.

D.3 Auto-correlation of Bζ

Applying the coupling result (17) in Proposition 2.3 gives BT
t = B•Tt + Õ(ε), where BT

t = ΓtE .
Hence,

RBζ(t) = E[BtζtB
T
0 ζ0] = E[B•t ζt(B

•
0ζ0)T] +O(ε3) = RB•ζ(t) +O(ε3) (46)

Independence of ζ and Γ•t implies a formula for the simpler auto-correlation:

RB•ζ(t) := E[B•t ζt(B
•
0ζ0)T]

= E[(Γ•tE)T(Γ•tE)]E[ζtζ0]

= ETRΓ•(t)ERζ(t)
(47)

A formula for RΓ•(t) is given next: For t ≥ 0,

RΓ•(t) = E[(Γ•t )
TΓ•0] = E[(Γ•0P

t
0)TΓ•0] = (P T

0 )tE[(Γ•0)TΓ•0] = (P T
0 )tΠ0 (48)

where the last equality is from the fact that Γt has binary entries and E[Γt] = π0.
Combining (46)–(48) completes the proof of (23).

D.4 Cross-covariance between Γ and ζ

The derivation of (33) is obtained via a recursion, similar to the calculation in Section C. It is
simplest to work with the row vectors νk =

(
RΓ,ζ(k)

)T
= E[Γkζ0]. For any k ∈ Z,

νk+1 = E[Γk+1ζ0]

= E[(ΓkPζk + ∆k+1)ζ0]

= E[ΓkPζkζ0]

= E[Γk(P0 + Eζk +O(ε2))ζ0]

= νkP0 + E[ΓkEζkζ0] +O(ε3)
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where in the third equation we used the fact that the sequences ∆ and ζ are uncorrelated. Recalling
the definition BT = πE = E[Γ•k]E , and applying the coupling result Γk = Γ•k + Õ(ε) gives

E[ΓkEζkζ0] = E[Γ•kEζkζ0] +O(ε3) = BTRζ(k) +O(ε3).

Hence, νk+1 = νkP0 + BTRζ(k) + O(ε3); that is, there is a bounded sequence of row vectors {γk}
such that

νk+1 = νkP0 +BTRζ(k) + ε3γk

It follows from (11) that BT1 = π0E1 = 0. Moreover, since {Γt} are pmfs, we have for any `,

ν`1 = E[ζ0Γ`]1 = E[ζ0] = 0. (49)

It then follows that γk1 = 0 for each k.
On iterating, we obtain for any integer n ≥ 1,

νk+n = νkP
n
0 +

n∑
i=1

[BT + ε3γi]P
i−1
0 Rζ(k + n− i).

Now, substitute t = k + n, where t ∈ Z is a fixed integer, and n is a large positive integer:

νt = νt−nPn0 +
n∑
i=1

[BT + ε3γi]P
i−1
0 Rζ(t− i). (50)

For large n we have Pn0 = 1⊗π0+oe(1), where oe(1)→ 0 geometrically fast as n→∞. Consequently,

νt−nPn0 = E[ζ0Γt−n]1⊗ π0 + oe(1)

γiP
i−1
0 = γi1⊗ π0 + oe(1)

We have seen that E[ζ0Γt−n]1 = 0 and γi1 = 0, from which we conclude that

νt−nPn0 = oe(1) and
∞∑
i=1

‖γiP i−1
0 Rζ(t− i)‖ <∞

This justifies letting n→∞ in (50) to obtain,

νt = BT

∞∑
i=1

P i−1
0 Rζ(t− i) +O(ε3) ,

which is equivalent to (33) on substituting the definition νk =
(
RΓ,ζ(k)

)T
.

Based on this result we now prove Proposition 2.6. It is sufficient to establish the following
approximation:

RΓ,ζ(0) = ε2
nz∑
k=1

akρk[I − ρkP T
0 ]−1B +O(ε3) (51)

The representation (34) for ξ then follows immediately from the original definition (31).
Recall that νk = E[Γkζ0], k ∈ Z. Under A3 we apply (18) to conclude that for t ≤ 1 and i ≥ 1,

Rζ(t− i) = ε2
nz∑
k=1

akρ
i−t
k .
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For these values of t and i we have i− t = i+ |t|, and hence the approximation (33) gives,

νt = ε2
nz∑
k=1

∞∑
i=1

BTP i−1
0 akρ

i+|t|
k +O(ε3).

Rearranging terms, and letting j = i− 1 gives,

νt = ε2BT

nz∑
k=1

akρ
1+|t|
k

∞∑
j=0

P j0ρ
j
k +O(ε3) .

On setting t = 0 and taking transposes, this becomes (51)

E Proof of Theorem 2.4

The representation of RD(t) as the sum of the terms (22a–22d), plus an error of order ε3, follows
immediately from the arguments preceding the theorem. The proof of (21) is given in (44).

Next we consider each of the terms (22a–22d) separately.
The approximation for RBζ(t) that appears in (22a) was given in Section D.3. Consider next

the covariance Σ∆ in (22b).

E.1 Approximation of Σ∆ in (25)

Equation (9) gives
Σ∆ = Πε − E[P T

ζtΛ
Γ
t Pζt ], (52)

where, Πε = diag(πε); recall that πε is approximated in Proposition 2.5.
The random variable P T

ζt
ΛΓ
t Pζt is approximated using a second order Taylor series expansion.

The random matrix ΛΓ
t has binary entries, so we leave it fixed in this approximation. For any scalar

ζ and matrix Λ we have

P T
ζ ΛPζ = P T

0 ΛP0 + ζM (1) + 1
2ζ

2M (2) +O(|ζ|3) (53)

where M (i) is the ith derivative of P T
ζ ΛPζ with respect to ζ, evaluated at ζ = 0.

To obtain M (1), first differentiate using the product rule:

d
dζP

T
ζ ΛPζ = P T

ζ ΛP ′ζ + [P T
ζ ΛP ′ζ ]

T

Evaluating at ζ = 0 gives,
M (1) = P T

0 ΛE + [P T
0 ΛE ]T

Similarly, given the second derivative,

d2

dζ2
P T
ζ ΛPζ = (P ′ζ

T
ΛP ′ζ + P T

ζ ΛP ′′ζ ) + (P ′ζ
T
ΛP ′ζ + P T

ζ ΛP ′′ζ )T

we obtain
M (2) = P T

0 ΛW + 2ETΛE +WTΛP0

Substituting ζt = ζ and Λt = Λ in (53) gives the approximation,

E[P T
ζtΛ

Γ
t Pζt ] = E[P T

0 ΛΓ
t P0]

+ E[(P T
0 ΛΓ

t E + ETΛΓ
t P0)ζt]

+ 1
2E[(P T

0 ΛΓ
tW + 2ETΛΓ

t E +WTΛΓ
t P0)ζ2

t ] +O(ε3)

(54)
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The first term on the RHS can be approximated using Proposition 2.5. The second expectation
involves E[ζtΓt], which is approximated in Lemma 2.6. For the third term we replace Γt by Γ•t +Õ(ε),
where Γ•t has mean π0 and is independent of ζ. Combining all of these approximations gives the
following approximation for the second term in (52):

E[P T
ζtΛ

Γ
t Pζt ] = P T

0 ΠεP0

+ P T
0 diag(E[Γtζt]E + ET diag(E[Γtζt])P0

+ 1
2(P T

0 Π0W + 2ETΠ0E +WTΠ0P0)E[ζ2
t ] +O(ε3)

(55)

where, Π0 = diag(π0) and Πε = diag(πε). This gives (25) since RΓ,ζ(0) = E[ΓT
t ζt].

E.2 Computation of RBζ,∆(t) in (27)

This is the most complex part of the proof.
We consider three cases separately: For t < 0 we have demonstrated that RBζ,∆(t) = 0. The

second case is t = 0. The approximation for RBζ,∆(0) is used as an initial condition in a recursive
approximation for RBζ,∆(t), t ≥ 1.

An approximation for RBζ,∆(0) is obtained from Lemma D.1. Using E[∆0|F−1] = 0, we obtain

RBζ,∆(0) = E[(Γ0Eζ0)T∆0]

= ETE[ζ0(Γ−1Pζ−1 + ∆0)T∆0]

= ETE[ζ0(Γ−1Pζ−1)T∆0] + ETR∆2,ζ(0)

= ETE[ζ0(Γ−1Pζ−1)TE[∆0|F−1]] + ETR∆2,ζ(0)

= ETR∆2,ζ(0)

(56)

Lemma D.1 provides an approximation for R∆2,ζ(0). Substituting this into (56) gives the approxi-
mation for RBζ,∆(0) shown in (27).

In the remainder of this subsection we consider t ≥ 1. Iterating (5) gives,

BT
t = ΓtE = Γ0G1G2 · · ·GtE

Each term is conditionally independent of ∆0, given ζ, except for Γ0 = Γ−1G0 = Γ−1Pζ−1 + ∆0.
Using the fact that Γ−1Pζ−1 is also conditionally independent of ∆0, we obtain

RBζ,∆(t) = E[ζtETP T
ζt−1

P T
ζt−2
· · ·P T

ζ0 [Γ−1Pζ−1 + ∆0]T∆0]

= ETE[ζtP
T
ζt−1
· · ·P T

ζ0E[∆T
0∆0|F−1]]

= ETE[ζtP
T
ζt−1
· · ·P T

ζ0X ] (57)

where X was introduced in (45).
Denote Ai = P T

ζi
, A = P T

0 , and the matrix product Ωt = AtAt−1 · · ·A0, for t ≥ 0. We set Ωt = I
for t < 0. The product is approximated in the following:

Lemma E.1. For t ≥ 0,

Ωt = At+1 +
t∑
i=0

At−iETAiζi +O(ε2). (58)

The proof of (58) is postponed to the end of this subsection.
Once we have established this lemma, we then have the complete cross-correlation:
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Proof of approximation (27) for RBζ,∆(t), t ≥ 1. We return to (57), which can be expressed

RBζ,∆(t) = ETE[ζtΩt−1X ], t ≥ 1.

Substituting the bound in Lemma E.1,

RBζ,∆(t) = ETE[ζtA
tX ] + ETE

[
ζt

t−1∑
i=0

At−1−iETAiζiX
]

+O(ε3)

= ETAtE[ζtX ] + ETE
[
ζt

t−1∑
i=0

At−1−iETAiζi

(
X • + Õ(ε)

)]
+O(ε3)

= ETAtE[ζtX ] + ET

t−1∑
i=0

At−1−iETAiRζ(t− i)Σ∆• +O(ε3)

This establishes (27) since E[ζtX ] = R∆2,ζ(−t).

The proof of Lemma E.1 uses a Taylor series approximation for Ωt:

Ωt = AtΩt−1 = AΩt−1 +Wt ,

where Wt = Et + Ft; Et = ETζtΩt−1 is the first order term in the Taylor series approximation, and
Ft is the approximation error whose norm is bounded by O(ε2).

The following result provides a uniform bound on At−iFi for each t and i, and also At−iET (which
appears in (58)).

Lemma E.2. There exists 0 < κ <∞ and 0 < % < 1 such that

‖AnET‖ = ‖EPn0 ‖ ≤ κ%n

‖AnFi‖ ≤ κ%nε2

Proof. The proof that E1 = 0 was established previously: see (11). Next we apply the ergodic
limit (20), recalling that Pn0 → 1 ⊗ π0 geometrically fast as n → ∞: there exists 0 < κ0 < ∞ and
0 < % < 1 such that

‖en‖ ≤ κ0%
n, with en = Pn0 − 1⊗ π0. (59)

Consequently, EPn0 = EPn0 1⊗ π0 + Een = Een, which implies the desired bound ‖Een‖ ≤ κ%n, with
κ = κ0‖E‖.

The proof of the second bound is similar: For each i we have

1TWi = 1T(Ai −A)Ωi−1 = 0T

1TEi = 1TETΩi−1ζi = (E1)TΩi−1ζi = 0T

We then have 1TFi = 1T(Wi − Ei) = 0T, from which we obtain as before,

F T
i P

n
ζ = F T

i (1⊗ π0 + en) = F T
i en

Applying (59), we arrive at the desired bound:

‖AnFi‖ = ‖F T
i P

n
0 ‖ = ‖F T

i e
n‖ ≤ ‖Fi‖ ‖en‖ ≤ ε2κ%n,

where ε2κ is equal to κ0 times a worst-case bound on ‖Fi‖.
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Proof of Lemma E.1. Applying Lemma E.2,

t∑
i=1

‖At−iFi‖ =
t∑
i=1

‖F T
i P

t−i
0 ‖ ≤ ε2 κ

1− % = O(ε2)

This implies the following approximation for Ωt:

Ωt = AtΩt−1 = (A+ ETζt)Ωt−1 + Ft

= AΩt−1 + ETΩt−1ζt + Ft

= AtΩ0 +

t∑
i=1

At−iETΩi−1ζi +

t∑
i=1

At−iFi

= At(A+ ETζ0 +O(ε2))

+

t∑
i=1

At−iETΩi−1ζi +O(ε2)

= At+1 +
t∑
i=0

At−iETΩi−1ζi +O(ε2)

In particular, this shows that Ωt = At+1 + O(ε). Moreover, Lemma E.2 gives the geometric bound
‖At−iET‖ ≤ κ%t−i. This justifies substitution Ωi−1ζi = Aiζi + O(ε2) to obtain the desired result
(58).

E.3 Approximation of RV ζ2,∆(t) in (29)

Recall that V T
t = 1

2ΓtW, and denote RΓ•,∆•(t) = E[(Γ•t )
T∆•0].

Applying the coupling result Proposition 2.3, the cross-correlation is approximated as follows:

RV ζ2,∆(t) = E[1
2(ΓtW)Tζ2

t ∆0]

= 1
2WTE[ζ2

t ]E[(Γ•t )
T∆•0] +O(ε3)

= 1
2ε

2σ2
ζ1WTRΓ•,∆•(t) +O(ε3)

We have RΓ•,∆•(t) = 0 for t < 0, and thus RV ζ2,∆(t) = O(ε3) for t < 0.
We also have RΓ•,∆•(0) = E[(Γ•0)T∆•0] = Σ∆• = Π0 − P T

0 Π0P0, and for t ≥ 1,

RΓ•,∆•(t) = E[(Γ•0P
t
0)T∆•0]

= E[((Γ•−1P0 + ∆•0)P t0)T∆•0]

= E[(P t0)T(∆•0)T∆•0] = (P t0)TΣ∆• .

Substituting RΓ•,∆•(t) = (P T
0 )tΣ∆• into the previous expression for RV ζ2,∆(t) gives (29) for t ≥ 0.

E.4 Proof of Proposition 2.8

The proof begins with the uniform bound,

‖S(θ)− Ŝ(θ)‖ ≤
∞∑

t=−∞
‖Σtot(t)− Σ̂tot(t)‖, θ ∈ R
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where ‖ · ‖ is any matrix norm. The right hand side is finite under Assumptions A1 and A2. It
remains to obtain an estimate that is O(ε2+%). We establish a slightly stronger bound,

∞∑
t=0

‖Σtot(t)− Σ̂tot(t)‖ = O(ε2 log(1/ε)). (60)

Under the assumption that Rζ(t) → 0 geometrically fast, it follows that the same is true for

Σ̂tot(t) and Σtot(t): for some b0 <∞ and δ > 0,

‖Σtot(t)‖+ ‖Σ̂tot(t)‖ ≤ exp(b0 − δ|t|), t ∈ Z.

Moreover, µ = µ0 +O(ε2), where the first d components of µ0 coincide with π0, and the remaining
are zero. It follows that Σtot(t) = R(t)− µ0µ

T
0 +O(ε4). Consequently, Theorem 2.4 implies that for

some b1 <∞,
‖Σtot(t)− Σ̂tot(t)‖ ≤ exp(b1)ε3, t ∈ Z.

To establish (60) we decompose the sum into two parts. Denote

N(ε) = min{t ≥ 0 : exp(b0 − δt) ≤ exp(b1)ε3}.

This implicit definition can be solved to give N(ε) = [b0 + 3b1 log(1/ε)]δ−1.
From this we obtain,

∞∑
t=0

‖Σtot(t)− Σ̂tot(t)‖ ≤ exp(b1)ε3N(ε) +
∑

t>N(ε)

exp(b0 − δt)

≤ exp(b1)ε3N(ε) + exp(b0 − δN(ε))
1

1− exp(−δ)
≤ exp(b1)ε3N(ε) + exp(b1)ε3 1

1− exp(−δ)

This together with the formula for N(ε) immediately gives the bound (60).

F Proof of Proposition 4.1

Recall the representation of relative entropy as the convex dual of the log-moment generating func-
tion: For any probability measure ψb on E and measurable function f : E → R, the log-moment
generating function is denoted

Λb(f) = log(ψb(e
f ))

For any other probability measure ψa on (E ,B) we have,

D(ψa‖ψb) = sup{ψa(f)− Λb(f)}

where the supremum is over all measurable functions f for which ψa(f) is defined [9, Theorem 3.1.2].
Provided the relative entropy is finite, the supremum is achieved uniquely with the log-likelihood

function f∗ = log(dψa/dψb). The error bound (ii) in the proposition is vacuous unless ‖f∗‖∞ <∞.
Consequently, to establish the error bound we can restrict to functions f for which ‖f‖∞ <∞.

Apply the second order Taylor-series expansion:

Λb(f) = log(1 + ψb(f) + 1
2ψb(f

2)) = ψb(f) + 1
2ψb(f

2) +O(‖f‖3∞).
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A quadratic approximation to relative entropy is obtained on dropping the error term. To complete
the proof we establish the following alternate expression for (38):

D̂(ψa‖ψb) := sup{ψa(f)− ψb(f)− 1
2ψb(f

2)}

where the supremum is over all functions f whose mean is defined with respect to both ψa and
ψb. Without loss of generality we may assume that the maximum is over all functions f for which
ψb(f) = 0. It is not difficult to show that the maximizing function is f̂∗ = ef

∗ − 1 = dψa/dψb − 1
whenever D̂(ψa‖ψb) is finite. This establishes (i).

We can scale by a constant θ to obtain

D̂(ψa‖ψb) = max
f

max
θ
{θψa(f)− 1

2θ
2ψb(f

2)}

where the first maximum is over measurable functions f satisfying ψb(f) = 0 and ψa(|f |)+ψb(f
2) <

∞. The optimizing value is θ∗ = ψa(f)/ψb(f
2). Substitution leads to the formula (38).
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