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Estimation and Control of
Quality of Service in Demand Dispatch

Yue Chen, Ana Bušić, and Sean Meyn

Abstract—It is now well known that flexibility of energy con-
sumption can be harnessed for the purposes of grid-level ancillary
services. In particular, through distributed control of a collection
of loads, a balancing authority regulation signal can be tracked
accurately, while ensuring that the quality of service (QoS)
for each load is acceptable on average. Subject to distributed
control approaches advocated in recent research, the histogram
of QoS is approximately Gaussian, and consequently each load
will eventually receive poor service. Statistical techniques are
developed to estimate the mean and variance of QoS as a function
of the power spectral density of the regulation signal.

It is also shown that additional local control can eliminate risk:
The histogram of QoS is truncated through this local control,
so that strict bounds on service quality are guaranteed. While
there is a tradeoff between the grid-level tracking performance
(capacity and accuracy) and the bounds imposed on QoS, it is
found that the loss of capacity is minor in typical cases.

Index Terms—Demand dispatch, demand response, ancillary
services, mean field control.

I. INTRODUCTION

The power grid requires regulation to ensure that supply
matches demand. Regulation is required by each balancing
authority (BA) on multiple time-scales, corresponding to the
time-scales of volatility of both supply and demand for power.
Resources that supply these regulation services are collectively
known as ancillary services. FERC orders 755 and 745 are ex-
amples of recent federal policy intended to provide incentives
for the provision of these services.

A number of papers have explored the potential for extract-
ing ancillary service through the inherent flexibility of loads.
Examples of loads with sufficient flexibility to provide service
to the grid are aluminum manufacturing, plug-in electric
vehicles, heating and ventilation (HVAC), and water pumping
for irrigation [1], [2], [3], [4], [5], [19]. Even with direct
load control, there may be delay and dynamics, so harnessing
ancillary services from flexible loads amounts to a control
problem: The BA wishes to design some signal to be broadcast
to loads, so that deviation in power consumption tracks a
reference signal. It has been argued that a randomized control
architecture at each load can simplify this control problem
[4], [6], [7]. Randomized algorithms also appear in recent
grid-solutions from industry, such as the mechanism for load
shedding for voltage control in one of Schneider’s patents [18].
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Fig. 1 shows a schematic of the Demand Dispatch control
architecture adopted in [4], in which each load operates ac-
cording to a randomized policy based on its internal state, and
a common control signal ζ. Theoretical results and examples
in this prior work demonstrate that local randomized policies
can be designed to simplify control of the aggregate to provide
reliable ancillary services.
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Fig. 1. Control architecture for Demand Dispatch

Absent in prior work is any detailed analysis of risk for an
individual load (with the exception of the preliminary work
[8] on which the present paper is built). In the setting of [4]
it can be argued that the quality of service (QoS) for each
load is acceptable only on average. Strict bounds on QoS are
addressed in [9] for a deterministic model. The service curves
considered there are of similar flavor to the QoS metrics used
in the present work.
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Fig. 2. Discounted QoS (10) with and without local opt-out control.

The main contributions of this paper are summarized as
follows:
(i) QoS metrics are proposed in Section II. Techniques to

approximate their second order statistics are developed in
Section III.

(ii) An approach is proposed to restrict QoS to pre-specified
bounds: A load will opt-out of service to the grid tem-
porarily, whenever its QoS is about to exit a violate these
bounds. In addition, techniques are introduced to condition
the grid-level reference signal so that opt-out is rare.

(iii) These conclusions are illustrated in numerical results
surveyed in Section IV.
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Fig. 2 shows histograms of QoS based on simulation exper-
iments described in Section IV. The plot on the left hand
side shows that a Gaussian approximation is a good fit with
empirical results when there is no local opt-out control. The
figure on the right shows how the histogram is truncated when
opt-out control is in place. It is found that opt-out control has
little impact on grid-level performance, provided QoS bounds
are not overly restrictive.

The methodology used in this work employs a linear
representation of the controlled Markov chain that represents
the state of an individual load [10]. Similar representations
are used in [11], [12] to obtain nonlinear filters for state
estimation.

The numerical examples in this paper all concern a homoge-
neous collection of a particular load: residential pool pumps.
The homogeneity assumption simplifies the analysis, but is
by no means essential. This is imposed only to obtain an
approximation for the statistics of the signal broadcast to the
loads. The extension to certain other types of loads, such as
refrigeration or water heating is straightforward [12], [16]. For
other loads, estimation of QoS remains a frontier. For example,
air-conditioning appears to be more challenging because load
is highly time-varying, so that a stationary setting for analysis
may not be appropriate.

We begin with a brief survey of a portion of results from
[4], and a precise definition of QoS for a load.

II. RANDOMIZED CONTROL AND MEAN-FIELD MODELS

A. Randomized control

The system architecture considered in this paper is illus-
trated in Fig. 1, based on the following components:
(i) There are N homogeneous loads that receive a common

scalar command signal from the balancing authority (BA),
denoted ζ = {ζt} in the figure.

(ii) Each load evolves as a controlled Markov chain on the
finite state space X = {x1, . . . , xd}. Its transition probabil-
ity is determined by its own state, and the BA signal ζ. The
common dynamics are defined by a controlled transition
matrix {Pζ : ζ ∈ R}. For the ith load, there is a state
process Xi whose transition probability is given by,

P{Xi
t+1 = x′ | Xi

r, ζr : r ≤ t} = Pζ(x, x
′), (1)

for each x′ ∈ X, Xi
t = x ∈ X and ζt = ζ ∈ R.

(iii) The BA has measurements of the other two scalar
signals shown in the figure: The aggregate power con-
sumption y and desired deviation power consumption r.

Part (i) is assumed to simplify exposition. Control of a
heterogeneous population is treated in [16]. Statistics of QoS
for an individual can then be estimated and/or controlled using
the methods introduced in the present paper.

An approach to construction of {Pζ : ζ ∈ R} was proposed
in [4] based on information-theoretic arguments. The nominal
behavior is defined as the dynamics with ζ ≡ 0. A specific
construction of Pζ is not required here, but the following
assumptions are imposed in our main results.
A1: The transition matrix Pζ is twice continuously differ-

entiable (C2) in a neighborhood of ζ = 0, and the second

derivative is Lipschitz continuous. In addition, the nominal
transition matrix P0 is irreducible and aperiodic.
The first and second order derivatives of the transition
matrix at ζ = 0 are denoted,

E =
d

dζ
Pζ

∣∣∣
ζ=0

, E(2) =
d2

dζ2
Pζ

∣∣∣
ζ=0

. (2)

A2: ζt = εζ1t , where 0 ≤ ε < 1 and ζ1 = {ζ1t : t ∈ Z} is a
real-valued stationary stochastic process with zero mean.
The following additional assumptions are imposed:

(i) It is bounded, |ζ1t | ≤ 1 for all t with probability one.
Hence σ2

ζ = E[ζ2t ] ≤ ε2.
(ii) Its auto-covariance satisfies, for each t,

|Σζ(t)| ≤ ε2bρ|t|, with b <∞, and |ρ| < 1.

Assumption A1 is ensured by design in all prior work.
Assumption A2 is a modeling assumption, imposed to study
how QoS is impacted by the command signal ζ.

It is assumed that the power consumption at time t from
load i is equal to some function of the state, denoted U(Xi

t).
The normalized power consumption is denoted,

yNt =
1

N

N∑
i=1

U(Xi
t). (3)

Under Assumption A1, P0 has a unique pmf (probability
mass function) π0. The value y0 :=

∑
x π0(x)U(x) is inter-

preted as the average nominal power usage. On combining
the ergodic theorem for Markov chains with the Law of Large
Numbers for i.i.d. sequences we can conclude that yNt ≈ y0

when both N and t are large, and ζ ≡ 0.
It is assumed that the signal r is also normalized so that

tracking amounts to choosing the signal ζ so that ỹNt ≈ rt
for all t, where ỹNt = yNt − y0 is the deviation from nominal
behavior. For example, we might use error feedback of the
form,

ζt = Gcet, et = rt − ỹNt , (4)

where Gc is the control transfer function [13], [14], [4].
Adopting terminology from control engineering, r will be
called the reference signal.

A state space model approximating the dynamics of the
aggregate is obtained as the mean-field model defined next.

B. Mean-field model

The mean-field model is based on the empirical pmfs:

µNt (x) :=
1

N

N∑
i=1

I{Xi
t = x}, x ∈ X. (5)

Each entry of the vector µNt represents the fraction of loads in
a particular state. Under very general conditions on the input
sequence ζ, it can be shown that as N → ∞, the empirical
distributions converge to a solution to a nonlinear state space
model with state denoted {µt}, and input {ζt}. It is convenient
to express µt as a d-dimensional row vector, since then the
evolution equations become

µt+1 = µtPζt , t ≥ 0. (6)
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That is, for each state x ∈ X and t ≥ 0, the value µt+1(x)
is an approximation of the empirical pmf (or histogram) (5),
and is related to the previous empirical pmf via

µt+1(x) =
∑
x′∈X

µt(x
′)Pζt(x

′, x).

The normalized power consumption (3) converges to the value
yt =

∑
x µt(x)U(x).

The unique equilibrium with ζ ≡ 0 is µt ≡ π0 and yt ≡ y0.
The linearization about this equilibrium is described by the
linear state space model,

Φt+1 = AΦt +Bζt

γt = CΦt
(7)

in which A = P T
0, C is a row vector of dimension d = |X|

with Ci = U(xi) for each i, and B is a d-dimensional column
vector with entries Bj =

∑
x π0(x)E(x, xj), where the matrix

E is defined in (2). In the state equations (7), the state Φt is
d-dimensional, and Φt(i) is intended to approximate µt(xi)−
π0(xi) for 1 ≤ i ≤ d. The output γt is an approximation of
ỹt = yt − y0.

Recall that a primary goal is to design the signal ζ so that
ỹNt ≈ rt for all t. The linear model is invaluable for design of
the feedback compensator Gc appearing in (4). It is convenient
to base this design on the transfer function from ζ to γ:

Gp(z) := C[Iz −A]−1B (8)

C. QoS for an individual and the population

The QoS metrics considered in this paper are specified by
a function ` : X → R, and a stable transfer function denoted
HL. For example, the function ` may represent temperature,
cycling, or power consumption as a function of x ∈ X. The
QoS of the ith load at time t is denoted Lit, and defined by
passing Li := {Lit = `(Xi

t) : t ∈ Z} through the transfer
function HL.

Two classes of transfer functions HL are considered in
numerical experiments:
(i) Summation over a finite time horizon Tf :

Lit =

Tf∑
k=0

`(Xi
t−k). (9)

(ii) Discounted sum:

Lit =

∞∑
k=0

βk`(Xi
t−k) , (10)

where the discount factor satisfies β ∈ [0, 1).
In particular, setting Tf = 0 or β = 0 gives Lit = `(Xi

t).
Unless elsewhere specified, the function ` is chosen to

reflect the power consumption of a load,

`(Xi
t) = U(Xi

t), (11)

and its normalized form is also considered,

`(Xi
t) = U(Xi

t)− y0 (12)

where y0 is defined after (3).

The average QoS at time t is denoted,

L̄t =
1

N

N∑
i=1

Lit ,

and the filtered signal is denoted R = HLr. The following
result follows from the definitions:

Proposition 2.1: Suppose there is perfect tracking: ỹNt = rt
for all t. Then, under the definition of `(Xi

t) in (12),

L̄t = Rt. (13)

�
In practice we can only expect the approximation ỹNt ≈

rt, which will imply the corresponding approximation L̄t ≈
Rt. This leads to a useful heuristic notion of capacity of the
aggregate of loads as a function of time:

Battery analogy: With ` defined in (12), the signal L̄t is
similar to the SOC (state of charge) of a battery. In particular,
a large value of L̄t suggests loads have a large capacity for
“discharge”. Since Rt approximates L̄t by design, the former
can be used as an indicator of SOC of loads.

D. Example: Intelligent pools

The paper [4] on which the present work is based considered
an application of this system architecture in which the loads
are a collection of pools. The motivation for considering pools
is the inherent flexibility of pool cleaning, and because the
total load in a region can be very large. The maximum load
is approximately 1GW in the state of Florida.

In this prior work, the state space was the finite set,

X = {(κ, j) : κ ∈ {⊕,	}, j ∈ {1, 2, . . . , I}}. (14)

The load samples the grid signal periodically (the sampling
increments are assumed to be deterministic, or i.i.d. and
distributed according to a geometric distribution). At the time
of the kth sample, if Xk = (	, j) then the load has remained
off for the past j sampling times, and was turned off at
sampling time k − j. The interpretation of Xk = (⊕, j) is
symmetrical, with “⊕” indicating that the load is currently
consuming power.

A technique to construct the transition matrix Pζ was intro-
duced in [4] using an optimal-control approach, and improved
in [12], [15], [16] to reduce the dimension of the state space,
and extend application beyond this class of loads. It has been
demonstrated through extensive simulation that tracking at
the grid level is nearly perfect, provided that the reference
signal is scaled and filtered [8], [4], [12]. What was left out
in prior work is any detailed consideration of the quality of
service to individual loads. The pool pump example is ideal for
illustrating the possibility of risk for an individual load, and
illustrating how this risk can be reduced or even eliminated.

In a numerical experiment conducted with 104 pools, each
pool pump was expected to clean the pool 12 hour/day and
assumed to consume 1 kW when operating. Hence the function
U that defines (11) and (12) is the indicator function U(x) =∑
j I{x = (⊕, j)}. Fig. 3 shows the histogram of the QoS

metric Lit based on (9) and (11), with Tf corresponding to 10
days.
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Fig. 3. Histogram of the moving-window QoS metric (9).

The histogram appears Gaussian, with a mean of approxi-
mately 120 hours — this is consistent with the time horizon
used in this experiment, given the nominal 12 hour/day clean-
ing period. It is evident that a fraction of pools are over-cleaned
or under cleaned by 24 hours or more.

An analysis of QoS is presented in the next section based
on a model of an individual load in the mean field limit.

III. QOS ANALYSIS AND OPT-OUT CONTROL

In the mean-field limit, the aggregate dynamics are deter-
ministic, following the discrete-time nonlinear control model
(6). The behavior of each load remains probabilistic.

A. Mean field model for an individual load

The mean field model for one load is defined by replacing
ζN with the sequence ζ that arises in the mean-field limit.
The justification is that we have a very large number of loads,
but our interest is in the statistics of an individual.

The super-script i is dropped in our analysis of a single
load. Hence X denotes the controlled Markov chain whose
transition probabilities are defined consistently with (1):

P{Xt+1 = x′ | Xr, ζr : r ≤ t} = Pζt(x, x
′), x = Xt (15)

The construction of the mean field model (6) is based on lifting
the state space from the d-element set X = {x1, · · · , xd}, to
the d-dimensional simplex S. For the ith load at time t, the
element Γt ∈ S is the degenerate distribution whose mass is
concentrated at x if Xt = x; that is, Γt = δx.

This lifting from X to Rd will be applied in several ways.
First, we observe that nonlinear functions of the state become
linear:

Lt = `(Xt) = 〈Γt, `〉 :=
∑
i

Γt(x
i)`(xi).

The dynamics of the load remain random, but evolve as a
linear system, similar to (6):

Γt+1 = ΓtGt+1 (16)

in which Γt is interpreted as a d-dimensional row vec-
tor. The d × d matrix Gt has entries 0 or 1 only, with∑
x′∈XGt(x, x

′) = 1 for all x ∈ X. It is conditionally
independent of {Γ0, · · · ,Γt}, given ζt, with

E[Gt+1|Γ0, · · · ,Γt, ζt] = Pζt . (17)

The random linear system (16) can be described as a linear
system driven by “white noise”:

Γt+1 = ΓtPζt + ∆t+1 (18)

[Iz − P0 ]
−1

Dt L t LtΓt
〈Γt , �〉 HL(z)

Fig. 4. Approximate linear model of QoS evolution.

where, {∆t+1 = Γt(Gt+1 − Pζt) : t ≥ 0} is a martingale
difference sequence.

A Taylor-series approximation of Pζt leads to a useful ap-
proximation of (18). Recall that the first and second derivatives
E and E(2) were introduced in (2). The proof follows from the
definitions.

Proposition 3.1: The nonlinear system (18) admits the LTI
approximation,

Γt+1 = ΓtP0 +Dt+1 +O(ε3) (19)

in which,
Dt+1 :=BT

tζt + V T
t ζ

2
t + ∆t+1, (20)

with BT
t = ΓtE and V T

t = 1
2ΓtE(2). �

The proposition implies a linear systems approximation for
QoS that is illustrated in Fig. 4, and applied in the next set of
results.

B. Steady-state QoS statistics

The goal of this section is to estimate the second order statis-
tics of {Lt} for an arbitrary function ` and stable filter HL.
These approximations are obtained for a stationary realization.

Theorem 3.2: Under assumptions A1 and A2, there exists
a realization {ζt, Xt, Dt,Lt : −∞ < t < ∞} that is jointly
stationary. �

The proof of the existence of the stationary realization
{ζt, Xt, Dt : −∞ < t <∞} follows from Proposition 2.3 of
[10]. Stationarity of the joint process {ζt, Xt, Dt,Lt} follows
from the assumption that {Lt} is obtained from {`(Xt)}
through a stable filter.

The PSD for the stationary realization of the stochastic
process D can be approximated by a second order Taylor
series expansion: Applying Theorem 2.4 of [10], a function
S(2)
D : [−π, π]→ Cd×d can be constructed such that

SD(θ) = S•D(θ) + ε2S(2)
D(θ) + o(ε2), θ ∈ [−π, π] , (21)

in which S•D is the PSD obtained with ζ ≡ 0. This is
independent of θ since the sequence D is white in this case.

Approximations for second order statistics of QoS follow:
Proposition 3.3:

(i) The mean QoS admits the approximation,

E[Lt] = HL(1)E[Lt], E[Lt] =
∑
x

`(x)π0(x) +O(ε2)

where HL(1) is the DC gain of the transfer function HL.
(ii) The PSD for QoS is given by,

SL(θ) = |HL(ejθ)|2SL(θ) , θ ∈ R ,

in which SL(θ) = K(ejθ)TSD(θ)K(e−jθ) + o(ε2), and K
is the d× 1 transfer function with entries

Ki(z) =

d∑
j=1

[Iz − P0]−1i,j `(x
j)
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Proof: Part (i) follows from Proposition 2.5 of [10].
Part (ii) follows from (i), Prop. 3.1, and Fig. 4: In this block

diagram, K is the transfer function from D to L. �
Based on this PSD approximation we obtain approximations

for the variance:
Theorem 3.4: The variance of QoS admits the following

representation and approximations:
(i) The variance of QoS is the average of its PSD:

VL =
1

2π

∫ 2π

0

SL(θ) dθ. (22)

(ii) In the special case of the moving time-horizon (9), it
admits the approximation

VL
Tf
≈ SL(0) if Tf ≈ ∞, (23)

where SL is the PSD of L.
(iii) A Taylor series of the right hand side of (22) implies

the approximation,

VL = V•L + ε2V(2)
L + o(ε2), (24)

where the terms V•L and V(2)
L are obtained using the QoS

variance formula in (22), and the approximation of the
PSD SL is obtained using Prop. 3.3 (ii). �

Recall that the QoS histogram shown in Fig. 3 is based
on the moving time-horizon (9), with Tf corresponding to 10
days. The approximation of the QoS variance was obtained
using (23) and the second-order Taylor series approximation
of SL(0).

C. Opt-out control

An extra layer of control is required to truncate the two tails
of the QoS histograms observed in experiments.

The local control considered in this paper is a simple “opt-
out” mechanism, based on pre-defined upper and lower limits
b+ and b−. A load ignores a command from the grid operator
at time t if it may result in Lt+1 6∈ [b−, b+], and takes an
alternative action so that Lt+1 ∈ [b−, b+] with probability
one. This ensures that the QoS metric of each load remains
within the predefined interval for all time.

In many cases, the poor QoS revealed by the two tails of the
histogram represents only a small portion of loads. Therefore,
the impact from local opt-out control is insignificant at the
grid level if the QoS interval [b−, b+] is carefully chosen.

IV. NUMERICAL EXPERIMENTS

Numerical experiments were conducted on the pool pump
model to illustrate the main technical conclusions. Simulation
results are summarized below:
(i) Applications of Theorem 3.4 show that the approxima-

tions of QoS closely match observed QoS.
(ii) Opt-out control ensures that QoS lies within strict

bounds, and tracking remains nearly perfect in most cases.
In some extreme cases, capacity is reduced with the intro-
duction of opt-out control. However, it is found through

simulations that it is far less than might be predicted by
the approximation in (i).

(iii) The opt-out control can be applied to multiple QoS
metrics. The capacity is further reduced with the intro-
duction of an additional QoS metric, but the reduction is
found to be minor.

(iv) Approaches are proposed and tested in Section IV-E to
condition the reference signal to reduce potential capacity
reduction caused by opt-out local control.

A. Simulation setup

The simulation used N = 104 homogeneous Markov
models: Each pool pump is operated under a 12 hours/day
cleaning cycle, and consumes 1 kW during operation. The
sampling time is 5 minutes in all of the experiments here.
The justification is that these loads are used to track a lower
frequency component r of the overall signal r• so that they
will not endure excessive cycling.

Two QoS metrics are considered, differentiated by the
function ` appearing in the definition Lit = `(Xi

t): In the
first QoS function, the normalized power consumption (12) is
considered so that if Lit > 0 (Lit < 0) then the pool has been
over-cleaned (under-cleaned).

The second QoS function is introduced to capture the on/off
cycling of loads:

`c(Xi
t , X

i
t+1) =

∣∣∣∑
j

(
I{Xi

t+1 = (⊕, j)} − I{Xi
t = (⊕, j)}

)∣∣∣
(25)

These two QoS metrics can be applied to many other loads,
such as air conditioners, refrigerators, and water heaters [15],
[16]. Consideration of the QoS metric (25) is postponed to
Section IV-F.

The discounted sum (10) was used to define Lit in these
experiments. The following interpretation is used to obtain
insight on the choice of the discount factor in this QoS metric.

Let ξ denote a random variable that is independent of Xi.
Its distribution is taken to be geometric on Z+, with parameter
β. Its mean is thus

E[ξ] =

∞∑
k=0

P(ξ ≥ k) =

∞∑
k=0

βk =
1

1− β . (26)

By independence we also have,

E
[ ξ∑
k=0

`(Xi
t−k)

]
=

∞∑
k=0

E[`(Xi
t−k)I(ξ ≥ k)]

=

∞∑
k=0

E[`(Xi
t−k)]P(ξ ≥ k)

=

∞∑
k=0

E[`(Xi
t−k)]βk = E[Lit]

Hence the discounted sum (10) is similar to the moving
window QoS metric (9). In the following experiments we took
E[ξ] = 10 days, which corresponds to 2880 time samples
(given the 5 minute sampling period). Solving (26) gives
β = 1− 1/2880.
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Gc

1 + GcGp
Gwr GBP

ζtrtw0
t r•t

Fig. 5. The input ζ modeled as a stationary stochastic process

B. Model for the stationary input

A linear model for the stationary input ζ was constructed
based on the block diagram shown in Fig. 5. As in the prior
work [4], [8], it is assumed that the signal r is obtained
by filtering the regulation signal r•; the latter is modeled as
filtered white noise with transfer function Gwr.

The BPA (Bonneville Power Authority [17]) balancing re-
serves, deployed in January 2015, were taken for the regulation
signal r•.
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-30
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 (d
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Matlab
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Sr•(f

f

)

Fig. 6. BPA signal: Power spectral density and its approximation.

It is assumed that r• evolves as the ARMA (autoregressive
moving average) model,

r•t + a1r
•
t−1 + a2r

•
t−2 = wt + b1wt−1 (27)

in which w is white noise with variance σ2
w. The extended

least squares (ELS) algorithm was used to estimate the co-
efficients a1, a2, b1, and the variance σ2

w based on the BPA
balancing reserves. The algorithm terminated at [a1, a2, b1]T =
[−1.16, 0.2301,−0.2489]T, and σ2

w = 4.36 × 10−3. In the z-
domain, its transfer function is expressed

Gwr(z) =
1− 0.2489z−1

1− 1.6z−1 + 0.2301z−2
. (28)

The dashed and solid lines in Fig. 6 represent the estimates
of the spectrum given by |Sr•(ejθ)|2 = σ2

w|Gwr(ejθ)|2 and
Matlab’s psd command, respectively.

The transfer function GBP in Fig. 5 is a filter designed to
smooth the balancing reserve signal. A low pass filter was
adopted with crossover frequency near the nominal period of
a single load: 1/(24 hours) in this example. In most of the
experiments reported here, GBP is the first-order Butterworth
low-pass filter with cut-off frequency fc = 1/(1000 minutes):

GBP(z) = 0.0155
1 + z−1

1− 0.9691z−1
. (29)

The reference signal must also be scaled so that the desired
goal ỹNt ≈ rt is feasible for all t. Denote by r1 the signal
obtained using the largest scaling, while also ensuring that
this signal can be tracked by the collection of pools. This was
obtained through trial and error.

In the tracking plots, such as Fig. 11, the signals ỹNt and
rt are re-scaled to units in MWs.

The construction of a stationary model for ζ was based
on the linearized mean-field model, and the scaled reference
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signal defined by rt = εr1t , t ∈ Z. The linear state space model
(7) leads to the approximation γ ≈ Gpζ (see (8)). (recall that
γ is intended to approximate ỹ). For the linear control model
(4) we obtain ζ = Gce ≈ Gcr −Gcγ. On eliminating γ we
obtain the linear equation Gcr ≈ (1 + GcGp)ζ. This is the
justification for the transfer function Gc/(1+GcGp) appearing
in Fig. 5.

In the experiments that follow, Gc is the PI controller with
proportional gain 50 and integral gain 1.5.

C. Individual QoS

The QoS of pools without opt-out control is illustrated
using the histogram on the left-hand-side of Fig. 2 using the
reference signal r1. The histogram is based on samples of
the QoS function (10) from each load over one month. The
dashed lines represent Gaussian densities with zero mean, and
variances σ2

L obtained using the approximation given in (22).
The conclusions of Theorem 3.4 are illustrated in Fig. 7,

where the QoS variances from simulation and Gaussian ap-
proximations are presented for several values of ε. It is seen
that the variance is approximately linear in ε2 for small ε > 0,
with slope as predicted in Theorem 3.4.

The role of bandpass filter: A range of cut-off frequencies
were considered in order to investigate the impact of the
bandpass filter that is used to obtain r. Fig. 8 shows a
comparison of the variance of the reference and the variance of
QoS as a function of the cut-off frequency fc over a range of
frequencies: The linear growth in QoS variance compared to
the slow growth of the variance of the reference signal justifies
a filter with fc < 10−2 cycles/minute.

The remaining numerical results that follow are based on
the low pass filter (29) based on fc = 10−3 cycles/minute.

D. Grid level performance and opt-out control

We present in this section experimental results with opt-out
control to ensure that QoS is subject to strict constraints.
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Four QoS intervals were considered corresponding to con-
straints of, respectively, 5%, 10%, 15%, and 20%. A window
of width 5% corresponds to ±3 hours — a very tight constraint
over a ten-day time horizon.

Recall that ten days corresponds to 2880 time samples.
Following the notation in Section III-C, these percentages are
converted to intervals for local opt-out control as [b−, b+] =
[−36, +36], [−72, +72], [−108, +108], and [−144, +144],
respectively.

Fig. 9 shows four histograms of QoS with reference signal
r1. These histograms are truncated to the predefined QoS
intervals as desired.
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Fig. 9. QoS histograms with opt-out control using different QoS bounds.

The root-mean-square (RMS) of a signal f over a time
horizon T is defined as

RMS(f) =

√√√√ 1

T

T∑
k=1

f2k

The value of T is consistent with the data from January 2015
at BPA. Given the 5 minute sampling interval, this gives T =
31 ∗ 24 ∗ 12 = 8928. A normalized root mean square error
(NRMSE) was adopted as the metric of grid level tracking
performance:

NRMSE =
1

ε

RMS(e)− RMS(e0)

RMS(r1)
, (30)

The division by ε is used because rt = εr1t by construction.
The process e0 is the tracking error sequence obtained without
opt-out control, and ε = 0. That is, e = e0 when ε = 0. The
approximation RMS(e0) ≈ 8.35 kW was obtained through
simulation. This is a very small fraction of the nominal mean
power consumption 5 MW (corresponding to 104 loads).

The grid level tracking performance with and without opt-
out control is illustrated in Fig. 10. The tracking performance
with 10%, 15%, or 20% QoS interval remains nearly perfect.
This is surprising, given the improvement in QoS shown
in Fig. 9. The explanation is that very few loads opt out:
For example, in the simulation with 10% QoS interval and
reference signal r1, no more than 1% of loads opt out at any
time.

However, there are limitations on the capacity of ancillary
service from a collection of loads, and experiments reveal that
opt-out control can reduce capacity. As seen from Fig. 10,
the additional opt-out control with 5% QoS interval degrades
grid level tracking performance, especially when the reference
signal is large.
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Fig. 10. Tracking NRMSEs (30), with and without local opt-out control.

We next apply Prop. 2.1 to better understand the grid-
level impact of opt-out control, and to design an algorithm
to reshape the reference signal so that loads are less likely to
opt out of service.

E. Re-shaping the reference input

Recall the SOC heuristic introduced following Prop. 2.1.
The proposition implies that L̄t ≈ Rt for all t when there
is near perfect tracking. Conversely, this result suggests that
many loads will opt-out, leading to poor tracking, if Rt is near
the boundary of the QoS interval [b−, b+].
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Fig. 11. Poor tracking results when Rt reaches its boundaries.

To illustrate the application of these concepts, consider the
case [b−, b+] = [−50.4, 50.4], corresponding to a 7% QoS
interval, and reference signal r1. Results are provided in
Fig. 11. Most of the time, the tracking results are nearly perfect
and hence the average QoS approximates the filtered reference
signal, L̄t ≈ Rt. However, at time ≈ 450 hr., Rt falls close to
the lower bound b− = −50.4. During this time period, many
loads opted out, which resulted in degraded tracking.

In conclusion, to ensure good grid level tracking, the
reference signal must respect any QoS constraints. The grid
operator should re-shape the reference signal to ensure that
R does not approach its limits. A smooth transformation is
required because the reference signal for this example should
not have significant high frequency content.

Here is one approach, based on two non-negative param-
eters: a threshold τ < 1 and a gain parameter δ > 0.
The following recursive algorithm is designed to increase
(decrease) the reference signal r when R reaches its lower
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(upper) threshold. The re-shaped reference signal is defined
as follows:

r̄t =


[rt − δ(Rt − τb+)]+ Rt > τb+ and rt > 0

[rt + δ(Rt − τb−)]− Rt < τb− and rt < 0

rt otherwise
(31)

where z+ denote the positive part of a real number z, and z−
the negative part.
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ζt (input)

Fig. 12. Tracking performance with the re-shaped reference signal.

The plots in Fig. 12 illustrate the tracking performance with
7% QoS interval, and the re-shaped reference signal r̄1 (using
δ = 0.006 and τ = 0.65). Compared to r1 in Fig. 11, r̄1

increases the reference signal r1 at time ≈ 450 hr. This small
change avoids a large number of opt outs observed in Fig. 11,
and the tracking performance is nearly perfect.

F. Multiple QoS metrics

We next investigate the impact of opt-out control based
on two QoS metrics: the cleaning QoS function (12) and the
cycling QoS function (25). The lower bound of cycling QoS
was set to −∞. The opt-out priority is assigned to the cleaning
QoS metric when both QoS metrics reach their bounds at the
same time. Thus, the cycling QoS metric occasionally exceeds
its predefined upper bound.
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Fig. 13. QoS bounds are maintained using local opt-out control.

Four error tolerances {5%, 10%, 15%, 20%} are considered
for determining the opt-out interval [b−, b+] for each of the
two QoS metrics. Fig. 13 illustrates an example of QoS
improvement based on a 15% error tolerance on both QoS
metrics, using the reference signal r1. Tracking in this case
was nearly perfect.

Tracking performance for a range of opt-out parameters is
summarized in Fig. 14 using 16 colored bars, distinguished
by each pair of QoS constraints. Each bar represents tracking
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Fig. 14. Tracking performance with two QoS constraints.

errors for different reference signal scaling factors, 0.1 ≤
ε ≤ 1. The darkest color represents NRMSE (30) of 10% or
greater, and lighter colors represent smaller values of NRMSE
(indicated on the color bar label). Results in this figure show
that opt-out control based on these two QoS metrics have little
impact on tracking error over a large range of opt-out intervals.
For those cases that local opt-out largely degrades grid-level
tracking, we can either reduce the reference signal or relax
QoS constraints to maintain good tracking.

V. CONCLUSIONS

The main technical contribution of this paper is the approxi-
mation of QoS for an individual load. It is remarkable that it is
possible to obtain accurate estimates of first and second order
statistics for an individual load, taking into account second
order statistics of exogenous inputs, along with correlation
introduced by the Markovian model. It is also remarkable that
strict bounds on QoS can be guaranteed while retaining nearly
perfect grid-level tracking.

Under certain conditions, the overall QoS of a collection of
loads is predictable to the grid operator. With this information,
the grid operator can estimate the flexibility/capacity of loads
and modify the reference signal if necessary, to maintain high
quality of both grid-level tracking and QoS of loads.

Open problems remain in the area of estimation and control.
It is hoped that estimates of the statistics of QoS can be
obtained in the presence of opt-out control. It is also likely
that control performance can be improved further with a more
sophisticated approach to opt-out control.
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APPENDIX

ABBREVIATIONS

BA balancing authority
BPA Bonneville Power Administration [17]
LTI linear time-invariant
pmf probability mass function
PSD power spectral density
QoS quality of service
SOC state of charge

NOMENCLATURE

N The number of loads
ε Scaling factor ∈ [0, 1]
r• Overall regulation signal
r Reference signal
ζ Control signal computed by BA
Pζ Transition matrix with input ζ
E The first order derivative of the transition matrix Pζ

evaluated at ζ = 0
E(2) The second order derivative of the transition matrix

Pζ evaluated at ζ = 0
P0 Nominal transition matrix
π0 Invariant pmf for the nominal transition matrix P0

Xi
t State of the ith load at time t (in a d-element set)

µNt Empirical pmf of load states Xi
t , i = 1, . . . , N

µt The limit of µNt , as the load number N →∞
Φt State vector of the LTI aggregate system
γt Output of the LTI aggregate system
yNt Normalized power consumption of N loads
y0 Steady-state power consumption for nominal model
ỹNt Normalized power deviation, ỹNt = yNt − y0
` One-step QoS function
Lit QoS of the ith load
L̄t Average QoS of N loads
Γt Individual load state in the d-dimensional simplex
Dt Disturbance term in the LTI individual load model


