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This paper is devoted to ϕ-entropies applied to Fokker-Planck and kinetic Fokker-Planck

equations in the whole space, with confinement. The so-called ϕ-entropies are Lyapunov

functionals which typically interpolate between Gibbs entropies and L2 estimates. We
review some of their properties in the case of diffusion equations of Fokker-Planck type,

give new and simplified proofs, and then adapt these methods to a kinetic Fokker-Planck

equation acting on a phase space with positions and velocities. At kinetic level, since the
diffusion only acts on the velocity variable, the transport operator plays an essential

role in the relaxation process. Here we adopt the H1 point of view and establish a

sharp decay rate. Rather than giving general but quantitatively vague estimates, our
goal here is to consider simple cases, benchmark available methods and obtain sharp

estimates on a key example. Some ϕ-entropies give rise to improved entropy – entropy
production inequalities and, as a consequence, to faster decay rates for entropy estimates

of solutions to non-degenerate diffusion equations. Our main result is to prove that faster

entropy decay also holds at kinetic level and that optimal decay rates are achieved only
in asymptotic regimes.
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1. Introduction

By definition, the ϕ-entropy of a nonnegative function w ∈ L1(Rd, dγ) is the func-

tional

E [w] :=

∫
Rd

ϕ(w) dγ ,
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where ϕ is a nonnegative convex continuous function on R+ such that ϕ(1) = 0 and

1/ϕ′′ is concave on (0,+∞), i.e.,

ϕ′′ ≥ 0 , ϕ ≥ ϕ(1) = 0 and (1/ϕ′′)′′ ≤ 0 . (1.1)

Notice that the last condition means 2 (ϕ′′′)2 ≤ ϕ′′ ϕ(iv) a.e. A classical example of

such a function ϕ is given by

ϕp(w) := 1
p−1

(
wp − 1− p (w − 1)

)
p ∈ (1, 2]

where, in the case p = 2, ϕ2(w) = (w − 1)2 and the limit case as p → 1+ is given

by the standard Gibbs entropy

ϕ1(w) := w logw − (w − 1) .

Many results corresponding to the case p = 2 can be obtained, e.g., by spectral

methods. The case p = 1 is important in probability theory and statistical physics.

Our goal is to emphasize that they share properties which can be put in a com-

mon framework. Throughout this paper we shall assume that dγ is a nonnegative

bounded measure, which is absolutely continuous with respect to Lebesgue’s mea-

sure and write

dγ = e−ψ dx

where ψ is a potential such that e−ψ is in L1(Rd, dx). Up to the addition of a

constant to ψ, we can assume without loss of generality that dγ is a probability

measure. A review of the main results on ϕ-entropies and key references are given

in Section 2.

Without entering the technical details, let us illustrate the use of the ϕ-entropy

in the case of diffusion equations. A typical application of the ϕ-entropy is the

control of the rate of relaxation of the solution to the Ornstein-Uhlenbeck equation

∂w

∂t
= Lw := ∆w −∇ψ · ∇w , (1.2)

which is also known as the backward Kolmogorov equation. If we solve the equation

with a nonnegative initial datum w0 such that
∫
Rd w0 dγ = 1, then the solution

satisfies
∫
Rd w(t, ·) dγ = 1 for any t > 0 and limt→+∞ w(t, ·) = 1. The Ornstein-

Uhlenbeck operator L defined on L2(Rd, dγ) is indeed self-adjoint and such that

−
∫
Rd

(Lw1)w2 dγ =

∫
Rd

∇w1 · ∇w2 dγ ∀w1, w2 ∈ H1(Rd, dγ) .

As a consequence, it is also straightforward to observe that for any solution w with

initial datum w0 such that E [w0] is finite, then

d

dt
E [w] = −

∫
Rd

ϕ′′(w) |∇xw|2 dγ =: −I[w] ,

where I[w] denotes the ϕ-Fisher information functional. If for some Λ > 0 we can

establish the entropy – entropy production inequality

I[w] ≥ Λ E [w] ∀w ∈ H1(Rd, dγ) , (1.3)
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then we deduce that

E [w(t, ·)] ≤ E [w0] e−Λ t ∀ t ≥ 0 ,

which controls the convergence of w to 1 as t→ +∞, for instance in Lp(Rd, dγ) by a

generalized Csiszár-Kullback inequality if ϕ = ϕp, 1 ≤ p ≤ 2. The entropy – entropy

production inequality is the Poincaré inequality associated with dγ if ϕ = ϕ2, and

the logarithmic Sobolev inequality if ϕ = ϕ1.

We recall that the study of (1.2) is equivalent to the study of the Fokker-Planck

equation

∂u

∂t
= ∆u+∇x · (u∇xψ) . (1.4)

A nonnegative solution with initial datum u0 ∈ L1(Rd, dx) and
∫
Rd u0 dx = M > 0

has constant mass M =
∫
Rd u(t, ·) dx for any t > 0, and converges towards the

unique stationary solution

u? = M
e−ψ∫

Rd e−ψ dx
.

Without loss of generality, we shall assume that M = 1. Then one observes that

w = u/u? solves (1.2), which allows to control the rate of convergence of u to u?. A

list of results concerning the solutions of (1.2) and (1.4) is also collected in Section 2.

The core of this paper is devoted to the extension of ϕ-entropy methods to kinetic

equations. Section 3 of this paper deals with the kinetic Fokker-Planck equation, or

Vlasov-Fokker-Planck equation, that can be written as

∂f

∂t
+ v · ∇xf −∇xψ · ∇vf = ∆vf +∇v · (v f) . (1.5)

Our basic example corresponds to the case of the harmonic potential ψ(x) = |x|2/2.

Unless it is explicitly specified, we will only consider this case. Notice that this

problem has an explicit Green function whose expression can be found in 23.

Since (1.5) is linear, we can assume at no cost that ‖f‖L1(Rd×Rd) = 1 and consider

the stationary solution

f?(x, v) = (2π)−d e−ψ(x) e−
1
2 |v|

2

= (2π)−d e−
1
2 (|x|2+|v|2) ∀ (x, v) ∈ Rd × Rd .

The function

g :=
f

f?

solves

∂g

∂t
+ Tg = L g (1.6)

where the transport operator T and the Ornstein-Uhlenbeck operator L are defined

respectively by

Tg := v · ∇xg − x · ∇vg and L g := ∆vg − v · ∇vg .
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Let dµ := f? dx dv be the invariant measure on the phase space Rd ×Rd, so that T

and L are respectively anti-self-adjoint and self-adjoint. The function

h := gp/2

solves

∂h

∂t
+ Th = Lh+

2− p
p

|∇vh|2

h
. (1.7)

At the kinetic level, we consider the ϕ-entropy given by

E [g] :=

∫∫
Rd×Rd

ϕ(g) dµ .

With this notation, E [g] =
∫∫

Rd×Rd ϕ (f/f?) dµ so that, with f = g f? = h2/p f? we

have

E [g] =

∫∫
Rd×Rd

h2 log

(
h2∫∫

Rd×Rd h2 dµ

)
dµ if ϕ = ϕ1 ,

E [g] = E [h2/p] =
1

p− 1

[∫∫
Rd×Rd

h2 dµ−
(∫∫

Rd×Rd

h2/p dµ

)p/2]
if ϕ = ϕp , p ∈ (1, 2] .

The optimal rate of decay of E [g] has been established by A. Arnold and J. Erb

in 6. In the special case of a harmonic potential, their result goes as follows.

Proposition 1.1. Assume that ψ(x) = |x|2/2 for any x ∈ Rd. Take ϕ = ϕp for

some p ∈ [1, 2]. To any nonnegative solution g ∈ L1(Rd × Rd) of (1.6) with initial

datum g such that E [g0] <∞, we can associate a constant C > 0 for which

E [g(t, ·, ·)] ≤ C e−t ∀ t ≥ 0 . (1.8)

Moreover the rate e−t is sharp as t→ +∞.

The striking point of this hypocoercivity result is to identify the sharp rate of

decay. The rate is specific of the harmonic potential ψ(x) = |x|2/2, but it turns out

to be useful for the comparison with rates obtained by other methods. Although

probably not optimal, a precise estimate of C will be given in Section 3, with a

simplified proof of Proposition 1.1.

The method is based on the use of a Fisher information type functional

J [h] = 1
2

∫
Rd

|∇vh|2 dµ+ 1
2

∫
Rd

|∇xh|2 dµ+ 1
2

∫
Rd

|∇xh+∇vh|2 dµ (1.9)

which involves derivatives in x and v. If h solves (1.6), then the key estimate is to

prove that

d

dt
J [h(t, ·)] ≤ −J [h(t, ·)] .
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The result of Proposition 1.1 follows from the entropy – entropy production inequal-

ity (2.6) that will be established in Proposition 2.3: since

Λ E [g(t, ·, ·)] = Λ E [h2/p] ≤ J [h] ,

then E [g(t, ·, ·)] has an exponential decay. However, we underline the fact that

d

dt
E [g(t, ·)] = −

∫
Rd

|∇vh|2 dµ 6= −J [h(t, ·)] .

At the level of non-degenerate diffusions, a distinctive property of the ϕ-entropy

with ϕ = ϕp and p ∈ (1, 2) is that the entropy – entropy production inequality

I ≥ Λ E with an optimal constant Λ > 0 can be improved in the sense that there

exists a strictly convex function F on R+ with F (0) = 0 and F ′(0) = 1 such that

I ≥ ΛF (E). This has been established in 5 and details will be given in Section 2.5.

The key issue is to prove that for some function ρ on R+, which depends on the

solution w, such that ρ > Λ a.e., we have d
dtI[w(t, ·)] ≤ − ρ(t) I[w(t, ·)]. One may

wonder if a similar result also holds in the hypocorcive kinetic Fokker-Planck equa-

tion. So far, no global improved inequality has been established. What we shall

prove is that, if we consider the more general Fisher information functional

Jλ[h] = (1− λ)

∫
Rd

|∇vh|2 dµ+ (1− λ)

∫
Rd

|∇xh|2 dµ+ λ

∫
Rd

|∇xh+∇vh|2 dµ ,

(1.10)

then for an appropriate choice of λ (which turns out to be t-dependent), the rate of

decay is faster than e−t up to a zero-measure set in t. The precise statement, which

is our main result, goes as follows.

Theorem 1.1. Let p ∈ (1, 2) and h be a solution of (1.7) with initial datum h0 ∈
L1 ∩ Lp(Rd, dγ), h0 6≡ 1, and dγ be the Gaussian probability measure corresponding

to the harmonic potential potential ψ(x) = |x|2/2. Then there exists a function

λ : R+ → [1/2, 1) such that λ(0) = limt→+∞ λ(t) = 1/2 and a continuous function ρ

on R+ such that ρ > 1/2 a.e., for which we have

d

dt
Jλ(t)[h(t, ·)] ≤ − 2 ρ(t)Jλ(t)[h(t, ·)] ∀ t ≥ 0 .

As a consequence, for any t ≥ 0 we have the global estimate

Jλ(t)[h(t, ·)] ≤ J1/2[h0] exp

(
− 2

∫ t

0

ρ(s) ds

)
.

This result is weaker than the result for non-degenerate diffusions. As we shall

see in Section 3, the qualitative issues are easy to understand and to some extent

classical in the hypocoercivity theory, but no quantitative estimate of ρ in terms

of h is known so far. If ϕp-entropies were initially thought as interesting objects

which interpolate between the Gibbs entropy and standard L2 estimates, improved

entropy – entropy production inequalities and the result of Theorem 1.1 capture an

essential and new feature when p ∈ (1, 2): faster rates of convergence.
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Let us conclude this introduction with a brief review of the literature. The word

“hypocoercivity” is apparently due to T. Gallay and was made popular by C. Villani

in 66. Our computations are based on Villani’s ideas in Section 3 of 66 (also see 68),

but the use of twisted gradients involving simultaneously derivatives in x and v

can be also found in 44 and in earlier works like 45. It is actually a consequence of

Hörmander’s hypoelliptic theory, which covers simultaneously regularization prop-

erties and large time behaviour. One can refer for instance to 35,45,42 and, much

earlier, to 47. The seed for such an approach can actually be traced back to Kol-

mogorov’s computation of Green’s kernel for the kinetic Fokker-Planck equation

in 51, which has been reconsidered by 49 from a more modern point of view and

successfully applied, for instance, to the study of the Vlasov-Poisson-Fokker-Planck

system in 65,19,20. In case of the kinetic Fokker-Planck equation, we can refer to 42,44

in the case of a general potential of confinement, and more specifically to 6. In this

last paper, the authors deal with the issue of accurate rates: “while the main the-

orem in 68 covers a wide class of problems, the price paid is in the estimate for

the decay rate, which is off by orders of magnitude.” The result of Proposition 1.1

addresses the issue of the optimal rate in a very simple case. For completion, one

also has to mention 54 and 48 for further theoretical and numerical results.

A twin problem of the kinetic Fokker-Planck equation is the linear BGK model,

which has no regularizing properties but shares many common features with the

kinetic Fokker-Planck equation as soon as we are concerned with rates of conver-

gence. We refer to 43,58 for early contributions, to 29,30,21,57,1 for more recent ones,

and especially to 36. In this last paper, J. Evans studies the linear BGK model and

a kinetic Fokker-Planck equation on the torus using the ϕ-entropies.

In 66, only the cases p = 1 and p = 2 were considered, but it is well known since

the founding work 9 of Bakry and Emery that intermediate values of p can then be

considered. In the case of ϕ-entropies associated with non-degenerate diffusions, this

idea was invoked on many occasions, for instance in 15,53,24,7,18,17 in relation with

spectral estimates or the carré du champ methods. For carré du champ techniques

in kinetic equations, we can refer to 14, also 55,56, and finally Remark 6.7 in 8 for an

early contribution on ϕ-entropies. Although ϕ-entropies are natural in the context

of the kinetic Fokker-Planck equation, precise connections were made only quite

recently. In 6, A. Arnold and J. Erb discuss ϕ-entropies in the context of the kinetic

Fokker-Planck equation and prove, among more general results, Proposition 1.1.

We can also refer to 1,2,55 for various related results. As far as we know, no result

such as Theorem 1.1 has been established yet.

2. A review of results on ϕ-entropies

In this section we consider a ϕ-entropy defined by E [w] :=
∫
Rd ϕ(w) dγ where dγ =

e−ψ dx is a probability measure and ϕ satisfies (1.1). Most of the results presented

here are known, but they are scattered in the literature. Our purpose here is to

collect some essential statements and present simple proofs.
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2.1. Generalized Csiszár-Kullback-Pinsker inequality

By assumption (1.1), we know that E is nonnegative and achieves its minimum at

w ≡ 1. It results from the strict convexity of ϕ that E [w] controls a norm of (w− 1)

under a generic assumption compatible with the expression of ϕp. The classical

result of 61,25,52 has been extended in50,64,22,26. Here is a statement, with a short

proof taken from Section 1.4 of 13, for completeness.

Proposition 2.1. Let p ∈ [1, 2], w ∈ L1 ∩ Lp(Rd, dγ) be a nonnegative function,

and assume that ϕ ∈ C2(0,+∞) is a nonnegative strictly convex function such that

ϕ(1) = ϕ′(1) = 0. If A := infs∈(0,∞) s
2−p ϕ′′(s) > 0, then

E [w] ≥ 2−
2
p A min

{
1, ‖w‖p−2

Lp(Rd,dγ)

}
‖w − 1‖2Lp(Rd,dγ) .

When ϕ = ϕp, we find that A = p. This inequality has many variants and

extensions: it is not limited to Rd but also holds on bounded domains or manifolds

and the relative ϕ-entropy
∫
Rd

(
ϕ(w1)− ϕ(w2)− ϕ′(w1) (w2 − w1)

)
dγ can also be

used to measure ‖w2 − w1‖2Lp(Rd,dγ).

Proof. Up to the addition of a small constant, we can assume that w > 0 and

argue by density. A Taylor expansion at order two shows that

E [w] =
1

2

∫
Rd

ϕ′′(ξ) |w − 1|2 dγ ≥ A

2

∫
Rd

ξp−2 |w − 1|2 dγ

where ξ lies between 1 and w. With α = p (2− p)/2 and h > 0, for any measurable

set A ⊂ Rd, we get∫
A
|w − 1|p h−α hα dγ ≤

(∫
A
|w − 1|2 hp−2 dγ

)p/2(∫
A
hp dγ

)(2−p)/2

by Hölder’s inequality. We apply this formula to two different sets.

On A = {x ∈ Rd : w(x) > 1}, we use ξp−2 ≥ wp−2 and take h = w:

∫
{w>1}

|w − 1|2 ξp−2 dγ ≥

(∫
{w>1}

|w − 1|p dγ

)2/p

‖w‖p−2
Lp(Rd,dγ) .

On A = {x ∈ Rd : w(x) ≤ 1}, we use ξp−2 ≥ 1 and take h = 1:

∫
{w≤1}

|w − 1|2 ξp−2 dγ ≥

(∫
{w≤1}

|w − 1|p dγ

)2/p

.

By adding these two estimates and using with r = 2/p ≥ 1 the elementary inequality

(a+ b)r ≤ 2r−1(ar + br) for any a, b ≥ 0 allows us to conclude the proof.
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2.2. Convexity, tensorization and sub-additivity

Let us turn our attention to (1.3). To start with, we observe that the functional

w 7→ I[w] =
∫
Rd ϕ

′′(w) |∇w|2 dγ is convex if and only if 1/ϕ′′ is concave. Now let

us consider two probability measures dγ1 and dγ2 defined respectively on Rd1 and

Rd2 , such that Inequality (1.3) holds with γ = γi, and i = 1, 2:∫
Rdi

ϕ′′(w) |∇w|2 dγi =: Iγi [w] ≥ Λi Eγi [w] ∀w ∈ H1(Rdi , dγi) , (2.1)

Here we denote by Eγ the ϕ-entropy for functions which are not normalized, that is,

Eγ [w] :=

∫
Rd

ϕ(w) dγ − ϕ
(∫

Rd

w dγ

)
.

Assuming that dγ is a probability measure, by Jensen’s inequality we know that

w 7→ Eγ [w] is nonnegative because ϕ is convex. As we shall see below, w 7→ Eγ [w] is

also convex, which is the key ingredient for tensorization. The question at stake is

to know if Inequality (1.3) holds on Rd1 ×Rd2 for the measure dγ = dγ1⊗ γ2. Most

of the results of Section 2.2 have been stated in 24 or are considered as classical.

Our contribution here is to give simplified proofs.

Theorem 2.1. Assume that ϕ satisfies (1.1). If dγ1 and dγ2 are two probability

measures on Rd1 × Rd2 satisfying (2.1) with positive constants Λ1 and Λ2, then

dγ1 ⊗ γ2 is such that the following inequality holds:

Iγ1⊗γ2 [w] =

∫
Rd1×Rd2

ϕ′′(w) |∇w|2 dγ1 dγ2

≥ min{Λ1,Λ2} Eγ1⊗γ2 [w] ∀w ∈ H1(Rd1 × Rd2 , dγ) .

It is straightforward to notice that the Fisher information is additive

Idγ1 ⊗ γ2[w] =

∫
Rd2

Iγ1[w] dγ2 +

∫
Rd1

Iγ2[w] dγ1 ,

so that the proof of Theorem 2.1 can be reduced to the proof of a sub-additivity

property of the ϕ-entropies that goes as follows.

Proposition 2.2. Assume that ϕ satisfies (1.1) and consider two probability mea-

sures dγ1 and dγ2 on Rd1 × Rd2 . Then for any w ∈ L1(Rd1 × Rd2 , dγ1 ⊗ γ2), we

have

Eγ1⊗γ2 [w] ≤
∫
Rd2

Eγ1 [w] dγ2 +

∫
Rd1

Eγ2 [w] dγ1 ∀w ∈ L1(dγ1 ⊗ γ2) .

This last result relies on convexity properties that we are now going to study.

As a preliminary step, we establish an inequality of Jensen type.

Lemma 2.1. Let w ∈ L1(Rd1 × Rd2 , dγ1 ⊗ γ2) be a function of two variables

(x1, x2) ∈ Rd1 × Rd2 . If Fγ1 is a convex functional on L1(dγ1) such that

d

dt

∫
Rd2

Fγ1
[
t w + (1− t)

∫
Rd2

w dγ2

]
dγ2
|t=0

= 0 , (2.2)
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then the following inequality holds:∫
Rd2

Fγ1 [w] dγ2 ≥ Fγ1
[∫

Rd2

w dγ2

]
.

Proof. Let wt = t w + (1− t)
∫
Rd2

w dγ2. By convexity of Fγ1 ,

Fγ1 [wt] ≤ tFγ1 [w] + (1− t)Fγ1
[∫

Rd2

w dγ2

]
.

Hence it follows that

Fγ1 [wt]−Fγ1
[∫

Rd2

w dγ2

]
≤ t

(
Fγ1 [w]−Fγ1

[∫
Rd2

w dγ2

])
,

from which we deduce that

0 =
d

dt
Fγ1 [wt]|t=0 ≤ Fγ1 [w]−Fγ1

[∫
Rd2

w dγ2

]
.

Conclusion holds after integrating with respect to γ2.

The second observation is the proof of the convexity of w 7→ Eγ [w]. The following

result is taken from 53.

Lemma 2.2. If ϕ satisfies (1.1), then Eγ is convex.

Proof. We give a two steps proof of this result, for completeness.

• Define xt = t y + (1− t)x, t ∈ (0, 1). Since 1/ϕ′′ is concave,

1

ϕ′′(xt)
≥ t

ϕ′′(y)
+

1− t
ϕ′′(x)

. (2.3)

The function ϕ is convex, hence ϕ′′(x) > 0 and ϕ′′(y) > 0 and so

1

ϕ′′(xt)
≥ t

ϕ′′(y)
and

1

ϕ′′(xt)
≥ 1− t
ϕ′′(x)

.

This means

ϕ′′(y) ≥ t ϕ′′(xt) and ϕ′′(x) ≥ (1− t)ϕ′′(xt) .

We can also rewrite (2.3) as

ϕ′′(x)ϕ′′(y) ≥ (t ϕ′′(x) + (1− t)ϕ′′(y))ϕ′′(xt) .

Consider the function

Ft(x, y) := t ϕ(y) + (1− t)ϕ(x)− ϕ(xt)

and observe that

Hess(Ft) =

(
(1− t)ϕ′′(x)− (1− t)2 ϕ′′(xt) − t (1− t)ϕ′′(xt)

− t (1− t)ϕ′′(xt) t ϕ′′(y)− t2 ϕ′′(xt)

)
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is nonnegative since both diagonal terms are nonnegative and the determinant is

nonnegative. The matrix Hess(Ft) is therefore nonnegative and Ft is convex.

• We observe that

t Eγ [w1] + (1− t) Eγ [w0]− Eγ [t w1 + (1− t)w0]

=

∫
Rd

Ft(w1, w0) dγ − Ft
(∫

Rd

w1 dγ,

∫
Rd

w0 dγ

)
is nonnegative by Jensen’s inequality, which proves the result.

Proof of Proposition 2.2. We claim that Fγ1 = Eγ1 satisfies (2.2). Indeed, let us

consider wt = t w + (1− t)w0 with w0 :=
∫
Rd2

w dγ2. A simple computation shows

that

d

dt
Fγ1 [wt] =

∫
Rd1

ϕ′(wt) (w − w0) dγ1 − ϕ′
(∫

Rd1

wt dγ1

)∫
Rd1

(w − w0) dγ1 ,

and, as a consequence at t = 0,

d

dt
Fγ1 [wt]|t=0 =

∫
Rd1

ϕ′(w0) (w − w0) dγ1 − ϕ′
(∫

Rd1

w0 dγ1

)∫
Rd1

(w − w0) dγ1 .

Since w0 does not depend on x2, an integration with respect to γ2 concludes the

proof of (2.2). From Lemma 2.1, we get∫
Rd2

Eγ1 [w] dγ2 ≥ Eγ1
[∫

Rd2

w dγ2

]
.

By definition of Eγ1 , this means

∫
Rd2

[∫
Rd1

ϕ(w) dγ1 − ϕ
(∫

Rd1

w dγ1

)]
dγ2

≥
∫
Rd1

ϕ

(∫
Rd2

w dγ2

)
dγ1 − ϕ

(∫∫
Rd1×Rd2

w dγ1 ⊗ γ2

)
,

from which we deduce∫
Rd2

[∫
Rd1

ϕ(w) dγ1 − ϕ
(∫

Rd1

w dγ1

)]
dγ2

+

∫
Rd1

[∫
Rd2

ϕ(w) dγ2 − ϕ
(∫

Rd2

w dγ2

)]
dγ1

≥
∫∫

Rd1×Rd2

ϕ (w) dγ1 ⊗ γ2 − ϕ
(∫∫

Rd1×Rd2

w dγ1 ⊗ γ2

)
.

This ends the proof of Proposition 2.2. �
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Proof of Theorem 2.1. The proof is an easy consequence of Proposition 2.2 and

of the observation that

min{Λ1,Λ2} Eγ1⊗γ2 [w]

≤ Λ1

∫
Rd2

Eγ1 [w] dγ2 + Λ2

∫
Rd1

Eγ2 [w] dγ1

≤
∫∫

Rd1×Rd2

ϕ′′(w)
[
|∇x1w|2 + |∇x2w|2

]
dγ1 ⊗ γ2

≤
∫∫

Rd1×Rd2

ϕ′′(w) |∇w|2 dγ1 ⊗ γ2 = Iγ1⊗γ2 [w] .

�

As a concluding remark, we observe that tensorization is not limited to proba-

bility measures on Rd. The main interest of such an approach when dealing with

Rd is that it is enough to establish the inequality when d = 1. In the case d = 1,

sharp criteria can be found in 11 (also see 10). There are many related issues that

can be traced back to the work of Muckenhoupt, e.g., 59 and Hardy (see 41).

2.3. Entropy – entropy production inequalities: perturbation results

Perturbing the measure in the case of a Poincaré inequality is essentially trivial. In

the case of the logarithmic Sobolev inequality, this has been done by Holley and

Stroock in 46. More general entropy functionals have been considered in 64, which

cover all ϕ-entropies. Also see 3,24.

Assume that for some probability measure dγ and for some Λ > 0, Inequal-

ity (1.3) holds, that is,

Λ

[∫
Rd

ϕ(w) dγ − ϕ(w)

]
≤
∫
Rd

ϕ′′(w)|∇w|2 dγ ∀w ∈ H1(dγ) . (2.4)

Here we denote by w the average of w with respect to dγ: w :=
∫
Rd w dγ. Assume

that dµ is a measure which is absolutely continuous with respect to dγ and such

that

e−b dγ ≤ dµ ≤ e−a dγ

for some constants a, b ∈ R. The statement below generalizes the one of Lemma 5.2

of 16.

Lemma 2.3. Under the above assumption, if ϕ is a C2 function such that ϕ′′ > 0,

then

ea−b Λ

∫
Rd

[
ϕ(w)−ϕ(w̃)−ϕ′(w̃)(w− w̃)

]
dµ ≤

∫
Rd

ϕ′′(w) |∇w|2 dµ ∀w ∈ H1(dµ) ,

where w̃ :=
∫
Rd w dµ/

∫
Rd dµ.
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Proof. We start by observing that

eb
∫
Rd

ϕ′′(w)|∇w|2 dµ ≥
∫
Rd

ϕ′′(w)|∇w|2 dγ = Iγ [w]

≥ Λ Eγ [w] = Λ

[∫
Rd

ϕ(w) dγ − ϕ(w)

]
= Λ

∫
Rd

(ϕ(w)− ϕ(w)− ϕ′(w) (w − w)) dγ .

By convexity of ϕ, we know that ϕ(w)− ϕ(w)− ϕ′(w) (w − w) ≥ 0, so that

Λ Eγ [w] ≥ Λ ea
∫
Rd

(ϕ(w)− ϕ(w)− ϕ′(w) (w − w)) dµ

= Λ ea
∫
Rd

(ϕ(w)− ϕ(w)− ϕ′(w) (w̃ − w)) dµ .

By convexity of ϕ again, ϕ(w) + ϕ′(w) (w̃ − w) ≤ ϕ(w̃), which shows that

Λ Eγ [w] ≥ Λ ea
∫
Rd

(ϕ(w)− ϕ(w̃)) dµ = ea Λ

∫
Rd

[
ϕ(w)− ϕ(w̃)− ϕ′(w̃)(w − w̃)

]
dµ

and completes the proof.

2.4. Entropy – entropy production inequalities and linear flows

Let us consider the counterpart of the Ornstein-Uhlenbeck equation (1.2) on a

smooth convex bounded domain Ω

∂w

∂t
= Lw := ∆w −∇ψ · ∇w , (2.5)

supplemented with homogenous Neumann boundary conditions

∇w · ν = 0 on ∂Ω ,

where ν denotes a unit outward pointing normal vector orthogonal to ∂Ω. Let us

consider the measure dγ =
(∫

Ω
e−ψ dx

)−1
e−ψ dx. If w solves (2.5) with a non-

negative initial datum w0 such that
∫

Ω
w0 dγ = 1, then mass is conserved so that∫

Ω
w(t, ·) dγ = 1 for any t ≥ 0 and converges to 1 as t → +∞. The next question

is how to measure the rate of convergence using the ϕ-entropy. For simplicity, let

us assume that ϕ = ϕp for some p ∈ [1, 2]. An answer is given by the formal com-

putation of Section 1, adapted to the bounded domain Ω. Because of the boundary

condition, it is straightforward to check that

d

dt

∫
Ω

wp − 1

p− 1
dγ = −4

p

∫
Ω

|∇wp/2|2 dγ

if p > 1 and a similar results holds when p = 1. Hence, if for some Λ > 0 we can

prove that∫
Ω

wp − 1

p− 1
dγ ≤ 4

pΛ

∫
Ω

|∇wp/2|2 dγ for any w such that

∫
Ω

w dγ = 1 , (2.6)
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then we can conclude that
∫

Ω
wp−1
p−1 dγ decays like e−Λ t. The main idea of the Bakry-

Emery method, or carré du champ method, as it is exposed in 9 is that (2.6) can be

established using the flow itself, by computing d
dt

∫
Ω
|∇z|2 dγ with z := wp/2. Let

us sketch the main steps of the proof.

As a preliminary observation, we notice that L is self-adjoint in L2(Ω, dγ) in the

sense that ∫
Ω

w1 (Lw2) dγ = −
∫

Ω

∇w1 · ∇w2 dγ =

∫
Ω

(Lw1)w2 dγ

and also that

[∇, L] = −Hessψ .

Using w = z2/p we deduce from (2.5) that

∂z

∂t
= L z +

2− p
p

|∇z|2

z
. (2.7)

We adopt the convention that a · b =
∑d
i=1 ai bi if a = (ai)1≤i≤d and b = (bi)1≤i≤d

are two vectors with values in Rd. If m = (mi,j)1≤i,j≤d and n = (ni,j)1≤i,j≤d are two

matrices, then m : n =
∑d
i,j=1mi,j ni,j . Also a⊗b denotes the matrix (ai bj)1≤i,j≤d.

We shall use |a|2 = a · a and ‖m‖2 = m : m for vectors and matrices respectively.

With these notations, let us use (2.7) to compute

1

2

d

dt

∫
Ω

|∇z|2 dγ =

∫
Ω

∇z · ∇
(
L z +

2− p
p

|∇z|2

z

)
dγ

=

∫
Ω

∇z · (L∇z − Hessψ∇z) dγ +
2− p
p

∫
Ω

∇z ·
(

2 Hess z
∇z
z
− |∇z|

2

z
∇z
)
dγ

= −
∫

Ω

∥∥Hess z
∥∥2
dγ −

∫
Ω

Hessψ : ∇z ⊗∇z dγ +

∫
∂Ω

Hess z : ∇z ⊗ ν e−ψ dσ

+ 2
2− p
p

∫
Ω

Hess z :
∇z ⊗∇z

z
dγ − 2− p

p

∫
Ω

∥∥∥∥∇z ⊗∇zz

∥∥∥∥2

dγ

= −2

p
(p− 1)

∫
Ω

∥∥Hess z
∥∥2
dγ −

∫
Ω

Hessψ : ∇z ⊗∇z dγ

− 2− p
p

∫
Ω

∥∥∥∥Hess z − ∇z ⊗∇z
z

∥∥∥∥2

dγ +

∫
∂Ω

Hess z : ∇z ⊗ ν e−ψ dσ .

Here dσ denotes the surface measure induced by Lebesgue’s measure on ∂Ω. We

learn from Grisvard’s lemma, see for instance Lemma 5.1 in 38 or 39, that
∫
∂Ω

Hess z :

∇z⊗ ν e−ψ dσ is nonpositive as soon as Ω is convex and ∇z · ν = 0 on ∂Ω. As soon

as we know that either

Hessψ ≥ Λ? Id

for some Λ? > 0, or the inequality

2

p
(p−1)

∫
Ω

|∇X|2 dγ+

∫
Ω

Hessψ : X ⊗X dγ ≥ Λ(p)

∫
Ω

|X|2 dγ ∀X ∈ H1(Ω, dγ)d
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holds for some Λ(p) > 0, which is a weaker assumption for any p > 1, then we

obtain that

d

dt

∫
Ω

|∇z|2 dγ ≤ − 2 Λ(p)

∫
Ω

|∇z|2 dγ .

Of course we know that Λ(p) ≥ Λ?. By convention, we take Λ(1) = Λ?.

Proposition 2.3. Assume that p ∈ [1, 2], ϕ = ϕp and, with the above notations,

Λ(p) > 0. If Ω is a smooth convex bounded domain in Rd, then (2.6) holds with

Λ = 2 Λ(p).

Proof. It is straightforward. In view of the above computations, we know that

d

dt

(
4

pΛ

∫
Ω

|∇wp/2|2 dγ −
∫

Ω

wp − 1

p− 1
dγ

)
≤ 0

and limt→+∞
∫

Ω
wp−1
p−1 dγ = limt→+∞

∫
Ω
|∇wp/2|2 dγ = 0. This is enough to con-

clude that, for any t ≥ 0,

4

pΛ

∫
Ω

|∇wp/2|2 dγ −
∫

Ω

wp − 1

p− 1
dγ ≥ 0 .

We conclude this section with the unbounded case Ω = Rd. For any given

p ∈ [1, 2], let us assume that the inequality

2

p
(p−1)

∫
Rd

|∇X|2 dγ+

∫
Rd

Hessψ : X ⊗X dγ ≥ Λ(p)

∫
Rd

|X|2 dγ ∀X ∈ H1(Rd, dγ)d

holds for some Λ(p) > 0. For p > 1, this assumption is a spectral gap condition on a

vector valued Schrödinger operator: see for instance 32 for further details. With this

assumption in hand, we have the following functional inequality, which interpolates

between the logarithmic Sobolev inequality and the Poincaré inequality.

Corollary 2.1. Assume that q ∈ [1, 2) and let us consider the probability measure

dγ = e−ψ dx. Then with Λ = Λ(2/q), we have

‖f‖2L2(Rd,dγ) − ‖f‖
2
Lq(Rd,dγ)

2− q
≤ 1

Λ

∫
Rd

|∇f |2 dγ ∀ f ∈ H1(Rd, dγ) . (2.8)

Proof. By homogeneity, we know from Proposition 2.3 that∫
Ω

wp − wp

p− 1
dγ ≤ 2

pΛ(p)

∫
Ω

|∇wp/2|2 dγ

for all w such that f = wp/2. Here we take p = 2/q. The conclusion holds by

approximating Rd by a growing sequence of bounded convex domains.

An equivalent form of (2.8) is

I[w] ≥ Λ E [w] ∀w ∈ H1(Rd, dγ) such that

∫
Rd

w dγ = 1 (2.9)
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with the notation of Section 1, ϕ = ϕp and p = 2/q ∈ [1, 2].

Remark 2.1. The optimality of the constant Λ = 1 in (2.8) is easy to obtain when

ψ(x) = 1
2 |x|

2. With q = 1, (2.8) is the Gaussian Poincaré inequality∥∥f − f̄∥∥2

L2(Rd,dγ)
≤
∫
Rd

|∇f |2 dγ ∀ f ∈ H1(Rd, dγ) with f̄ =

∫
Rd

f dγ ,

with equality if f = f1, f1(x) = x1. By taking the limit as q → 2− in (2.8), we

recover Gross’ logarithmic Sobolev inequality∫
Rd

f2 log

(
f2

‖f‖2L2(Rd,dγ)

)
dγ ≤ 2

∫
Rd

|∇f |2 dγ ∀ f ∈ H1(Rd, dγ) .

For any q ∈ [1, 2), the equality case in (2.8) with Λ = 1 is achieved by considering

1 + ε f1 as a test function in the limit as ε→ 0.

From the point of view of the evolution equation, it is easy to see that the

equality in (2.6) is achieved asymptotically as t→ +∞ by taking w = u/u? where

u is the solution of (1.4) given by

u(t, x) = u? (x− x?(t))

with x?(t) = x0 e
−t for any fixed x0 ∈ Rd.

2.5. Improved entropy – entropy production inequalities

In the proof of Proposition 2.3, the term
∫
Rd ‖Hess z −∇z ⊗∇z/z‖2 dγ has been

dropped. In some cases, one can recombine the other terms differently and obtain

an improved inequality if q ∈ (1, 2). See 5 (and also 4 for a spectral point of view

or 27 in the case of the sphere). The boundary term
∫
∂Ω

Hess z : ∇z⊗ ν e−ψ dσ may

also be of importance, as it is suggested in nonlinear problems by 28.

Let us give an example of an improvement, based on 5, in the special case

ψ(x) = |x|2/2. Using Hessψ = Id, after approximating Rd by bounded domains, we

obtain that

1

2

d

dt

∫
Rd

|∇z|2 dγ +

∫
Rd

|∇z|2 dγ ≤ −
∫
Rd

∥∥∥∥Hess z − 2− p
p

∇z ⊗∇z
z

∥∥∥∥2

dγ

− 2

p
κp

∫
Rd

|∇z|4

z2
dγ

with κp = (p− 1) (2− p)/p. A simple Cauchy-Schwarz inequality shows that(∫
Rd

|∇z|2 dγ
)2

≤
∫
Rd

|∇z|4

z2
dγ

∫
Rd

z2 dγ .

With the notations of Section 1, we have
∫
Rd z

2 dγ =
∫
Rd w

p dγ = 1 + (p − 1) E [w]

and
∫
Rd |∇z|2 dγ = p

4 I[w] so that

1

2

d

dt

∫
Rd

|∇z|2 dγ +

∫
Rd

|∇z|2 dγ ≤ − 2

p
κp

(∫
Rd |∇z|2 dγ

)2∫
Rd |z|2 dγ
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can be rewritten as

d

dt
I[w] + 2 I[w] ≤ −κp

I[w]2

1 + (p− 1) E [w]
. (2.10)

We recall that we consider here the case ϕ = ϕp, p ∈ (1, 2), so that κp is positive

and we can take advantage of (2.10) to obtain an improved version of Corollary 2.1.

The following result follows the scheme of Theorem 2 in 5.

Proposition 2.4. Assume that q ∈ (1, 2) and let us consider the Gaussian probabil-

ity measure dγ = (2π)−d/2 e−|x|
2/2 dx. Then there exists a strictly convex function F

on R+ such that F (0) = 0 and F ′(0) = 1, for which

1

q
F

(
q
‖f‖2L2(Rd,dγ) − 1

2− q

)
≤ ‖∇f‖2L2(Rd,dγ)

for any f ∈ H1(Rd, dγ) such that ‖f‖Lq(Rd,dγ) = 1.

Proof. The proof follows the strategy of 5. Let e(t) := 1
p−1

(∫
Rd z

2 dγ − 1
)

where

z = wp/2 solves (2.7) with initial datum f . We deduce from (2.10) that

e′′ + 2 e′ ≥ κp |e′|2

1 + (p− 1) e
≥ κp |e′|2

1 + e
.

The function F (s) := 1
1−κp

[
1 + s − (1 + s)κp

]
solves F ′ = 1 + κp

F
1+s and we can

check that (2.10) is equivalent to

d

dt

(
e′ + 2F

(
e
)(

1 + e
)κp

)
≥ 0 .

Since limt→+∞
(
e′(t) + 2F

(
e(t)
))

= 0, we have shown that e′ + 2F
(
e
)
≤ 0 for any

t ≥ 0. This is true in particular at t = 0, with z(t = 0, ·) = f .

From the point of view of entropy – production of entropy inequalities, we have

obtained that

I[w] ≥ 2F (E [w])

where F is a strictly convex function such that F (0) = 0 and F ′(0) = 1. Using

the homogeneity and substituting f/ ‖f‖Lq(Rd,dγ) to f , similar estimates have been

used in 5 to prove that

2
(2−q)2

[
‖f‖2L2(Rd,dγ) − ‖f‖

2(2−q)
Lq(Rd,dγ)

‖f‖2(q−1)

L2(Rd,dγ)

]
≤ ‖∇f‖2L2(Rd,dγ) ∀ f ∈ H1(Rd, dγ) .
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2.6. Interpolation inequalities: comments and extensions

The inequality of Corollary 2.1 appears in many papers. It is proved for the first

time by the carré du champ method and any q ∈ [1, 2] in 9 in the case of a compact

manifold, but special cases were known long before. For instance the case q = 2

corresponding to the logarithmic Sobolev inequality can be traced back to 40,37

(also see 69,34 for related issues) but was already known as the Blachmann-Stam

inequality 62: see 67,63 for a more detailed historical account. The case q = 1 when

ψ(x) = 1
2 |x|

2 is known as the Gaussian Poincaré inequality. It appears for instance

in 60 but was probably known much earlier in the framework of the theory of

Hermite functions. In the case q ∈ (1, 2) when ψ(x) = 1
2 |x|

2, we may refer to 15 for

a proof based on spectral methods, which has been extended in 4 to more general

potentials.

One of the technical limitations of the carré du champ method is the difficulty

of controlling the boundary terms in the various integrations by parts. In the above

proof, we used Grisvard’s lemma for convex domains. Alternative methods, which

will not be exposed here, rely on the properties of Green’s functions, or use direct

spectral estimates.

Let us list some possible extensions:

• In Corollary 2.1, for any given q ∈ [1, 2], we need that Λ(p) is positive only for

p = 2/q. The condition for p = 1, which is equivalent to Hessψ ≥ Λ(1) Id with

Λ(1) > 0, is not required unless q = 2. For any q < 2, the positivity condition of

Λ(2/q) is a nonlocal condition, which allows ψ to be a non-uniformly strictly convex

potential: see 32 for details.

• The case of unbounded convex domains can be considered. Reciprocally, according

to 7, the case of a bounded convex domain Ω can be deduced from the Euclidean

case, by approximating a function ψ which takes the value +∞ on Ωc by smooth

locally bounded potentials.

• Spectral methods can be used to establish that the family of inequalities of Corol-

lary 2.1 interpolates between the logarithmic Sobolev inequality and the Poincaré

inequality: this approach has been made precise in 15,53, with extensions in 12,4.

• Exhibiting a whole family of Lyapunov functionals for the same evolution equa-

tion needs an explanation that has been given in 31,33: to each entropy, we associate

a notion of distance such that the equation appears as the gradient flow of the

entropy.

In the context of linear diffusions and Markov processes, ϕ-entropies are very

natural objects which put the Gibbs entropy and the quadratic form associated

to the Poincaré inequality in a common framework. It is therefore evident to ask

the same question in a kinetic framework involving a degenerate diffusion operator

coupled to a transport operator. Much less has been done so far and the next

section is a contribution to the issue of optimal rates of convergence measured by

ϕp-entropies, with a special emphasis on p 6= 1, 2.
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3. Sharp rates for the kinetic Fokker-Planck equation

In this section, our goal is to provide a computation of the sharp exponential rate in

Proposition 1.1 and establish the improvement of Theorem 1.1 by generalizing the

estimate of Proposition 2.4 to the kinetic setting. The method follows the strategy of

Section 3 of 66 in case p = 2, which is sometimes referred to as the H1 hypocoercivity

method of C. Villani. This method is also known to cover the case p = 1. We extend

it to any p ∈ [1, 2] and compute the precise algebraic expressions, which allows us to

identify the sharp rate. Similar computations have been done in 6,2,1,36,55. According

to 23 (see earlier references therein), the Green function associated with (1.5) is a

Gaussian kernel, so that integrations by parts can be performed on Rd×Rd without

any special precaution. Using the notation of Section 1, our strategy is to consider

the solution h = gp/2 of (1.7), where g = f/f?, define

J [h] :=

∫
Rd

|∇vh|2 dµ+ 2λ

∫
Rd

∇vh · ∇xh dµ+ µ

∫
Rd

|∇xh|2 dµ

and adjust the parameters λ and µ in order to maximize λ? = λ?(λ, µ) > 0 so that

d

dt
J [h(t, ·, ·)] ≤ −λ?(λ, µ)J [h(t, ·, ·)] .

Since (1.6) is linear and preserves positivity, we recall that we can assume that g is

nonnegative and such that ‖g‖L1(Rd×Rd,dµ) = 1. Let us define the notations:

Hvv =

(
∂2h

∂vi ∂vj

)
1≤i,j≤d

, Hxv =

(
∂2h

∂xi ∂vj

)
1≤i,j≤d

,

Mvv =

(
∂
√
h

∂vi

∂
√
h

∂vj

)
1≤i,j≤d

, Mxv =

(
∂
√
h

∂xi

∂
√
h

∂vj

)
1≤i,j≤d

.

We start by observing that, up to a few integrations by parts, we obtain the identities

1
2

d

dt

∫
Rd

|∇vh|2 dµ

= −
∫
Rd

∇vh · ∇v(v · ∇xh− x · ∇vh) dµ+

∫
Rd

∇vh · ∇v(∆vh− v · ∇vh) dµ

+
(

2
p − 1

) ∫
Rd

∇vh · ∇v
(
|∇vh|2

h

)
dµ

= −
∫
Rd

∇vh · ∇xh dµ−
(∫

Rd

‖Hvv‖2 dµ+

∫
Rd

|∇vh|2 dµ
)

+ κ

∫
Rd

(
Hvv : Mvv − 2 ‖Mvv‖2

)
dµ (3.1)
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with κ = 8 (2− p)/p,

1
2

d

dt

∫
Rd

|∇xh|2 dµ

= −
∫
Rd

∇xh · ∇x(v · ∇xh− x · ∇vh) dµ+

∫
Rd

∇xh · ∇x(∆vh− v · ∇vh) dµ

+
(

2
p − 1

) ∫
Rd

∇xh · ∇x
(
|∇vh|2

h

)
dµ

=

∫
Rd

∇vh · ∇xh dµ−
∫
Rd

‖Hxv‖2 dµ+ κ

∫
Rd

(
Hxv : Mxv − 2 ‖Mxv‖2

)
dµ , (3.2)

and

d

dt

∫
Rd

∇vh · ∇xh dµ =

∫
Rd

|∇vh|2 dµ−
∫
Rd

|∇xh|2 dµ−
∫
Rd

∇vh · ∇xh dµ

− 2

∫
Rd

Hvv : Hxv dµ

+ κ

∫
Rd

(Hvv : Mxv + Hxv : Mvv − 4Mvv : Mxv) dµ . (3.3)

Collecting these estimates shows that

− 1
2

d

dt
J [h(t, ·, ·)]

= − 1
2

d

dt

(∫
Rd

|∇vh|2 dµ+ 2λ

∫
Rd

∇vh · ∇xh dµ+ µ

∫
Rd

|∇xh|2 dµ
)

= (1− λ)

∫
Rd

|∇vh|2 dµ+ (1 + λ− µ)

∫
Rd

∇vh · ∇xh dµ+ λ

∫
Rd

|∇xh|2 dµ

+

∫
Rd

‖Hvv‖2 dµ− κ
∫
Rd

(
Hvv : Mvv − 2 ‖Mvv‖2

)
dµ

+ 2λ

∫
Rd

Hvv : Hxv dµ− κλ
∫
Rd

(Hvv : Mxv + Hxv : Mvv − 4Mvv : Mxv) dµ

+ µ

∫
Rd

‖Hxv‖2 dµ− κµ
∫
Rd

(
Hxv : Mxv − 2 ‖Mxv‖2

)
dµ

where κ = 8 (2− p)/p. This can be rewritten as

− 1
2

d

dt

∫
Rd

X⊥ ·M0X dµ =

∫
Rd

X⊥ ·M1X dµ+

∫
Rd

Y ⊥ ·M2 Y dµ

where

M0 =

(
1 λ

λ µ

)
⊗ IdRd , M1 =

(
1− λ 1+λ−µ

2
1+λ−µ

2 λ

)
⊗ IdRd

and

M2 =


1 λ −κ2 −

κλ
2

λ µ −κλ2 −
κµ
2

−κ2 −
κλ
2 2κ 2κλ

−κλ2 −
κµ
2 2κλ 2κµ

⊗ IdRd×Rd
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are bloc-matrix valued functions of (λ, µ), and

X = (∇vh,∇xh) , Y = (Hvv,Hxv,Mvv,Mxv) .

The problem is reduced to a problem of linear algebra, namely

λ?(λ, µ) = max

{
min
X

X⊥ ·M1X

X⊥ ·M0X
: (λ, µ) ∈ R2 such that min

Y

Y ⊥ ·M2 Y

‖Y ‖2
≥ 0

}
,

where X and Y are now arbitrary vectors and matrices respectively in R2d and

R2d×R2d. Elementary computations show that λ and µ must satisfy the condition

λ2 ≤ µ and also that

λ?(λ, µ) = min
X∈Rd×Rd

X⊥ ·M1(λ, µ)X

X⊥ ·M0(λ, µ)X

achieves its minimum at (λ, µ) = ( 1
2 , 1), so that λ?(

1
2 , 1) = 1

2 . For (λ, µ) = ( 1
2 , 1),

M1( 1
2 , 1) = 1

2 M0( 1
2 , 1) and the eigenvalues of M2( 1

2 , 1) are given as a function of

κ = 8 (2− p)/p by

λ1(κ) :=
1

4

(
2κ+ 1−

√
5κ2 − 4κ+ 1

)
, λ2(κ) :=

3

4

(
2κ+ 1−

√
5κ2 − 4κ+ 1

)
,

λ3(κ) :=
1

4

(
2κ+ 1 +

√
5κ2 − 4κ+ 1

)
, λ4(κ) :=

3

4

(
2κ+ 1 +

√
5κ2 − 4κ+ 1

)
.

In the range p ∈ [1, 2], which means κ ∈ [0, 8], they are all nonnegative: see Fig. 1.

Since λ1(κ) is the lowest eigenvalue, we have proved the following result.

2 4 6 8

0.5

1.0

1.5

λ1(κ)

λ2(κ)

λ3(κ)

λ4(κ)

κ

Fig. 1. Plot of the eigenvalues of M2( 1
2
, 1) as a function of κ.
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Lemma 3.1. With the above notations and (λ, µ) = (1
2 , 1), we have the estimate∫

Rd

X⊥ ·M1X dµ+

∫
Rd

Y ⊥ ·M2 Y dµ ≥
1

2

∫
Rd

X⊥ ·M0X dµ

+
1

4

(
2κ+ 1−

√
5κ2 − 4κ+ 1

)
|Y |2 .

Proof of Proposition 1.1. Assume that h solves (1.7). With (λ, µ) = ( 1
2 , 1), we

deduce from Lemma 3.1 that J [h] is defined by (1.9). Then it satisfies the differential

inequality

d

dt
J [h(t, ·, ·)] ≤ −J [h(t, ·, ·)] ,

from which we deduce that

J [h(t, ·, ·)] ≤ J [h(0, ·, ·)] e−t ∀ t ≥ 0 .

Using (1.3) with dγ = µdx dv, λ = 1 and ϕ = ϕp for any p ∈ [1, 2] (also see

Remark 2.1), we obtain that

E [h(t, ·, ·)] ≤ J [h0] e−t ∀ t ≥ 0

if h is the solution of (1.7) with initial datum h0.

The optimality of the rate is established by considering an initial datum which

is a decentred stationary solution. With the notations of Section 1, let

f0(x, v) = f?(x− x0, v − v0) ∀ (x, v) ∈ Rd × Rd

for some (x0, v0) 6= (0, 0). The reader is invited to check that

f(t, x, v) = f?
(
x− x?(t), v − v?(t)

)
with x?(t) =

(
cos
(√

3
2 t
)
x0 + 2√

3
sin
(√

3
2 t
) (
v0 + x0

2

))
e−

t
2 ,

v?(t) =
(
−
√

3
2 sin

(√
3

2 t
) (
x0 + v0

2

)
+ cos

(√
3

2 t
)
v0

)
e−

t
2 ,

solves (1.5). Now let us compute the entropy as t → +∞: with g = f/f? and

ϕ = ϕp, we obtain that, as t→ +∞,

E [g(t, ·, ·)] =

∫∫
Rd×Rd

ϕp(g) dµ =
p

2

∫∫
Rd×Rd

|g − 1|2 dµ(1 + o(1))

=
p

2

(
|x?(t)|2 + |v?(t)|2

)
(1 + o(1)) = O

(
e−t
)
.

This proves that the rate e−t of Proposition 1.1 is optimal and completes the

proof.

Compared to the proof of Proposition 1.1, a refined estimate can be obtained

by observing that, in the computation of d
dt

∫
Rd |∇vh|2 dµ and d

dt

∫
Rd |∇xh|2 dµ, we

have

‖Hvv‖2 − κHvv : Mvv + 2κ ‖Mvv‖2 ≥ 0 ,

‖Hxv‖2 − κHxv : Mxv + 2κ ‖Mxv‖2 ≥ 0 ,
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with κ = 8 (2− p)/p. Let us define

a := et
∫
Rd

|∇vh|2 dµ , b := et
∫
Rd

∇vh · ∇xh dµ , c := et
∫
Rd

|∇xh|2 dµ ,

and j := a + b + c .

We deduce from (3.1), (3.2) and (3.3) that

da

dt
≤ a− 2 (j− c) ,

dc

dt
≤ 2 (j− a)− c and

d j

dt
≤ 0

while we know by definition of a, b and c and by the Cauchy-Schwarz estimate that

a ≥ 0 , c ≥ 0 and b2 ≤ a c .

In terms of a and c, the inequality b2 = (a + c− j)2 ≤ a c means that the problem

is constrained to the interior of an ellipse, and that a = 0 if and only if c = j: see

Fig. 2. Finally, let us observe that we have the following property.

Lemma 3.2. Assume that p ∈ [1, 2], ψ(x) = |x|2/2 and let h be a solution of (1.7)

with initial datum h0 ∈ L1 ∩ Lp(Rd, dγ). With the above notations, if for some

t0 > 0, a(t0) = 0 and j(t0) 6= 0, then for any t > t0 with t − t0 small enough, we

have a(t) > 0.

Proof. From the equivalence of (1.5) and (1.7), we know that h is smooth because

of the expression of Green’s function. By definition of b and j, we have that b(t0) = 0

and c(t0) = j(t0) > 0. Since a(t0) = 0 means that h does not depend on v, we know

that d j
dt (t0) = j(t0) > 0, hence proving that a(t) > 0 for t− t0 > 0, small, because of

the condition b2 ≤ a c and d c
dt ≤ 0, which means that t 7→ (a(t), c(t)) is constrained

to the interior of the ellipse of Fig. 2.

Proof of Theorem 1.1. Let us consider the Fisher information functional as

defined in (1.10). A computation shows that

−1

2

d

dt
Jλ(t)[h(t, ·)] = X⊥ ·M1X −

1

2
λ′(t)X⊥ ·

(
0 1

1 0

)
X + Y ⊥ ·M2 Y

where M0, M1 and M2 are defined as before, with µ = 1, and X = (∇vh,∇xh),

Y = (Hvv,Hxv,Mvv,Mxv). We take of course λ = λ(t). We know that

Y ⊥ ·M2 Y ≥ λ1(p, λ) |Y |2

for some λ1(p, λ) such that λ1(p, 1/2) = 1
4

(
2κ+ 1−

√
5κ2 − 4κ+ 1

)
> 0 if p ∈

(1, 2), and κ = 8 (2−p)/p. For any p ∈ (1, 2), by continuity we know that λ1(p, λ) > 0

if λ−1/2 > 0 is taken small enough. From |Y |2 ≥ ‖Mvv‖2 and, by Cauchy-Schwarz,(∫
Rd

|∇vh|2 dµ
)2

≤
∫
Rd

h2 dµ

∫
Rd

‖Mvv‖2 dµ ≤ c0
∫
Rd

‖Mvv‖2 dµ
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0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Fig. 2. Plot of the vector field associated with the ODEs d a
dt

= a− 2 (j− c) and d c
dt

= 2 (j− a)− c.
The coordinates are a/j (horizontal axis) and c/j (vertical axis). The two straight lines intersecting

at the center of the ellipse are defined by 2 (j− a) − c = 0 and a− 2 j + 2 c = 0.

where c0 := 1 + (p− 1) E [h
2/p
0 ], we obtain

−1

2

d

dt
Jλ(t)[h(t, ·)] ≥ X⊥ ·M1X +

1

2
λ′(t)X⊥ ·M0X + εX⊥ ·M3X

with ε = λ1(p, λ) c−1
0

∫
Rd |∇vh|2 dµ and M3 =

(
1 0

0 0

)
⊗ IdRd . We recall that a is

defined by a = et
∫
Rd |∇vh|2 dµ is positive except for isolated values of t > 0. Our

goal is to find λ(t) and ρ(t) > 1/2 such that

X⊥ ·M1X −
1

2
λ′(t)X⊥ ·

(
0 1

1 0

)
X + εX⊥ ·M3X ≥ ρ(t)X⊥ ·M0X

for any X ∈ R2d.

To establish the existence of ρ > 1/2 a.e., we proceed in several steps.

• If a ≥ a? for some constant a? > 0, then we define ε(t) = ν e−t with ν =

λ1(p, λ) c−1
0 a?, λ(t) = (1+ε(t))/2 and ρ(t) = 1

2 (1+ν/(ν+3 et)). The same estimate

holds on any subinterval of R+.

• If a(t0) = 0 for some t0 ≥ 0, then in a neighborhood of (t0)+, we can solve

dλ

dt
= ν ε(t) , λ(t0) =

1

2
.
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An eigenvalue computation shows that

M1 +
1

2
ν εM0 + εM3 ≥ ζ(ε, λ, ν)M0

with

ζ
(
0, 1

2 , ν
)

= 1
2 ,

∂ζ

∂ε

(
0, 1

2 , ν
)

=
2 +
√

3− 2 ν

3
,

∂ζ

∂λ

(
0, 1

2 , ν
)

= − 2√
3
.

We choose an arbitrary ν ∈ (0, 1+
√

3/2). Since 0 < λ(t)−1/2 = o(ε(t)) for t−t0 > 0,

small enough, this guarantees that ρ(t) = ζ (ε(t), λ(t), ν) satisfies ρ(t) > 1/2 on a

neighborhood of (t0)+.

• If ζ(t0) = 0 for some t0 > 0, then in a neighborhood of (t0)−, we proceed as above

with some ν < 0.

• If (tn)n∈N is the increasing sequence of points such that a(tn) = 0 and if a(t) > 0

for any t ∈ R+ such that t 6= tn for any n ∈ N, we can choose a constant a?, small

enough, on any interval (tn, tn+1) and glue the above solutions to obtain a function

ρ(t) > 1/2 on (0, t0) and ∪n∈N(tn, tn+1). It is an open question to decide if there is

an increasing sequence, finite or infinite, of times tn such that a(tn) = 0, or if a(t) is

positive for any t > 0. We can of course impose that a(t0) = 0 at t0 = 0 by taking

an initial datum h0 which does not depend on v. If such a sequence (tn)n∈N exists,

then we know that λ(tn) = 1/2 so that we have the remarkable decay estimate

J 1
2

[h(tn+1, ·)] ≤ J 1
2

[h(tn, ·)] e− 2
∫ tn+1
tn

ρ(s) ds < J 1
2

[h(tn, ·)] e−(tn+1−tn)

for any p ∈ (1, 2). As far as a is concerned, we expect that it has some oscillatory

behaviour as indicated by the vector field in Fig. 2, but since terms involving Y

are neglected, this is so far formal. In any case, we can choose λ(t) such that

limt→+∞ λ(t) = 1/2. concludes the proof of Theorem 1.1.

Acknowledgments

This work has been partially supported by the Projects Kibord and EFI (J.D.) of

the French National Research Agency (ANR). The first author (J.D.) thanks J.-

P. Bartier and B. Nazaret for fruitful discussions on, respectively, the tensorization

properties of the ϕ-entropies and various computations based on the Bakry-Emery

method, which took place at the occasion of a course taught by C. Mouhot on

hypocoercivity methods.

c© 2017 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.



ϕ-entropies for Fokker-Planck and kinetic Fokker-Planck equations 25

References

1. F. Achleitner, A. Arnold, and E. A. Carlen, On linear hypocoercive BGK mod-
els, in From particle systems to partial differential equations. III, vol. 162 of Springer
Proc. Math. Stat., Springer, [Cham], 2016, pp. 1–37.

2. F. Achleitner, A. Arnold, and D. Stürzer, Large-time behavior in non-
symmetric Fokker-Planck equations, Riv. Math. Univ. Parma (N.S.), 6 (2015), pp. 1–
68.
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C. Roberto, and G. Scheffer, Sur les inégalités de Sobolev logarithmiques, vol. 10
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516.

30. , Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math.
Soc., 367 (2015), pp. 3807–3828.

31. J. Dolbeault, B. Nazaret, and G. Savaré, A new class of transport distances
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