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ABSTRACT
This paper is a work in progress on the exact computation and

bounds of the expected coupling time for finite-state Markov chains.

We give an exact formula in terms of generating series. We show

how this may help to bound the expected coupling time for queue-

ing networks.
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1 INTRODUCTION
Propp and Wilson [8] used a coupling from the past scheme to

derive a simulation algorithm, providing unbiased samples of the

stationary distribution of a finite-state irreducible Markov chain

in finite expected time. The main idea is to start trajectories from

all initial states x ∈ X at some time in the past until time t = 0.

If the end state is the same for all trajectories, then the chain has

coupled and the end state has the stationary distribution of the

Markov chain. Otherwise, the simulations are started from further

in the past. The analysis of the complexity of the algorithm requires

analysis of the complexity of one iteration and analysis of the

number of iterations. Until now, most of the efforts were focused

on the the complexity of one iteration (see [5, 8] for the monotone

and ani-monotone case and [1–3, 6, 7] for the non-monotone case).

The focus of his paper is on the expected number of iterations,

closely related to the coupling time of the Markov chain, i.e. the

time needed for the coalescence of trajectories started from all
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initial states. We provide a systematic framework to compute the

expectation of the coupling time. As this may be very challenging

in the general case, our second goal is to compute upper and lower

bounds on this expectation. The results obtained are applied to

queueing networks.

2 EXACT COMPUTATION OF THE EXPECTED
COUPLING TIME

We consider an irreducible aperiodic Markov chain over a finite

state space X. It is known in this case that there exists a stochastic

(or Markov) complete automaton S that simulates the Markov chain

started at any state that has the same transition kernel and that

couples almost surely in finite time. We can represent the transition

rule of this automaton by a semi-group action ▷ over some alphabet

A. Once we have build such simulation, we can build a second

stochastic automaton AutS , over P (X), which associates the set

U = {t ▷ a |t ∈ T } with T ∈ P (X) and a ∈ A the . We thus have:

Proposition 2.1. The coupling time for the stochastic automaton
S that simulates the Markov chain with the transition kernel P is the
hitting time of the set A = {{x }|x ∈ X} in AutS from the initial
condition X.

To compute this hitting time, we proceed as follows:

(1) We express the hitting language L of A from X, i.e. the lan-

guage of wordsw such that:

• X ▷w ∈ A
• ∀u strict prefix ofw , X ▷ u < A
We highlight the fact that L is distinct from the language

recognized by AutS .
(2) Let p1, ...,p |A | be a set of |A| formal variables and let φ be

a bijection between this set of formal variables and A. We

then transform the language L into a generating series G in

|A| letters such that the coefficient in front of the formal

monomial

∏
i ∈[1, |A |] p

ki
i is equal to the number of words in

L that have k1 letters φ (p1), ..., k |A | letters φ (p |A | ). There
are systematic ways to do that by expressing the language in

a way that every word of L is counted only once (by finding

a non-ambiguous rational expression for instance).

(3) We compute D (G ), where D =
∑ |A |
i=1 pi

∂
∂pi

.

(4) For every monomialm =
∏ |A |

i=1 p
ki
i in the formal variables

p1, ...,p |A | , ([m]G )m(P(φ (p1), ...,P(φ (p |A | )) is the probabil-
ity to get a word of L, hence a coupling word for the stochas-
tic automaton S , withk1 lettersφ (p1), ...,k |A | lettersφ (p |A | ).
Hence we get that D (G ) (P(φ (p1), ...,P(φ (p |A | )) = E[Tc ],
with Tc the coupling time for the stochastic automaton S .
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By decomposing the sequence of states starting from X inAutS
implied by a wordw according to self-avoiding walks on this au-

tomaton, we get the following general result:

Theorem 2.2. Let S be a stochastic automaton, L(x ,A) the hitting
language of A ∈ P (X) from x ∈ X in AutS , L(x ,y) the hitting
language of y ∈ X from x ∈ X in AutS and
• Ax,A and AC,x,y the generating series of L(x ,A) and L(x ,y)
on the automaton obtained from AutS by keeping only the
states of C .
• RE,x the generating series of the language of first returns to x
that go only through the states of E.
• ChCon(Cx ,Cy,A ) the set of words whose letters are maximal
strongly connected components, whose first letter is Cx the
strongly connected component containing x and whose last
letter is Cy,A the strongly connected component of y in the
automaton obtained from AutS by deleting A.
• for u a word over the maximal strongly connected components
ofAutS ,Pass (u) the set of words (v,w ) such that there exists
a sequence of states feasible in AutS that passes successively
through each letter of u and such that the last state visited in
ui is vi and the first state visited in ui+1 iswi .
• γ = φ−1.
• ▷t = ∪

+∞
i=0▷

i .
Then:

Ax,A (p) =
∑
y∈A

∑
u ∈ChCon (Cx ,Cy,A )

Lu (p)

Lu (p) =
∑

(v,w )∈Pass (u )

1

1 − RCx ,x (p)
ACx ,x, {v0 } (p)

γ

( ∑
a∈(v0▷t .)−1 (w0 )

a

)
Su,v,w (p)

1

1 − RCy,A,w |u |−1 (p)
ACy,A,w |u |−1, {y } (p)

Su,v,w (p) = *
,

|u |−2∏
i=2

1

1 − Rui ,wi−1 (p)
Aui ,wi−1, {vi } (p)γ

( ∑
a∈(vi ▷t .)−1 (wi )

a

)
+
-

In the case of a single queue, a similar method has been used in

[4], with a slightly simpler way of decomposing coupling words in

this particular case.

3 COMPUTING BOUNDS FOR THE
EXPECTED COUPLING TIME

This part is still a work in progress, but we hope to extend the tech-

nique that we developed here for independent queues for general

queueing networks.

Computing the exact expectation of the coupling time is a rather

complicated task. So one may prefer to get bounds to simplify the

analysis of the expected number of iterations for perfect simulation.

To reach this goal, one needs to establish a criteria of comparison

on generating series that allows to compare the associated condi-

tional expectation (i.e.

D (G ) (P(ϕ (p1 )), ...,P(ϕ (p |A| )))
G (P(ϕ (p1 )), ...,P(ϕ (p |A| )))

). This is done by

the following binary relation:

Definition 3.1. We define the binary relation ⪯ over the generat-

ing series in p1, ...,pn by: G ⪯ H iff ∃M a set of monomials in the

variables p1, ...,pn such that

• H =
∑
m∈M mH

[m]

• ∀m ∈ M,∀(j,k )monomials inp1, ...,pn such thatdeдtot (j ) >
deдtot (k ), ([j]H[m]

) ([k]G ) ≥ ([k]H
[m]

) ([j]G )

Theorem 3.2. LetG and H two formal series in p1, ...,pn and P a
probability distribution over p1, ...,pn . Then

G ⪯ H =⇒
D (G ) (P(p1), ...,P(pn ))

G (P(p1), ...,P(pn ))
≤

D (H ) (P(p1), ...,P(pn ))

H (P(p1), ...,P(pn ))

with D =
∑n
i=1 pi

∂
∂pi

the derivation operator defined in the previ-
ous section.

Theorem 3.3. Let S a stochastic automaton that simulates a queue-
ing network of k independent queues, k ∈ N∗, T its coupling time,
P a probability distribution on A the alphabet chosen for the S , γ a
bijection from A to a set {pi |i ∈ [1, |A|]} of formal variables and G
the generating series of the coupling words for S restricted to states
such that k−1 fixed queues are empty (i.e. it is the generating series of
the coupling words for one queue such that the underlying stochastic
simulation coincides with S). Then

min

j ∈[1,k]

k∑
i=1

D (G ) (p2i−1,p2i ) (Pγ (p1), ...,Pγ (p |A | ))

G (p2i−1,p2i ) (Pγ (p1), ...,Pγ (p |A | ))

+

k∑
i=1
i,j

D (Li ) (Pγ (p1), ...,Pγ (p |A | ))

Li (Pγ (p1), ...,Pγ (p |A | ))
≤ EP[T ]

with Li =
∑+∞
n=0 (p2i−1 + p2i )

n = 1

1−(p2i−1+p2i )

As there is an explicit formula for computing the generating

series of the coupling time of a single queue, this generating series,

and hence this lower bound, can be easily numerically computed.

4 CONCLUSIONS
In this paper we have shown a systematic way to compute exactly

the expected coupling time. We illustrated how this can be used to

get a lower bound in the case of a network of independent queues.

The extension of the techniques in the last section to prove bounds

on general queueing networks is still a work in progress.
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