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TOPOLOGICAL PHASE TRANSITION III: SOLAR
SURFACE ERUPTIONS AND SUNSPOTS

TIAN MA AND SHOUHONG WANG

Abstract. This paper is aimed to provide a new theory for the
formation of the solar surface eruptions and sunspots. The key in-
gredient of the study is the new anti-diffusive effect of heat, based
on the recently developed statistical theory of heat by the authors
[3]. The anti-diffusive effect of heat states that due to the higher
rate of photon absorption and emission of the particles with higher
energy levels, the photon flux will move toward to the higher tem-
perature regions from the lower temperature regions. This anti-
diffusive effect of heat leads to a modified law of heat transfer,
which includes a reversed heat flux counteracting the heat diffu-
sion. It is this anti-diffusive effect of heat and thereby the modi-
fied law of heat transfer that lead to the temperature blow-up and
consequently the formation of sunspots, solar eruptions, and solar
prominences. This anti-diffusive effect of heat may be utilized to
design a plasma instrument, directly converting solar energy into
thermal energy. This may likely offer a new form of fuel much more
efficient than the photovoltaic devices.

Contents

1. Introduction 2
2. Sun’s Surface Fluid Dynamics 5
2.1. Astronomical phenomenon on the Sun’s surface 5
2.2. Anti-diffusive effect of heat 7
2.3. Sun’s surface fluid dynamical equations 8
3. Theory on Formation of Sunspots and Solar Eruptions 10
3.1. Blow-up theorem 10
3.2. Sun’s surface eruptions and sunspots 13

Date: September 19, 2018.
Key words and phrases. topological phase transition, sunspot, solar flare, solar

prominence, solar eruption, temperature blow-up, statistical theory of heat, energy
level formula of temperature, photon number entropy formula, anti-diffusive effect
of heat, Fourier law, Fick law, heat transfer, photon absorption, photon radiation.

The work was supported in part by the US National Science Foundation
(NSF), the Office of Naval Research (ONR), and by the Chinese National Science
Foundation.

1



2 MA AND WANG

3.3. Period of solar eruptions 15
3.4. Non blow-up condition of temperature 16
References 18

1. Introduction

The main objective of this paper is to provide a new theory for the
formation of the solar surface eruptions and sunspots. This is part of
the research program initiated recently by the authors on theory and
applications of topological phase transitions, including

(1) quantum phase transitions [4],
(2) formation of galactic spiral structure [5],
(3) boundary-layer separation of fluid flows, and
(4) interior separation of fluid flows.

The Sun is mainly made up of hydrogen and helium, and is entirely in
a gaseous state. Solar structure is divided into two parts: the interior
and the atmosphere. The atmosphere is composed of three distinct
parts: the photosphere, the chromosphere and the corona, and the most
visible light comes from the photosphere. Astronomical observations
reveal that the solar flare, the solar prominence and the sunspots are
important phenomena for the solar atmosphere. Solar flares refer to
sudden flashes in Sun’s surface brightness. A solar prominence is a
large, bright gaseous feature extending outward from the Sun’s surface,
usually in a loop shape. Sunspots are the areas on Sun’s surface, which
are darker than their surrounding areas. Astronomical observations
show that solar flares, prominences and sunspots are intimately related.
The theory established in this paper verifies this claim, and explains
their relations.

The main ingredients of the paper are as follows.

First, the most important ingredient of the study present in this
paper is the law of heat transfer based on the recently developed sta-
tistical theory of heat by the authors [3]. In this theory, we derived the
energy level temperature formula, showing that the temperature is es-
sentially the average energy level of system particles. We also obtained
the photon number entropy formula, demonstrating that the entropy
is the number of photons in the gap between system particles, and the
physical carrier of heat is the photons.

Another important component of the theory is the vibratory mech-
anism of photon absorption and radiation:
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a particle can only absorb and radiate photons while ex-
periencing vibratory motion. The higher the frequency
of the vibration of the particle, the larger the absorbing
and radiating energy. The vibration or irregular motion
of particles in a system is caused by collisions between
particles and by absorbing and radiating photons.

This mechanism shows immediately that for particles in high speed
vibration and irregular motion, the rate of photon emission and absorp-
tion increases, leading to the number density of photons to increase,
and further causing the particle energy levels to elevate. Hence, the
photon absorption and emission induce the concentration of tempera-
ture, which we call the anti-diffusive effect of heat:

(1.1)

Due to the higher rate of photon absorption and emission of
the particles with higher energy levels, the photon flux will
move toward the higher temperature regions from the lower
temperature regions.

By the Stefan-Boltzmann law, the reversed heat flux measuring the
anti-diffusive effect is expressed as

(1.2)

(
dT

dt

)
ADE

= β0T
4,

where β0 is the heat effect coefficient. Then by the Fourier law, we
derive the following law for heat transfer for the solar atmosphere:

(1.3)
∂T

∂t
+ (u · ∇)T = κ∆T + β0T

4 + β1(E2 + H2).

Here on the right-hand side, the first term represents the usual diffusion
of heat, the last term is the heat source due to the solar electromagnetic
fields. Importantly the second term represents the anti-diffusive effect
of heat, and it is this anti-diffusive effect that leads to the formation
of sunspots, the solar flares and the prominences.

Second, the full model governing Sun’s surface plasma fluid combines
the fluid dynamical equations, the above new heat equation (1.3), and
the Maxwell equations. One key component of the theory for the for-
mation of sunspots and solar eruptions is to prove a blow-up theorem,
Theorem 3.1. This theorem shows that there exist x0 ∈ Ω and t0 > 0,
such that the temperature T blows up at (x0, t0) with blow-up time
estimated as

(1.4) t0 =
|Ω|3

3a3β0

, a =

∫
Ω

T0(x)dx,
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where T0 is the initial value of temperature, Ω = S2× (r0, r1), r0 is the
solar radius, and r1 = r0 + h with the thickness of solar atmosphere h.

Third, the sunspots can now be clearly explained by the anti-diffusive
effect of heat and the temperature blow-up that we just mentioned. We
summarize this explanation as follows:

(1) Due to thermal fluctuations, the temperature in the solar at-
mosphere is nonhomogeneous, leading to elevated temperature
in some local areas. The anti-diffusive effect of heat then shows
that the higher temperature regions absorb more photons from
their surrounding areas, leading to their temperature decreas-
ing, and consequently generating sunspots;

(2) The anti-diffusive effect of heat makes the temperature around
the sunspot areas increasing rapidly, generating the tempera-
ture blow-up, and leading to solar eruptions. In fact, we deduce
from the temperature blow-up at (x0, t0) that

(1.5) lim
t→t0

∣∣∣∣du(x0, t)

dt

∣∣∣∣ =∞,

which represents the high speed gas explosion and particle ejec-
tions, with ejection direction given by

(1.6) ~r = − lim
t→t0

∇T (x0, t)

|∇T (x0, t)|
.

(3) It is clear that the temperature blow-up generates solar flares.
(4) By the Maxwell equations, it is clear that the eruption described

by (1.5) generates very strong electromagnetic radiation in the
~r direction.

(5) The eruption (1.5) leads also to a huge current jet J = ρeu in
the ~r direction, which, in view of the Ampère law, gives rise to
violent magnetic loops, perpendicular to the direction ~r, leading
to the solar prominences.

(6) Astronomical observations show that sunspots and solar flares
occur periodically in an 11-year cycle. The blow-up time (1.4)
links the initial temperature T0, the solar eruption period, and
the anti-diffusive effect coefficient β0. Such a link is applicable
to all stars. For the Sun, we can easily estimate

β0 = 2.85× 10−22/(K3 · s).

Fourth, the anti-diffusive effect of heat (1.1) may provide a new
source of fuel. Basically, in a high temperature plasma system where
free electrons are abundant, photons in the low temperature area ex-
perience the anti-diffusive effect and can move to the high temperature
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region, further raising the temperature in the high temperature region.
The conversion of the thermal energy in the high-temperature region
offers an alternative fuel source, which we call plasma fuel. The Sun is
a natural source of photons for the low-temperature regions required
for such a process to continue. This direct way of converting solar
energy into a new form of fuel will be much more efficient than the
photovoltaic devices.

In view of the non blow-up condition (3.30), the following condition
is required for the anti-diffusive effect of heat to dominate the normal
heat conduction:

(1.7) κ <
16

9
β0|Ω|1/15

[ ∫
Ω

T 5
0 dx

]3/5

,

where T0 is the initial temperature, κ is the heat conduction coefficient,
and β0 is the anti-diffusive effect coefficient. Both κ and β0 depend on
the material. Therefore, for a given plasma system, the larger the
domain and the higher the initial temperature, the stronger the anti-
diffusive effect. Consequently an effective plasma device for converting
solar energy into a fuel source can be achieved by increasing the domain
size and/or the initial temperature.

The paper is organized as follows. Section 2 introduces the anti-
diffusive effect of heat and the model for the Sun’s surface fluid dy-
namics. Section 3 proves the blow-up theorem, derives a non blow-up
condition, and provides the detailed explanation of the formation of
solar surface eruptions, solar flares, and solar prominences.

2. Sun’s Surface Fluid Dynamics

2.1. Astronomical phenomenon on the Sun’s surface. The Sun
is a star which we are most familiar with. The solar mass is about
2 × 1030kg, and the Sun’s radius is 7 × 105km. Its average density
is ρ = 1.4g/cm3 and, for comparison, we recall that the density of
water is ρ = 1g/cm3. The Sun consists mainly of hydrogen (94%) and
helium (6%), and is entirely in a gaseous state. Hence it can be viewed
a gaseous fluid ball.

Solar structure is divided into two parts: the interior and the at-
mosphere. The atmosphere is composed of three distinct parts: the
photosphere, the chromosphere and the corona. The photosphere is in
the bottom layer, the chromosphere is in the middle and the corona is
in the outer of the solar atmosphere. The most visible light come from
the photosphere, and its temperature is ranged in 4000K ∼ 7000K.
The chromospheric temperature is 1.5× 104K, and the corona has the
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highest temperature at about 2 × 106K. But the corona density is
very low, at 10−9 times the density of the earth’s atmosphere. Based
on astronomical observations, the following are known important phe-
nomena for the solar atmosphere:

1) Solar flare. It is a very attracting event which occurs in Sun’s
atmosphere, and is a sudden flash in Sun’s surface brightness. Solar
flares affect all three layers: photosphere, chromosphere, and corona,
and are often accompanied by a coronal mass ejection, or by an erupting
prominence. When the plasma medium is heated to near T = 5×106K,
flares are powered by the sudden release of huge energy, together with
very strong electromagnetic radiations and high speed (near the speed
of light) particle eruptions. The active period of solar flares follows the
11-year cycle, called the solar cycle. See Figure 2.1 for solar flares.

Figure 2.1. Solar flares

2) Solar prominence. A prominence is a large, bright gaseous feature
extending outward from the Sun’s surface, usually in a loop shape;
see Figure 2.2. Prominences occur often along with solar flares, are
anchored to the Sun’s surface in the photosphere, and extend outward
into the Sun’s corona, reaching as high as thousands of kilometers.

3) Sunspots. They are temporary phenomena on the Sun’s surface
that appear as spots darker than the surrounding areas. The sunspot
regions have lower surface temperature. Sunspots occur in an approx-
imatively 11-year solar cycle, the same as that of the solar flares.

Usually, sunspots accompany secondary phenomena such as coronal
loops, prominences and solar flares. Most solar flares and coronal mass
ejections originate in active regions around sunspots.

Astronomical observations show that solar flares, prominences and
sunspots are intimately related. The theory that we established in this
paper verifies clearly this claim, and explains their relations.
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Figure 2.2

2.2. Anti-diffusive effect of heat. In [3], the authors developed a
statistical theory of heat, consisting of the following main ingredients:

1). Energy level temperature formulas. These formulas are derived
from the well-known Maxwell-Boltzmann, the Fermi-Dirac, and the
Bose-Einstein distributions, and they show that the temperature is
essentially the average energy level of system particles.

2). Photon number entropy formula. This formula shows that en-
tropy is the number of photons in the gap between system particles,
and the physical carrier of heat is the photons.

3). Vibratory mechanism of photon absorption and radiation. A par-
ticle can only absorb and radiate photons while experiencing vibratory
motion. The higher the frequency of the vibration of the particle, the
larger the absorbing and radiating energy. The vibration or irregu-
lar motion of the particles in a system is caused by collisions between
particles and by absorbing and radiating photons.

4). Law of heat transfer. For particles in high speed vibration and
irregular motion, the rate of photon emission and absorption increases,
leading to the number density of photons to increase, and further caus-
ing the particle energy levels to elevate. Hence, the photon absorption
and emission induce the concentration of the temperature, which we
call the anti-diffusive effect of heat:

(2.1)

Due to the higher rate of photon absorption and emission of
the particles with higher energy levels, the photon flux will
move toward the higher temperature regions from the lower
temperature regions.

On the other hand, we know that temperature obeys the Fourier law,
i.e. photons are dictated by the Fick law. Hence, the heat transfer
follows the balance between the anti-diffusive effect (2.1) and the Fick
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diffusion law for the system photons, i.e. the law of heat transfer can
be expressed as

(2.2)
dT

dt
= κ∆T +Q+ the concentration rate of photons,

where κ∆T represents the diffusion term, Q is the heat resource.

Remark 2.1. In the classical heat conduction theory, the law of heat
transfer is written as

(2.3)
dT

dt
= κ∆T +Q,

which is different from (2.2). In fact, in the case where the temperature
is not very high, or the system medium is not plasma, the third term in
the right-hand side of (2.2) is very small and can be ignored. However,
for the Sun’s surface plasma fluid, this term will play a crucial role for
the appearance of the solar flares. �

Based on the anti-diffusive effect of heat (2.1), the concentration of
photons is a reversed process of heat diffusion. Hence, by the Stefan-
Boltzmann law, the third term on the right-hand side of (2.2) should
be proportional to T 4:

(2.4) the concentrating rate of photons = β0T
4.

Equivalently the anti-diffusive effect of heat is expressed as(
dT

dt

)
ADE

= β0T
4,

where β0 is the anti-diffusive effect coefficient.
In fact, it is the anti-diffusive effect of heat (2.1) that leads to the

formation of sunspots, and it is the relation (2.4) that yields the solar
flares and prominences.

2.3. Sun’s surface fluid dynamical equations. Sun’s surface fluid
is composed of gaseous plasma. The state functions describing solar
flares and prominences are: the velocity field u of the plasma fluid,
the temperature T , the electromagnetic fields E and H. Hence, the
dynamical model governing Sun’s surface fluid is the three groups of
equations coupling the Navier-Stokes equations, the heat equation, and
the Maxwell equations.

We start with the spatial domain given by

Ω = S2 × (r0, r1),

where S2 is the two-dimensional unit sphere, r0 is the solar radius, and
r1 = r0 +h with the thickness of solar atmosphere h. We bow describe
the three set of equations, and their coupling.
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1). The Navier-Stokes equations are written as

(2.5) ρ

[
∂u

∂t
+ (u · ∇)u

]
= µ∆u−∇p+ f,

where ρ is the mass density, p is the pressure, and f is the force density.
Because the fluid is plasma, each particle is charged. Hence, the force
field f includes

f = charge force + Lorentz force + thermal force.

Based on classical electromagnetic theory,

charge force = ρeE,

Lorentz force = J ×H,

where ρe is the effective charge density in the plasma, J = ρeu is the
effective current density. By theory of thermodynamics, we have

thermal force = −gkkkρ(1− αT ),

where g is the solar gravitational constant, α is the thermal expression
coefficient, and kkk is the radial unit vector.

Then equations (2.5) are expressed as

(2.6) ρ

[
∂u

∂t
+ (u · ∇)u

]
= µ∆u−∇p+ ρeE + ρeu×H− g~kρ(1− αT ).

Also, (2.6) is complemented with the continuous equation

(2.7)
∂ρ

∂t
+ div(ρu) = 0.

2). In view of (2.2) and (2.4), the heat equation is given by

(2.8)
∂T

∂t
+ (u · ∇)T = κ∆T +Q+ β0T

4,

where κ is the heat conduction coefficient, and Q is the heat source
excited by the solar electromagnetic fields, written as

Q = β1(E2 + H2).

Thus, the heat equation (2.8) becomes

(2.9)
∂T

∂t
+ (u · ∇)T = κ∆T + β0T

4 + β1(E2 + H2).
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3). The Maxwell equations read

(2.10)

µ0
∂H

∂t
= −curl E,

ε0
∂E

∂t
= curl H− J, J = ρeu,

div H = 0,

div E = ρe,

where µ0 is the magnetic permeability, and ε0 is the dielectric constant.

4). Model for Sun’s surface plasma fluid. Combing the fluid dynam-
ical equations (2.6)–(2.7), the heat equation (2.9), and the Maxwell
equations (2.10), we derive the model governing Sun’s surface plasma
fluid as follows

ρ

[
∂u

∂t
+ (u · ∇)u

]
= µ∆u−∇p(2.11)

+ ρe(E + u×H)− gkkkρ(1− αT ),

∂T

∂t
+ (u · ∇)T = κ∆T + β0T

4 + β1(E2 + H2),(2.12)

∂H

∂t
= − 1

µ0

curl E,(2.13)

∂E

∂t
=

1

ε0

curl H− 1

ε0

ρeu,(2.14)

div H = 0,(2.15)

div E = ρe,(2.16)

∂ρ

∂t
= −div(ρu).(2.17)

The system (2.11)–(2.17) constitutes the basis to establish Sun’s elec-
tromagnetic eruption theory.

3. Theory on Formation of Sunspots and Solar Eruptions

3.1. Blow-up theorem. From the mathematical point of view, the
phenomena of solar flares and prominences correspond to the blow-up of
the solutions of the equations (2.11)–(2.17). Blow-up is mathematical
property that a solution Φ(x, t) = (u, T,H,E) is called to blow-up at
(x0, t0) if

(3.1) lim
t→t0
|Φ(x0, t)| =∞,

where |Φ|2 = u2 + T 2 + E2 + H2.
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Hence, the blow-up theorem for the system (2.11)–(2.17) introduced
in the following is crucial for us to understand the Sun’s electromagnetic
eruptions. For simplicity, consider the case where ρ is a constant, and
(2.17) becomes

(3.2) divu = 0.

Consider the initial and boundary conditions:

un|∂Ω = 0,
∂uτ
∂n

∣∣∣∣
∂Ω

= 0,
∂T

∂n

∣∣∣∣
∂Ω

= 0,(3.3)

Φ = (u, T,H,E)|t=0 = Φ0,(3.4)

where n, τ are the unit normal and tangent vectors on ∂Ω. Then we
have the following theorem.

Theorem 3.1 (Blow-up theorem). Let Φ(x, t) be a solution of (2.11)–
(2.16) and (3.2), and satisfy the initial and boundary conditions (3.3)
and (3.4). If the initial value Φ0 is bounded, i.e.

sup
Ω
|Φ0(x)| <∞,

then there exist x0 ∈ Ω and t0 > 0, such that the temperature T blows
up at (x0, t0), and consequently Φ(x, t) blows-up (x0, t0) as well, i.e.
(3.1) holds true.

Proof. Take the integration on both sides of (2.12):

(3.5)
d
dt

∫
Ω
Tdx =

∫
Ω

[κ∆T − (u · ∇)T + β0T
4 + β1(E2 + H2)]dx.

In view of (3.2) and (3.3), by the Gauss formula, we have∫
Ω

∆Tdx =

∫
∂Ω

∂T

∂n
dx = 0,∫

Ω

(u · ∇)Tdx = −
∫

Ω

Tdivudx+

∫
∂Ω

TundS = 0.

Then (3.5) becomes

(3.6)
d
dt

∫
Ω
Tdx =

∫
Ω

[β0T
4 + β1(E2 + H2)]dx.

Physically, T > 0, which can also be proved using the same method as
in the paper [1]. Hence, we have

(3.7)

∫
Ω

|T |dx =

∫
Ω

Tdx > 0.
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In addition, by the anti-Hölder inequality (see [2]), for any 0 < p < 1
and q = p/(p− 1) we have

(3.8)

∫
Ω

|fg|dx ≥
[ ∫

Ω

|f |pdx
]1/p[ ∫

Ω

|g|qdx
]1/q

.

Take f = T 4, g = 1, p = 1/4 and q = −1/3, and note (3.7), then (3.8)
becomes ∫

Ω

T 4dx ≥ 1

|Ω|3

[ ∫
Ω

Tdx

]4

.(3.9)

Recall the comparison theorem of differential equations: For two
non-negative functions f1 and f2 satisfying

f1(t) ≤ f2(t), ∀ t ≥ 0,

we consider the initial value problems

dx1

dt
= f1(t) with x1(0) = a,

dx2

dt
= f2(t) with x2(0) = a,

where a ≥ 0. Their solutions x1(t) and x2(t) satisfy

x1(t) ≤ x2(t), ∀ t ≥ 0.

Then, consider the equation

d

dt

∫
Ω

Tdx =
β0

|Ω|3

[ ∫
Ω

Tdx

]4

.(3.10)

Based on the comparison theorem, for the solution
∫

Ω
Tdx of (3.6) and

the solution
∫

Ω
T1dx of (3.10) with the initial value conditions∫

Ω

Tdx

∣∣∣∣
t=0

= a,(3.11) ∫
Ω

T1dx

∣∣∣∣
t=0

= a,(3.12)

we deduce from (3.9) that∫
Ω

T1dx ≤
∫

Ω

Tdx, ∀ t ≥ 0.(3.13)

Denote y =
∫

Ω
T1dx, then equation (3.10) with the initial value condi-

tion (3.12) is written as

(3.14)

dy

dt
= kβ0y

4,

y(0) = a,
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where k = 1/|Ω|3. It is easy to see that the solution of (3.14) is

(3.15) y =
a

[1− 3ka3β0t]1/3
, k = 1/|Ω|3.

Again, by (3.13) we have,

(3.16) y ≤
∫

Ω

Tdx,

where T is the solution of (2.12). By (3.15), we see that

lim
t→t0

y(t) =∞, t0 =
1

3ka3β0

.

Then we deduce from (3.16) that

(3.17) lim
t→t0

∫
Ω

Tdx =∞,

which implies this theorem holds true. �

3.2. Sun’s surface eruptions and sunspots. The blow-up theorem,
Theorem 3.1, provides a solid mathematical foundation for the solar
eruption theory developed in this paper. It shows that the eruptions
are typically topological phase transitions at the blow-up point t0 =
1/3ka3β0, at which the state functions Φ(x, t) = (u, T,H,E) tend to
infinite, depicting the huge and complicated explosions as high speed
mass ejections, sudden flares of flashlight, very strong radiations, and
large spurts of loop shaped magnetic energy.

Based on Theorem 3.1 and the anti-diffusive effect of heat (2.1), we
discuss the sunspot and solar eruption problems in the following.

1). Sunspots. We know that sunspots are the regions on Sun’s sur-
face, and possess the following two main characteristics:

(1) the temperature in sport is lower than the surrounding areas,
and consequently the brightness is darker; and

(2) it often accompanies secondary events as the solar flares and
prominences – the solar eruptions.

The above two characteristics can be well explained as follows by the
anti-diffusive effect of heat (2.1) and the blow-up of the temperature:

(1) Due to thermal fluctuations, the temperature in the solar at-
mosphere is nonhomogeneous, leading to elevated temperature
in some local places. Based on the anti-diffusive effect, the re-
gions with higher temperature absorb more photons from their
surrounding areas, leading to the temperature decreasing, and
consequently generating the sunspots;
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(2) When the sunspots appear, the anti-diffusive effect (2.4) makes
the temperature in the regions around sunspots rapidly increas-
ing to generate the blow-up as described in Theorem 3.1, which
causes solar eruptions.

2). Solar flares. In the proof of Theorem 3.1, we derived (3.17),
which implies that there exists a point x0 ∈ Ω such that

(3.18) lim
t→t0

T (x0, t) =∞ with t0 =
1

3ka3β0

.

It is the blow-up (3.18) that generates the solar flare. In addition, it
also induces a chain of tragical variations in the velocity field u and the
electromagnetic fields H and E, resulting in the coronal mass ejections,
the strong radiations, and the solar prominences.

3). Coronal mass ejections. Equation (2.11) dictates the behavior of
mass ejections. When the temperature T blows up at (x0, t0) as given
in (3.18), the maximal forces acting on the particles near x0 are just
∇p, as 0 < αT < 1 in (2.11). Hence, in the neighborhood of (x0, t0),
(2.11) can be approximatively expressed as

(3.19)
du

dt
= −1

ρ
∇p.

By the gaseous equation of state:

p = RρT/m,

where R is the gas constant and m is the particle mass, the equation
(3.19) is written as

(3.20)
du

dt
= −R

m
∇T.

By (3.18) we have
lim
t→t0
|∇T (x0, t)| =∞.

Therefore we deduce from (3.20) that

(3.21) lim
t→t0

∣∣∣∣du(x0, t)

dt

∣∣∣∣ =∞.

The equality (3.21) represents the high speed gas explosion and particle
ejections. The ejection direction is

(3.22) ~r = − lim
t→t0

∇T (x0, t)

|∇T (x0, t)|
.

4). Strong radiations. The blow up (3.21) of the velocity causes
the formation of the high speed jet of charged particles, inducing the
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electromagnetic eruptions. By the Maxwell equations (2.13) and (2.14),
we have

(3.23)

∂2E

∂t2
+

1

ε0µ0

curl2E = −ρe
ε0

∂u

∂t
,

∂2H

∂t2
+

1

ε0µ0

curl2H =
ρe
ε0

u.

In view of (3.21) and (3.22), the equations (3.23) generate very strong
electromagnetic radiation in the ~r direction.

5). Solar prominences. Consider the equation (2.14), which can be
approximatively expressed as (i.e. the Ampère law):

(3.24) curl H = ρeu.

By (3.21) and (3.22), we have

(3.25) ρeu · ~r � 1 at (x0, t0),

which represents the huge current jet in the ~r direction.
Then, by the Ampère law (3.24), the strong current of (3.25) gives

rise to violent magnetic loops, perpendicular to the direction ~r in (3.22),
as shown in Figure 3.1. As the current orientation ~r is not in the
normal direction of solar surface, the erupting magnetic loops are the
solar prominences that we observe.

Figure 3.1. Huge current jet J generates a violent
magnetic loop, which is the solar prominence.

3.3. Period of solar eruptions. Astronomical observations show that
sunspots and solar flares occur periodically in an 11-year cycle. The
temperature solution (3.15) provides also the formula of solar eruption
period, which is rewritten as

(3.26)

∫
Ω

Tdx =
a

[1− 3ka3β0t]1/3
,
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where k = 1/|Ω|3, and a is the initial value

a =

∫
Ω

T (x, 0)dx.

When a solar eruption ends, the temperature distribution in the so-
lar chromosphere is almost homogenous. Let T0 be the homogenous
temperature, i.e. T (x, 0) = T0. Then the initial value a = T0|Ω|, and
(3.26) becomes

(3.27)

∫
Ω

Tdx =
|Ω|T0

[1− 3T 3
0 β0t]1/3

.

It is easy to deduce from (3.27) that the time tp for the next eruption
to occur satisfies

1− 3T 3
0 β0tp = 0.

Hence the period tp is

(3.28) tp =
1

3T 3
0 β0

,

where β0 represents the heat effect coefficient, depending on the mate-
rial, and T0 is the initial average temperature.

The period formula (3.28) is also applicable to all stars, because it
was found that other stars also have the eruption phenomena. For the
Sun,

tp = 11 years = 3.469× 108s,

and T0 is the average temperature of the chromosphere:

T0 = 1.5× 104K.

Therefore, the heat effect coefficient for solar gaseous plasma is derived
from (3.28) as follows

(3.29) β0 = 2.85× 10−22/(K3 · s).

Remark 3.2. The heat effect coefficients for non-plasma materials are
much smaller than the value in (3.29). �

3.4. Non blow-up condition of temperature. In this section, we
demonstrate that under the Dirichlet boundary condition for the tem-
perature T 1, the non blow-up condition for temperature in domain Ω

1The Dirichlet boundary condition for T amounts to saying that there is heat
exchange of the system with outside. Hence there is no contradiction between the
non blow-up condition and the blow-up theorem 3.1, where the Neumann boundary
condition for T is used.
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is

(3.30) κ >
16

9
β0|Ω|1/15

[ ∫
Ω

T 5
0 dx

]3/5

,

where T0 is the initial temperature, κ is the heat conduction coefficient,
and β0 is the heat effect coefficient. Note that β0 is negligible for non-
plasma material. Therefore, in the usual cases we often encounter, both
T0 and β0 are small, so that no temperature blow-up occurs.

To verify (3.30), we consider the heat conduction equation with anti-
diffusive effect of heat:

(3.31)

∂T

∂t
= κ∆T + β0T

4, x ∈ Ω ⊂ R3,

T |∂Ω = 0.

Multiplying both sides of (3.31) by T and taking integral, we have

(3.32)
1

2

d

dt

∫
Ω

T 2dx =

∫
Ω

[−κ|∇T |2 + β0T
5]dx.

By the Sobolev inequality (see e.g. p.23 in [2]):[ ∫
Ω

|∇T |2dx

]1/2

≥ n(n− 2)

2(n− 1)

[ ∫
Ω

T
2n
n−2 dx

]n−2
2n

,

where n is the dimension of space2. In this paper n = 3, and we have

(3.33)

∫
Ω

|∇T |2dx ≥ 9

16

[ ∫
Ω

T 6dx

]1/3

.

In addition, by the Hölder inequality, we derive

||T ||L6 ≥ 1

|Ω|1/30
||T ||L5 .

Hence

(3.34)

[ ∫
Ω

T 6dx

]1/3

≥ 1

|Ω|1/15

[ ∫
Ω

T 5dx

]2/5

.

It follows from (3.33) and (3.34) that∫
Ω

|∇T |2dx ≥ 9

16|Ω|1/15

[ ∫
Ω

T 5dx

]2/5

.

2We remark here that by the above inequality and the Hölder inequality, we have

‖∇u‖Lp ≥ c

|Ω|(N∗−q)/N∗q
‖u‖Lq for n > p,N∗ =

np

n− p
.
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Then we deduce from (3.32) that

1

2

d

dt

∫
Ω

T 2dx ≤ − 9κ

16|Ω|1/15

[ ∫
Ω

T 5dx

]2/5

+ β0

∫
Ω

T 5dx(3.35)

≤ −
[

9κ

16|Ω|1/15
− β0

(∫
Ω

T 5dx

)3/5][ ∫
Ω

T 5dx

] 2
5

.

It is clear that if

(3.36) κ ≥ 16

9
β0|Ω|1/15

[ ∫
Ω

T 5dx

]3/5

+ ε, ∀ t > 0,

where ε > 0 is arbitrarily small, then we have

(3.37) lim
t→∞

∫
Ω

T 2dx = 0.

In fact, by the inequality[ ∫
Ω

T 5dx

]2/5

≥ C0

[ ∫
Ω

T 2dx

]
,

and by the Gronwall inequality, we deduce from (3.35) that

(3.38)

∫
Ω

T 2dx ≤ e−C0

∫ t
0 α(τ)dτ ,

where by (3.36)

α =
9κ

16|Ω|1/15
− β0

[ ∫
Ω

T 5dx

]3/5

≥ 9ε

16|Ω|1/15
.

Then, (3.38) implies that (3.37) holds true, and consequently the heat
system (3.31) has no blow-up. Physically, (3.36) means that (3.30) is
the condition to ensure no temperature blow-up.
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