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A nonlinear Schrodinger equation for the envelope of two-dimensional gravity-capillary
waves propagating at the free surface of a vertically sheared current of constant vorticity
is derived. In this paper we extend to gravity-capillary wave trains the results of [Thomas
et al.| (2012) and complete the stability analysis and stability diagram of Djordjevic
& Redekopp| (1977) in the presence of vorticity. Vorticity effect on the modulational
instability of weakly nonlinear gravity-capillary wave packets is investigated. It is shown
that the vorticity modifies significantly the modulational instability of gravity-capillary
wave trains, namely the growth rate and instability bandwidth. It is found that the
rate of growth of modulational instability of short gravity waves influenced by surface
tension behaves like pure gravity waves: (i) in infinite depth, the growth rate is reduced
in the presence of positive vorticity and amplified in the presence of negative vorticity,
(ii) in finite depth, it is reduced when the vorticity is positive and amplified and finally
reduced when the vorticity is negative. The combined effect of vorticity and surface
tension is to increase the rate of growth of modulational instability of short gravity
waves influenced by surface tension, namely when the vorticity is negative. The rate of
growth of modulational instability of capillary waves is amplified by negative vorticity
and attenuated by positive vorticity. Stability diagrams are plotted and it is shown that
they are significantly modified by the introduction of the vorticity.

Keywords: NLS equation, modulational instability, vorticity, surface tension

1. Introduction

Generally, gravity-capillary waves are produced by wind which generates firstly a
shear flow in the uppermost layer of the water and consequently these waves propagate
in the presence of vorticity. These short waves play an important role in the initial
development of wind waves, contribute to some extent to the sea surface stress and
consequently participate in air-sea momentum transfer. Accurate representation of the
surface stress is important in modelling and forecasting ocean wave dynamics. Further-
more, the knowledge of their dynamics at the sea surface is crucial for satellite remote
sensing applications.

In this paper we consider both the effect of surface tension and vorticity due to a vertically
sheared current on the modulational instability of a weakly nonlinear periodic short wave
trains. Recently, [Thomas et al.|(2012) have derived a nonlinear Schrodinger equation for

1 Email address for correspondence: kharif@irphe.....
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pure gravity water waves on finite depth with constant vorticity. Their main findings were
(i) a restabilisation of the modulational instability for waves propagating in the presence
of positve vorticity whatever the depth and (ii) the importance of the nonlinear coupling
between the mean flow induced by the modulation and the vorticity. One of our aim is
to extend Thomas’ investigation to the case of gravity-capillary waves propagating on a
vertically sheared current.

The number of studies on the computation of steadily propagating periodic gravity waves
on a vertically sheared current is important. For a review one can refer to the paper
by [Thomas et al| (2012). On the opposite, investigations devoted to the calculation of
gravity-capillary waves in the presence of horizontal vorticity is rather meagre. One can
cite Bratenberg & Brevik| (1993) who used a third-order Stokes expansion for periodic
gravity-capillary waves travelling on an opposing current and |[Hsu et al.| (2016) who
extended this work to the case of co- and counter-propagating waves. [Kang & Broeck
(2000) computed periodic and solitary gravity-capillary waves in the presence of constant
vorticity on finite depth. They derived analytical solutions for small amplitude waves
and numerical solutions for steeper waves. Wahlen| (2006) proved the rigorous existence
of periodic gravity-capillary waves in the presence of constant vorticity.

To our knowledge, the unique study concerning the modulational instability of gravity-
capillary waves travelling on a verticaly sheared current is that of Hur| (2017)). The
stability of irrotational gravity-capillary waves has been deeply investigated by several
authors. Djordjevic & Redekopp| (1977) and Hogan| (1985) derived nonlinear envelope
equations and considered the modulational instability of periodic gravity-capillary waves.
Note that in the gravity-capillary range, three-wave interaction is possible whereas
modulational instability corresponds to a four-wave resonant interaction. The numerical
computations were extended to capillary waves by |(Chen & Saffman| (1985]) and |Tiron &
Choil (2012). |Zhang & Melville| (1986) investigated numerically the stability of gravity-
capillary waves including, besides the four-wave resonant interaction, three-wave and
five-wave resonant interactions. For a review on stability of irrotational gravity-capillary,
one can refer to the review paper by Dias & Kharif (1999).

This study is devoted to the modulational instability of weakly nonlinear gravity-capillary
wave packets propagating at the surface of a vertically sheared current of finite depth.
In section 2, the governing equation are given and the nonlinear Schrédinger equation in
the presence of surface tension and constant vorticity is derived by using a multiple scale
method. In section 3, the linear stability analysis of a weakly nonlinear wave train is
carried out as a function of the Bond number, the dispersive parameter and the intensity
of the vertically sheared current.

2. Derivation of the NLS equation in the presence of surface tension
and vorticity

We consider the modulational instability of weakly nonlinear surface gravity-capillary
wave trains in the presence of vorticity. Our investigation is confined to two-dimensional
water waves propagating in finite depth. Viscosity is disregarded and the fluid is consid-
ered incompressible. The geometry configuration is presented in figure

We choose an eulerian frame (Ozyz) with unit vectors (€, €y, €,). The vector €, is
oriented upwards so that the gravity is § = —gé&, with g > 0. The equation of the
undisturbed free surface is y = 0 whereas the disturbed free surface is y = ((z,t). The
bottom is located at y = —h.

The waves are travelling at the surface of a vertically sheared current of constant vorticity.
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FIGURE 1. Sketch of the two-dimensional flow.

We consider an underlying current given by @y = 2yé,, so that the fluid velocity reads
ﬂ = ﬁO + ﬁd)y (21)

where Vo(z,y, z,t) is the wave induced velocity. The waves are potential due to the
Kelvin theorem which states that vorticity is conserved for a two-dimensional flow of an
incompressible and inviscid fluid with external forces deriving from a potential.

The potential ¢ satisfies the Laplace equation

V3¢ =0, (2.2)

and the Euler equation can be written as follows

. 1 P
V(o + §u2 + o +gy) =UNG, (2.3)

w
with & the vorticity vector along z, P the pressure and p,, the water density. Subscripts
stand for derivatives in corresponding variables.

Using the Cauchy-Riemann relations

% = ¢m, 1/’95 = *(lsy (2.4)
where ¢ is the stream function
Lo gl oo o
u/\w:V(§Q y© + 2v) (2.5)
The Euler equation (2.3]) can be rewritten as follows
- 1 1 P
V(¢t+§¢i+§¢§+9y¢w+gy—9w+p—> =0 (2:6)
Spatial integration gives the Bernoulli equation
1 1 P
¢t+§¢i+§¢§+9y¢m+gy—9¢+7 = C(t) (2.7)

In the presence of surface tension, T', at the free surface y = ((x,t) the Laplace law writes

Caa

P=p,—T-—>%
T+ 7

(2.8)
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where P, is the atmospheric pressure and T' surface tension.

The dynamic boundary condition at the free surface y = ( is

1 5 1 5 T Con _
¢t+§¢w+§¢y+9§¢w+g§—9¢—ﬁm—O (2.9)

Witout loss of generality, we set P, = 0 and incorporate C(t) into the potential ¢.

Along with these, we have the kinematic free surface boundary condition

and the bottom boundary condition
¢y =0, y=-h (2.11)

Following Thomas et al.|(2012) we can remove ¢ by deriving (2.9) with respect to x and
then using relations , keeping in mind that we are dealing with low-steepness waves,

and that (2.9) is evaluated in y = ¢, we get the equation

¢t9c + ¢ty<9c + ¢x(¢xr + ¢xyCac) + ¢y(¢wy + ¢yy<r) + QCx¢x

that matches the one first derived in [Thomas et al.| (2012)) for T = 0.

Following (Davey & Stewartson![1974), we look for solutions depending on slow variables
(&,7) = (e(x — c4t),e%t) where ¢ = ak (¢ < 1) and a,k and ¢, are the amplitude,
wavenumber and group velocity of the carrier wave, respectively. The system of governing
equations becomes

20ee + dyy =0, —h <y <LET), (2.13)
¢y =0, y=—h, (2.14)
e2(r —ecgle +eCe(ege + Ry +h) — ¢y =0, y=C(&7), (2.15)

3 hre — e2cole + % Pryle — e2CoteyCe + €2 be(Dee + deyCe)
+ ey (Pey + byyCe) + €22 che + €2 02((dee + PeyCe) + €9¢e

+ 20, = 0e) = - (Ceee = 3% CReee — 3G =0, = ((67) (216)

An asymptotic solution to the system (2.132.14H2.1512.16)) is sought in the following
form

“+oo “+o0
b= > B (= > GE (2.17)

where F = e“_kx—wt) is a plane wave with w the frequency of the carrier wave. We impose
that ¢_,, = ¢, and (_,, = (, where the bar denotes complex conjugate, so that the
functions are real. The amplitudes ¢,, and (,, are then expanded in a perturbation series
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in terms of € = ak
+o00 ) +o00 )
¢n = Zgj¢nj7 Cn = ZEJan- (218)
j=n j=n

The terms depending on surface tension occur only at a higher order. The expansions
are substituted into the system of equations. The linear Laplace equation
is easier to handle, since solutions can be derived iteratively. Here we will simply write
the first order solution for ¢11, that is obtained by using the bottom boundary condition
(12.14])

om = A, = U

where the slow-varying function A(§, 7) will be used to express all other terms. Higher-
order expansions of the Laplace equation introduce more unknown functions as solutions.
Nevertheless, through expansions of the boundary conditions they can be all combined
to A(&,T).

The evolution of this unknown will depend on the initial condition A(&,0). We then use
in the dynamic and kinematic free surface boundary conditions, and collect terms
of equal power in € and F, which allows the expressions for the (;; and ¢;; to be found
successively.

The calculations are somewhat tedious but some steps are of interest. At first, the linear
dispersion relation is derived

(2.19)

W4 0w —ogk(l+ k) =0, (2.20)
where o = tanh(p) with 4 = kh and k = Zf;

The relation between A(&,7) and (37 is the following

w(l+X)

Cll =1 g(l ¥+ /4,) A(f,’l’), (221)
where X = o2/w
From the above dispersion relation we can show easily that X > —1. We note that X
depends also on the surface tension through w and its associated dispersion relation. It
is also to be noted that the expression of the mean-flow term, which is important on the
developement of the modulational instability, is similar to that of Thomas et al.| (2012]).
Nevertheless, surface tension takes place through the phase velocity c,, the group velocity
cg and w.

(coleg + Q) = gh)dore = (0 (2 1+ 0Q) + K, (1 - a?)IAP,  (222)
p

and

9Co2 = (cg + Rh)o1,e — k*(1 — 0?)| A% (2.23)
Although the expressions are identical to those of [Thomas et al.| (2012), it should be
noted that the surface tension acts through the dispersion relation, affecting w, ¢, and
Cq-
It is at the order O(e3E) that the nonlinear Schrédinger equation is found for the
potential envelope A, so that

iA, 4+ adee = | A A, (2.24)
where the coefficients depend on (k, 2, kh).
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Then the dispersion coefficient reads

(1= 0%)(p — o)X — 1;4 ,
with
a1 = —p(1+X)(1 =0 (po —1) + o1+ X)(1 + 2p) (2.26)
+2 (Up +ou(l— o)X — 21‘1{‘%(1 + X)) ,

where p = ¢4/c, is here the ratio of the group velocity to the phase velocity of the carrier.
It can be expressed in a concise form

(I—o?)p+(1+X)(o+ 228)
P= o2+ X) s (2.27)

which depends only on pu, s, X. The nonlinear coefficient is

k* 302k

2w(14+ X)(2+ X) _1+H(1+X)2_2(1+I€)(1_g2)[(1+X)2_02]

’7:

14+ X

21+ X)(8+6X
For 1+ X)(E+ )+02—n(3—02+3X

)'Yl (2.28)

(1+X)2+X)+p(1+k)(1-0c?)

H(1+X)) Y2

+2 5 <
(L+8)(p* + 1oy — Siras

with
71 =9—100% + 0* + (18 — 40 — 40*) X + (15 + 30?) X2

+ (6 +20%) X? 4 X* (2.29)
+ £ [21 — 100% + o* + (42 + 20% — 40" X
+ (30 + 120%)X? + (9 + 50%) X? + X*]

and finally

X

g

— k(14 X)(2 + X), (2.30)

Yo=1+&) |1+ X)>2(1+p+——=)+1+X —o(po+ pX)

and we can check that these coefficients reduce to those of Djordjevic & Redekopp| (1977)),
or [Hogan| (1985)) in deep water, if {2 = 0 and to those of [Thomas et al.| (2012) if x = 0.
The last term in brackets of equation corresponds to the coupling between the
mean flow due to the modulation and the vorticity which occurs at third-order. This
coupling was found by [Thomas et al.| (2012) for the case of pure gravity waves and has
an important impact on the stability analysis of progressive wave trains.
We can see that in there are two possible singularities that one should avoid, either
0 —Kk(3—-0®+3X) =0, (2.31)
0_2

which corresponds to the first gravity-capillary resonance k. = 32— without vorticity,
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or
1
Pt p— — ———= =0, (2.32)
o
which is rewritten as follows

9 g 14+k g*uoc 1+ k
Elaly'e _ -
G UTIXY T W 14X 0

In the absence of vorticity, the latter condition reduces to cg = gh which matches the
long wave - short wave resonance as shown by Davey & Stewartson! (1974) and [Djordjevic
& Redekopp| (1977)). In the presence of vorticity and for pure gravity waves the nonlinear
coeflicient becomes singular if the following condition is satisfied

nof2(2+ X)
1-0?)p+o(l1+X)

{1+ }03 =gh

Note that this condition reduces to cg = gh in the absence of vorticity.

3. Stability analysis and results

Let us write ¢ in the form
1 .
¢= 5(6(161(’”_‘“) +c.c.) + O(€%)

where a = 2(y1 is the envelope of the free surface elevation and c.c. denotes complex
conjugation. Using (2.21]) the NLS equation (2.24]) is rewritten for the complex envelope
a(&, 1) as follows

ia, + aage = 7lala, (3.1)
where
2
-9 14k,
7= tax)

The nonlinear coefficient 4 can be written in a more compact form

w2

v= 4k202 7

In this section we consider the stability of a Stokes wave solution of the NLS equation
(3.1) to infinitesimal disturbances.
Equation (3.1)) admits the following solution

as(r) = age= %07, (3.2)

with the initial condition ag.
We consider infinitesimal perturbations to this solution, in amplitude 6,(£,7) and in
phase d,,(§,7)), so that the perturbed solution a/ writes

a!, = as(1+4 8,)e, (3.3)

Substituting this expression in the NLS equation (3.1)), linearising and separating between
real and imaginary parts, yields to a system of linear coupled partial differential equations
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with constant coefficients. Then, this system admits solutions of the form
5, = 5%6%‘(1)571“7),
b = By, € PETT), (3.4)
The necessary and sufficient condition for the existence of non-trivial solutions is
I? = ap*(25ad + ap?), (3.5)
The Stokes wave solution is stable when «(29a3 + ap?) > 0 and unstable when «(27a3 +
ap?) <0
The growth rate of instability is then
I; = p(—270a? — o?p?)/?
We set a = wa2/k2 and 4 = wk?41, so that as and 1 are dimensionless functions of
w=kh, X =0/w and k only. The growth rate of instability becomes
wp ~
?(—2%0426%164 - a§p2)1/2 (3.6)
The maximal growth rate is obtained for p = /=71 /s aok? and its expression is jae =
/=1 /s \/—F1az w(agk)?. Note that instability occurs when 71 and s have opposite
sign.
The growth rate of instability is written in the following dimensionless form
I;
wadk?

I =

= (27100 — a2p?)1/? (3.7)

where p = p/(apk?)

The dimensionless bandwidth of instability is Ap = /—271/as and Ap/k =
For k = 0 and {2 # 0, equation gives the rate of growth of [Thomas et al.| (2012).
In figure [2]is plotted the dimensionless maximal growth rate of modulational instability
of pure gravity waves and gravity waves influenced by surface tension effect (x = 0.005)
as a function of {2 for infinite and finite depths. We can observe that combined effect of
surface tension and vorticity increases significantly the rate of growth of the modulational
instability of short gravity waves propagating in finite depth and in the presence of
negative vorticity (£2 > 0) whereas the effect is insignificant in deep water. For positive
vorticity (2 < 0) the curves almost coincide in finite depth and deep water as well and
the increase of the rate of growth due to surface tension is of order of k.

For 2 =0 and k # 0, equation (2.20) of |Djordjevic & Redekopp| (1977)) becomes
w 1—6k— 3kK> kK*w 8+ kK + 2k?
_ Y o MO =2 O R AR
8k (1+rk)2 7 16 (1-26)(1+k)
for the envelope of the surface elevation in deep water.
The coefficients 71 and as corresponding to this NLS equation are
1 8+ k4 22 11— 6k — 3k2
=, o0y = ———
16 (1 — 25)(1 + &) T8 (1+nk)2
Consequently, the rate of growth of modulational instability of pure capillary wave trains
on infinite depth, obtained for kK — oo, is

ia, la*a

T

w

2 (3a2k*p? — 9p*)1/? as K — 00

Fi—)
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FIGURE 2. Dimensionless maximal growth rate of modulational instability as a function of {2 in
finite depth (4 = 2) and deep water (u = o0). Solid line (k = 0.005, u = 2); Dot-dashed line
(k = 0.005, u = ) ; Dotted line (k = 0, u = 2); Dashed line (k =0, p = o0)

which can be found in |Chen & Saffman| (1985)). The wavenumber of the fastest-growing
modulational instability is pmax = aok?/v/6 and the maximum growth rate is w(agk)?/16.
Tiron & Choil (2012) have extended the linear stability of finite-amplitude capillary waves
on deep water subject to superharmonic and subharmonic perturbations without vorticity
effect.
We have considered the case of pure capillary waves on deep water (k — oo and p — c0)
in the presence of vorticity ({2 # 0). The corresponding analytic expressions of ¥; and
Qg are

34+ 14X +23X2 +11X3 - 3Xx*

24(X +1)(3X +2)
X +1)(X2+X+1)

2+ X)3

where X = 2/w and w = —£2/2 £ /(2/2)2 + k3T / p,,.
Due to high wave frequency of capillaries on deep water we assume | X |« 1. The
coefficients 77 and g becomes

Y1 = (38)

(3.9)

Qg =

T = —%6(1 + %3)() +0(X?) (3.10)
as = 2(1 + %) L O(X?) (3.11)

The rate of growth of modulational instability of capillary waves on deep water in the
presence of vorticity is

i:L agk® — 9p* + (Sagr™ — Ip + .
I = 2L [3a2k4 — 9p2 + (8a2k* — 9p2) X + O(X? 3.12
8k2
and in dimensionless form
I; D — —
——— =2/3-9p2+ (8 —9p) X + O(X? 3.13
2R 8\/ P+ (8 —9p)X + O(X7) (3.13)

The maximal growth rate of instability is obtained for p = (1 +5X/6)aok?/v6 + O(X?)
and its value is (1+13X/6)wak?/16+0O(X?). The bandwidth of modulational instability
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FIGURE 3. Dimensionless growth rate of modulational instability of pure capillary waves in finite
depth (u = 2) as a function of the dimensionless wavenumber of the perturbation for several
values of 2. 2 =0 (solid line); £2 = 2 (dashed line); 2 = —2 (dotted line).

is Ap = (1+5X/6)agk?/V/3.

Consequently, the rate of growth of modulational instability of capillary waves in deep
water is larger for negative vorticity (X > 0) than for positive vorticity (X < 0). The
bandwidth of instability presents the same trend.

In figure [3] is shown the dimensionless rate of growth of modulational instability of pure
capillary waves in finite depth as a function of the wavenumber of the perturbation, for
several values of {2. The rate of growth of instability increases as {2 increases as in infinite
depth.

The sign of the product ay determines the stability of the solution under infinitesimal
perturbations. If the product is positive then the solutions are modulationally stable,
otherwise they are modulationally unstable and grow exponentially with time. Davey &
Stewartson| (1974]) and [Djordjevic & Redekopp (1977) showed that this criterion which
works for 1D propagation can be extended to the case of 2D propagation. In this way, our
stability diagrams could be compared to those of [Djordjevic & Redekopp| (1977) when
{2 = 0. The linear stability analysis only captures the linear part of the instability, and
thus its onset. We plot in the (u = kh, k)-plane, for fixed values of the vorticity (2, the
unstable and stable regions. As a check, the instability diagrams we obtain are compared
in Figs. 4| and [5| with the same diagrams obtained by [Thomas et al.| (2012) for x = 0 and
Djordjevic & Redekopp| (1977) for £2 = 0. In that way, we can verify that these limiting
cases are reproduced correctly. Following Djordjevic & Redekopp| (1977)), the boundaries
of the unstable regions have been numbered from 1 to 5. Curve 1 crosses the p-axis at
the point corresponding to restabilisation of the modulational instability. Note that this
feature holds for two-dimensional water waves. Curve 2 corresponds to vanishing of the
dispersive coefficient o and minimum phase velocity (¢, = ¢,) whereas along curves 3
and 4 the nonlinear coefficient 4 is singular. These singularities define Wilton and long
wave/short wave resonances, respectively. Curves 1 and 5 correspond to simple zeros of
the nonlinear coefficient 7.

Curve 4 has the following asymptote

0 [ 9 3
M—(1+7— T(4+Q))(Zﬁ_1)a p>1,
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FIGURE 4. (u, X)-instability diagram for gravity waves, matching the results of [Thomas et al.
(2012)) (dashed lines). Here, there is no surface tension. The unstable regions are in gray whereas

stable regions are in white. For X = 0 (or {2 = 0) the value kh = 1.363 is found, below which
there is no instability.

K

FIGURE 5. (p,k)-instability diagram for gravity-capillary waves, matching the results from
[Djordjevic & Redekopp| (1977) (dashed lines). Here, there is no vorticity. The unstable regions
are in gray whereas stable regions are in white.
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4

FIGURE 6. (u,k)-instability diagram for FIGURE 7. (u,k)-instability diagram for
2 = —0.5 (positive vorticity). The dashed lines (2 = 0.5 (negative vorticity). The dashed lines
correspond to 2 = 0. correspond to {2 = 0.

whereas curve 5 has the asymptote

2002 308
VA+ 022 A+ 2

9 2? 22 1
- J S 2 Z(_ 2
m 4(1+ 3 1 (4+Q))/<;+4( 35 +302° +

) w1,

For 2 = 0, the equations of Djordjevic & Redekopp| (1977) are redicovered except that
instead of —61/8 we found —35/4 which is slightly different. The asymptotes have the
same slope. In the region beteen these two asymptotes the capillary waves (k > 1) are
modulationally stable. This feature was emphasized by Djordjevic & Redekopp| (1977) in
the absence of vorticity.

In figures [6] to [L3] the effect of positive and negative vorticity on (u = kh, x) diagrams
is investigated. The curves of Djordjevic & Redekopp| (1977)) have been plotted to show
the effect of the vorticity. As it can be observed, the vorticty has a significant effect on
stability diagrams of gravity-capillary. Very recently, this feature was emphasized by
who proposed a shallow water wave model with constant vorticity and surface
tension, too. Although interesting this model suffers from shortcomings: (i) dispersion
is introduced heuristically and is fully linear (ii) nonlinear terms due to surface tension
effect are ignored (iii) the coupling between nonlinearity and dispersion is not taken into
account.

As positive vorticity ({2 < 0) increases, we observe in figures @ and (12| along the
p-axis in the vicinity of k = 0 an increase of the region where the Stokes gravity-capillary
wave train is modulationally stable. Consequently, gravity waves influenced by surface
tension behave as pure gravity waves (see |Thomas et al| (2012)). Nevertheless, a very
thin tongue of instability persists, near k = 0, in the shallow water regime.

As the intensity of negative vorticity ({2 > 0) increases the band of instability along the
p-axis that corresponds to small values of k becomes narrower, as shown in figures 7] [9]
[[1] and [I3] Contrary to the case of positive vorticity, the region of restabilisation along
the p-axis does not increase in the vicinity of x = 0.
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FIGURE 10. Same as Fig. [f] for 2 = —1.5. FIGURE 11. Same as Fig. [7] for £2 = 1.5.

4. Conclusion

A nonlinear Schrédinger equation for capillary-gravity waves in finite depth with a
linear shear current has been derived which extends the work ofThomas et al.| (2012). The
combined effect of vorticity and surface tension on modulational instability properties of
weakly nonlinear gravity-capillary and capillary wave trains has been investigated. The
explicit expressions of the dispersive and nonlinear coefficients are given as a function
of the frequency and wavenumber of the carrier wave, the vorticity, the surface tension
and the depth. The linear stability to modulational perturbations of the Stokes wave
solution of the NLS equation has been carried out. Two kinds of waves have been
especially investigated that concerns short gravity waves influenced by surface tension
and pure capillary waves. In both cases, vorticity effect is to modify the rate of growth
of modulational instability and instability bandwidth. Furthermore, it is shown that
vorticity effect modifies significantly the stability diagrams of the gravity-capillary waves.
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FIGURE 12. Same as Fig. [f] for 2 = —2. FIGURE 13. Same as Fig. [7] for 2 = 2.
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