
HAL Id: hal-01672351
https://hal.science/hal-01672351

Submitted on 24 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Min-Sum Flow Scheduling with Rejections
Giorgio Lucarelli, Kim Nguyen, Abhinav Srivastav, Denis Trystram

To cite this version:
Giorgio Lucarelli, Kim Nguyen, Abhinav Srivastav, Denis Trystram. Online Min-Sum Flow Scheduling
with Rejections. The 13th Workshop on Models and Algorithms for Planning and Scheduling Problems
(MAPSP 2017), Jul 2017, Seeon Abbey, Germany. �hal-01672351�

https://hal.science/hal-01672351
https://hal.archives-ouvertes.fr


Online Min-Sum Flow Scheduling with Rejections

Giorgio Lucarelli ∗ Nguyen Kim Thang † Abhinav Srivastav ‡

Denis Trystram ∗

1 Introduction

A well-identified issue in online computation is the weakness of the worst case paradigm which
underestimates the performance of an online algorithm. Many algorithms, which perform well
in real-world, are known to admit a mediocre theoretical guarantee. Conversely, many theo-
retical sound algorithms behave poorly even in simple practical settings. The need of more
accurate models is considered as a high importance in algorithmic community. Over the last two
decades, several models have been proposed in this direction. We are interested in resource aug-
mentation models in the context of scheduling. Kalyanasundaram and Pruhs [6] proposed the
speed augmentation model, where an online algorithm is compared against an adversary with
slower processing speed, while Phillips et al. [8] proposed the machine augmentation model in
which the algorithm uses more machines than the adversary. Choudhury et al. [4] introduced the
rejection model where an online algorithm is allowed to discard a small fraction of jobs.

In this paper, we study the problems of preemptive and non-preemptive online scheduling of
jobs on unrelated machines in order to minimize the average time a job remains in the system.
Both problems are known to be non-approximable by a constant factor [2, 5]. However, the
preemptive variant has been extensively studied under the different resource augmentation mod-
els (see for example [1, 3] and the references therein). On the other hand, the non-preemptive
variant is much less explored. An O(1ε )-competitive algorithm has been presented in [7] for the
non-preemptive average flow-time minimization problem on a set of unrelated machines if both
an ε-speed augmentation is used and an ε-fraction of jobs is rejected. We are interested here in
exploring the power of the rejection model and, mainly, in eliminating the need for speed aug-
mentation in the latter result. On the road to this, we show how to replace speed augmentation
with rejection in the preemptive variant. Our analysis is based on the dual-fitting paradigm.

Problem definition. We are given a setM of m unrelated machines where jobs arrive online,
that is we learn about the existence and the characteristics of a job only after its release. Let
J denote the set of all jobs of our instance, which is not known a priori. Each job j ∈ J is
characterized by its release time rj , while if j is executed on machine i ∈ M then it has a
processing time pij . Moreover, each job has to be dispatched to one machine at its arrival and
migration is not allowed. Given a schedule, let Cj denote the completion time of the job j. The
flow-time of j is defined as Fj = Cj − rj , that is the total time that j remains in the system. Our
objective is to create a schedule that minimizes the total flow-times of all jobs, i.e.,

∑
j∈J Fj .

∗{giorgio.lucarelli,denis.trystram}@imag.fr. Univ. Grenoble Alpes, LIG, INRIA, France
†thang@ibisc.fr. IBISC, University of Evry, France
‡abhinav.srivastav@univ-grenoble-alpes.fr. Verimag, Univ. Grenoble Alpes, France

1



2 Linear Programming Formulation

For each machine i ∈ M, job j ∈ J and time t ≥ rj , we introduce a binary variable xij(t)
which indicates if j is processed on i at time t. We consider the following linear programming
relaxation and the corresponding dual program.

min
∑
i∈M

∑
j∈J

∫ ∞
rj

1

pij
(t− rj + pij)xij(t)dt

∑
i∈M

∫ ∞
rj

xij(t)

pij
dt ≥ 1 ∀j ∈ J

∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t

xij(t) ∈ [0, 1]

max
∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

λj

pij
− γi(t) ≤ (t− rj + pij) ∀i ∈M, j ∈ J , t ≥ rj

λj , γi(t) ≥ 0

We will interpret the rejection model in the above primal and dual programs as follows. We
assume that the algorithm is allowed to reject a setR of jobs. This corresponds to sum up in the
primal objective only on the set of the non-rejected jobs. Hence, applying the concept of weak
duality, the competitive ratio of an algorithm that rejects the jobs inR is at most:∑

i∈M
∑

j∈J\R
∫∞
rj

1
pij

(t− rj + pij)xij(t)dt∑
j∈J λj −

∑
i∈M

∫∞
0 γi(t)dt

3 Preemptive Scheduling

The algorithm. Each job is immediately dispatched to a machine upon its arrival. We denote
by Qi(t) the set of pending jobs at time t dispatched to machine i, i.e., the set of jobs dispatched
to i that have been released but not yet completed or rejected at t. Let qij(t) be the remaining
processing time at time t of a job j that is dispatched to machine i. For each machine i, our
scheduling policy is the following: at each time t we execute on i the job j ∈ Qi(t) with the
smallest remaining processing time in Qi(t). In case of ties, we select the job that arrived the
earliest. Moreover, we maintain a counter ci (initialized to 0) for each machine i. Every time
a job is dispatched to i, ci is increased by 1. Then, the rejection policy is the following: given
an arbitrary small constant ε ∈ (0, 1), whenever ci reaches 1/ε + 1, we reject the job with the
largest remaining processing time from Qi(t) and reset ci to 0. Note that the rejected job does
not immediately disappear from the system. We say that a job ` is definitively rejected at time
t +

∑
j∈Qi(t)

qij(t) + qi`(t), that is at the time that it supposed to be completed. We denote by
Ri(t) the set of jobs dispatched to i that are rejected but not yet definitively at time t. Let ∆ij be
the increase in the total flow-time occurred in the schedule of our algorithm following the above
scheduling and rejection policies if we decide to dispatch a new job j to machine i. Then, the
dispatching policy is the following: we dispatch j to the machine where ∆ij is minimum.

Dual variables. Based on the dispatching policy, we set λj = mini ∆ij . LetWi(t) be the total
number of jobs dispatched to machine i that are either pending or not yet definitively rejected
until t, i.e., Wi(t) = |Qi(t)|+ |Ri(t)|. We set γi(t) = Wi(t)/(1 + ε). Based on this definition,
we can guarantee that, given any fixed time t, γi(t) does not decrease due to rejections since the
jobs remain in Ri(t) for sufficient time after their rejection. Then, the following theorem holds.

Theorem 1 Given any ε ∈ (0, 1), there is an O(1ε )-competitive algorithm that rejects at most
an ε-fraction of jobs.

2



4 Non-preemptive Scheduling

The algorithm. We enhance the algorithm presented in the previous section in order to adapt
it to a non-preemptive environment where a job is considered to be successfully executed only
if its execution is performed without any interruption. The scheduling policy for each machine
i is the following: at each time t when i is idle, we start executing on i the job that has the
smallest processing time in Qi(t); in case of ties, we select the job that arrived the earliest.
We use two rejection rules. The first rejection policy is identical with the preemptive case. In
order to define the second rejection rule, we maintain another counter vj for each job j which
is initialized to 0 when the execution of j begins. This counter is increased by one each time a
new job is dispatched to machine i while j is executing on i. Then, the second rejection policy
is the following: we reject the job j when vj = 1/ε. The dispatching policy is based again on
the increase in the total flow-time ∆ij in the same vein as for the preemptive case.

Dual variables. We set λj = ε · mini ∆ij . As before, we define the set Ri(t) of jobs that
have been rejected due to the first rejection policy but not yet definitively. For each job j, let
Dj denote the set of jobs that are rejected due to the second rejection policy after rj and before
its completion or rejection. Let jk denote the job released when the job k is rejected due to
the second rejection policy. We say that a job j dispatched to machine i is definitively finished∑

k∈Dj
qik(rjk) time after its completion or rejection. Let Ui(t) be the set of jobs that are

dispatched to machine i and are already completed or rejected due to the second rejection policy
but not yet definitively finished at time t. Let Wi(t) be the total number of jobs dispatched to
machine i that are pending in Qi(t), Ri(t) and Ui(t), i.e. Wi(t) = |Qi(t)| + |Ri(t)| + |Ui(t)|.
We set γi(t) = ε

1+εWi(t). Based on these definitions, the following theorem holds.

Theorem 2 Given any ε ∈ (0, 1), there is an O( 1
ε2

)-competitive algorithm that rejects at most
a 2ε-fraction of jobs.

References

[1] S. Anand, N. Garg and A. Kumar. Resource augmentation for weighted flow-time ex-
plained by dual fitting. In SODA , pages 1228–1241, 2012.

[2] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted flow time. In
STOC, pages 84–93, 2001.

[3] A. R. Choudhury, S. Das and A. Kumar. Minimizing weighted Lp-norm of flow-time in
the rejection model. In FSTTCS, vol. 45 of LIPIcs, pages 25–37, 2015.

[4] A. R. Choudhury, S. Das, N. Garg and A. Kumar. Rejecting jobs to minimize load and
maximum flow-time. In SODA, pages 1114–1133, 2015.

[5] N. Garg and A. Kumar. Minimizing average flow-time : Upper and lower bounds. In
FOCS, pages 603–613, 2007.

[6] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4):617–643, 2000.

[7] G. Lucarelli, N. K. Thang, A. Srivastav and D. Trystram. Online non-preemptive schedul-
ing in a resource augmentation model based on duality. In ESA, vol. 57 of LIPIcs 2016.

[8] C. A. Phillips, C. Stein, E. Torng and J. Wein. Optimal time-critical scheduling via resource
augmentation. Algorithmica, 32(2):163–200, 2002.

3


