N
N

N

HAL

open science

Improving Requirement Boilerplates Using Sequential
Pattern Mining

Maxime Warnier, Anne Condamines

» To cite this version:

Maxime Warnier, Anne Condamines. Improving Requirement Boilerplates Using Sequential Pattern
Mining. Europhras 2017, Nov 2017, Londres, United Kingdom. hal-01672313

HAL Id: hal-01672313
https://hal.science/hal-01672313
Submitted on 24 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01672313
https://hal.archives-ouvertes.fr

Improving Requirement Boilerplates Using Sequential
Pattern Mining

Maxime Warnier*? and Anne Condamines®

L CLLE-ERSS (Université Toulouse — Jean Jaurés & CNRS), Toulouse, France
2 Centre National d’Etudes Spatiales, France
{maxime.warnier, anne.condamines}@univ-tlse2.fr

Abstract. In the field of requirements engineering, the use of the so-called boil-
erplates (i.e. standard phrases and sentences containing gaps to be filled in) is a
popular solution to reduce variation among requirements and writers, and thus
to improve the clarity of technical specifications. However, the examples of
boilerplates found in the literature are often very general, as they need to be ap-
plicable to projects as varied as computer software and aircraft or industrial ma-
chines. As a result, they only partially fulfill their role, leaving a lot of freedom
to the writers in charge of filling in the gaps. Instead, we would like to propose
a bottom-up approach for discovering more specific sequences that could con-
stitute either boilerplates or elements to instantiate these boilerplates. To this
end, we investigate whether sequential data mining techniques can be used on a
small corpus of genuine requirements written in French at CNES (Centre Na-
tional d’Etudes Spatiales), the French Space Agency.

Keywords: pattern mining, boilerplates, requirements, corpus linguistics, phra-
seology.

1 Introduction

This study is part of a research project that aims at improving requirements writing at
CNES (Centre National d’Etudes Spatiales) — the French Space Agency —, where
technical specifications are currently written mostly in French. Unfortunately, natural
languages (such as French or English) are known to be inherently ambiguous [1] and
vague [2]. While these properties rarely have adverse consequences in everyday
communication, they become serious threats when writing and reading requirements®,
as comprehension is crucial; indeed, a misunderstanding may lead to non-compliance
with the requirements, which in turn can result in delays, additional costs, litigation
(because requirements represent a legal obligation for stakeholders) or in the worst
case accidents. This explains why requirements engineering has become so important

1 requirement: “a condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed docu-
ments.” [3] A specification is a collection of requirements.

in the last decades [4] and why so many solutions have been proposed to prevent or at
least to limit this risk.

One of those solutions is what is now commonly called a Controlled Natural Lan-
guage (CNL), that is, “a constructed language that is based on a certain natural lan-
guage, being more restrictive concerning lexicon, syntax, and/or semantics, while
preserving most of its natural properties” [5]. There is a wide variety of CNLs, used in
many different fields; some of them remain quite similar to their “base” language,
while others are close to formal notations (such as programming languages or even
mathematical notations [6]), each with advantages and disadvantages. Our goal is to
propose a CNL perfectly adapted to requirements writing (in French) at CNES. In
other words, we want it to be as close as possible to what engineers are already used
to write and read, because we are convinced that if we want our solution to be applied
and to be efficient, it should be tailored and not too disruptive.

To achieve this, we propose a methodology for creating CNLs for technical writing
that takes into account (1) existing CNL rules and principles — as they may be viewed
as the state of the art in the field — and (2) actual samples of writing used by the mem-
bers of the discourse community [7] (in our case, requirements written in uncon-
strained natural language for past projects) that will serve as a basis for a corpus anal-
ysis [8]. This methodology combines a corpus-based and a corpus-driven approach
[9-10]: in the former case, our linguistic hypotheses (based in particular on recurring
prescriptions found in other CNLSs) are tested on the corpus, whereas in the latter case,
linguistic regularities themselves emerge from the corpus.

These regularities (which constitute part of the grammar of the textual gen-
re [11]) — if they exist — can then be considered when defining (or adapting) rules and
when proposing standard requirements. Therefore, although the CNL we wish to cre-
ate is (necessarily) normative, in our opinion it is essential that it is preceded by a
descriptive analysis of the final users’ language practices; this should insure that it
really meets their needs — which would not be the case if it was too general.

Such an analysis looks at recurring sequences of multiple words (or categories of
words) — and at their meaning — that can be given different names, depending on their
status but also on the point of view (and goals) of the researcher. Here, we will simply
call them (textual) patterns [12-13-14] and emphasize that they should be specific to a
(sub)genre.

A feature of our corpus is that it includes terminological and phraseological units
that may belong either to the textual genre (in this case, requirements) or to the tech-
nical domain (in this case, space projects); this may be a challenge if one tries to dis-
tinguish between the two using automated tools. Since we are interested mostly in the
former (we want to describe requirements writing at CNES, regardless of the project),
we suggested a solution to filter the results of a terminological extraction [15].

In this paper, we focus on the extraction of frequent patterns that could then be
recommended to the engineers who are in charge of writing requirements. In Section
2, we introduce the notion of boilerplate in requirements engineering and we describe
our method for suggesting new ones; in Section 3, we briefly comment on some of the
results we obtain when we apply the method on our corpus of requirements; finally,
we conclude in Section 4.

2 Aim and Method

2.1 Requirement boilerplates

The aim of this study (which is part of the corpus-driven approach of our global
methodology) is to analyze our corpus of requirements in order to semi-automatically
identify frequent patterns that are possible candidates for boilerplates or fixed ele-
ments to be used in future CNES projects (currently, engineers do not use boiler-
plates).

The term boilerplate was first used fifteen years ago in requirements engineering?
to refer to a textual requirement template. A very simple example of boilerplate is
given by “<system> shall <action>", where “shall” is a fixed element and “<system>"
and “<action>” are attributes that will be replaced by textual values in actual require-
ments [16] (e.g. “The vehicle shall respect the speed limit”). They are not necessarily
full sentences: some boilerplates are clauses or even phrases that can be added at the
beginning or at the end of other boilerplates; all of them are basically more or less
complex grammatical (non-discursive) structures.

The concept of requirement boilerplate (or requirement template) is appealing be-
cause it is very simple to understand (fill-in-the-gaps texts, frames and similar con-
cepts existed long before requirements®) and to use, and yet it is definitely useful
when the same kind of needs must be expressed repeatedly, as is often the case in
large projects with thousands of requirements (sometimes with only minor varia-
tions); this is especially true when using requirements authoring and management
tools (IBM Rational DOORS, for instance) that allow to handle boilerplates easily.

It can be seen as a semi-formal solution for writing requirements: texts written ac-
cording to a collection of boilerplates look exactly like those written in natural lan-
guage (since in theory, all sentences are grammatically correct and can be understood
by people familiar with the terms without any prior training) — except that it is obvi-
ously much more repetitive —, but at the same time, they are more formal because they
allow less expressivity, which is exactly why they are thought to reduce ambiguity. At
the very least, it can reasonably be assumed that they should increase consistency
among specifications: although variation is unavoidable in oral and written natural
language (because the same need can be expressed by different words and sentences),
requirements are usually quite short written texts that should be readable independent-
ly and where repetition is not only acceptable, but recommended.

Nevertheless, even though existing boilerplates may be considered convenient and
easy to use, the crucial difficulty remains of course to define a set of boilerplates that
will be proposed (or possibly imposed) to the writers and that preferably best suit
their needs. It appears that the boilerplates* suggested by the CESAR (Cost-efficient
methods and processes for safety relevant embedded systems) project [17], which are
one of the semi-formal “Requirement Specification Languages”, are often regarded as

2 Itis also used with a similar meaning in computer science (“boilerplate code™) and contrac-

tual law (“boilerplate language™: parts of a contract that are considered standard) [16].
In a sense, it is close to the copy-paste function of all modern computers.
Defined as “semi-complete requirements that are parameterized to suit a particular context”.

a reference. (Jeremy Dick’s online list of boilerplates is often cited too — including by
CESAR’s authors — but it is no longer available.)

Examples given by CESAR include: (ex. 1) “The <user> shall be able to <capabil-
ity>"; (ex. 2) “...at a minimum rate of <number> times per <unit>" and (ex. 3) “While
<operational condition>". These can be combined if necessary (e.g. “While <opera-
tional condition>, the <user> shall be able to <capability> at a minimum rate of
<number> times per <unit>").

They constitute a useful guideline for expressing capabilities and are rather flexi-
ble. However, if example 2 requires only to indicate a (positive) number and a unit (of
time) and is therefore subject to only slight variations, this is not really the case for
examples 1 and 3, where “user”, “capability” and “operational condition” could be
replaced by almost an infinity of very different values (in the document, “order entry
clerk”, “raise an invoice” and “(While) disconnected from a source of power” are
given as examples, respectively). Although the attribute “user” is rather restrictive
(especially if these boilerplates are used in conjunction with an ontology of the do-
main, where the class “user” is properly defined), “operational condition” is a very
large category and the writer has no real clues on how to fill in this gap (which means
sfhe is free to do as s/he wishes). For instance, one could have preferred a more ex-
plicit version (where the subject is mentioned) instead of the participle clause: “While
the photographer is disconnected from a source of power”. On the other hand, as it is,
this boilerplate does not allow the writer to replace “While” by “Even when” or an-
other conjunction that might be preferable in the context. In addition to these limita-
tions, some of the boilerplates they propose seem very close, such as example 2 and
“... at least <number> times per <unit>", where the only difference is “at least” vs.
“at a minimum rate of”.

Thus, these boilerplates are probably good examples, but they also show the main
limitations of such templates: it may be difficult for the user to choose an expression
over another; they are sometimes too restrictive; and most of all, they are often too
permissive, because they are too generic (and their number must remain rather low).
They do help limit variation, but they could probably be refined by taking better into
account the environment where they will be used, so that they are more specific and
adapted. According to us, this can only be done by first analyzing genuine samples of
written productions thanks to corpus processing tools.

Our idea is to move beyond the canonical concept of boilerplate and to combine a
few generic structures (such as the ones given above) with more specific fixed phrases
(such as “...by taking into account...”) that can fill in the gaps in a flexible way. Of
course, these phrases will be much more numerous, and it would not be possible for a
writer to memorize them all; but they could easily be added to requirements authoring
software with two major benefits. First, when a user is typing the first word(s) of a
frequent phrase, the remaining words could be automatically suggested (similarly to
the word completion feature proposed by some software or search engines); this
would guide him/her in the difficult writing process and also save him/her time. Sec-
ond, if an expression is recognized, but another one should be preferred (e.g. if “equal
to or greater than” is considered clearer than “not lower than”), it could be automati-
cally highlighted and the preferred expression could be suggested (similarly to the

spell check function of text processors) — it is then up to the writer to accept it or not.
This would be a further step in reducing variation (without reducing expressiveness).

2.2 Corpus, tool and method

In order to automatically identify these phrases, we constituted a corpus made of re-
quirements extracted from several specifications written (in French) at CNES for two
past projects, namely Pleiades (two very-high-resolution satellites for Earth observa-
tion) and Microscope (a microsatellite, whose main objective is to verify a physical
principle). About 2,500 requirements were extracted for Pleiades and approximately
1,000 for Microscope (a smaller project). After all tables and figures were removed
(as an automatic analysis would be much more difficult), the Pleiades subcorpus was
composed of slightly more than 118,000 words, and the Microscope subcorpus was
composed of more than 43,000 words, for a total of 161,403 words in the corpus.
(Confidentiality reasons explain why we could not get access to more data.)

We assume that this corpus is representative because it includes authentic require-
ments from two different projects (15 specifications for each). Although these specifi-
cations were written under similar circumstances and represent all the levels of the so-
called “product trees” (system, subsystem, interface) for both projects, Pleiades and
Microscope have totally different scales and purposes (as mentioned above) and the
writers were not the same engineers. Consequently, the corpus as a whole is con-
sistent and the two subcorpora (which share essential similarities but also differ in
some respects) are comparable (despite the difference in size).

To automatically extract the patterns from this corpus, we used the sequential data
mining tool SDMC?® (Sequential Data Mining under Constraints) [18]: given an input
text file and several parameters (threshold, minimum and maximum length of the
patterns, etc.), it returns a comprehensive list of patterns found in this file. The major
drawback of this method is that, depending on the size of the text and on the parame-
ters (in particular threshold and type of pattern: frequent, closed, maximal), the num-
ber of results may be extremely large, and a manual revision would obviously be too
time-consuming if it exceeds a few thousands.

To reduce the number of results and keep only those that could be relevant for our
study, we extracted frequent patterns from the two subcorpora independently®. The
minimal length was 2 items and the threshold was 2 utterances (i.e. the minimal num-
ber for the pattern to be considered “recurring” (as noted by Sinclair and Tognini-
Bonelli, quoted in [19])). Given that both subcorpora are rather small, we were forced
to perform the extractions on lemmas’, not on word forms — therefore this is not a
strict corpus-driven approach, according to Biber [19].

® SDMC can be used online for free at <https://sdmc.greyc.fr/>. However, we had to use an

offline version instead — again for confidentiality reasons.

All named entities were previously replaced by the same tag (NAM), so that they are con-
sidered the same item by SDMC. For example, thanks to this replacement, the sentences
“The system must provide ORAMIC with all the data...” and “The system must provide
GAZMIC with all the data...” would be considered the same pattern.

SDMC relies on the results of TreeTagger [20] for lemmatization.

6

7

https://sdmc.greyc.fr/

We obtained more than 63,000 patterns for Microscope and almost 100,000 pat-
terns for Pleiades, but we kept only the 3,854 patterns that were common to both lists.
This is a much more reasonable number and insures that they are recurring in differ-
ent projects (and not specific to only one®).

To further lower it, we performed a third extraction, this time on a collection of
newspaper articles (from Le Monde) composed of exactly ten times as many words as
the requirements corpus; all the patterns that were present in these results were then
removed from our previous list, since they are common also in another genre and thus
cannot be considered specific to requirements (SDMC does not use a reference corpus
for comparison). Since the minimum number of utterances in the whole requirements
corpus was 4 (2+2; a relative frequency of 1 per 40,000 words approximately) and the
newspaper corpus is ten times bigger, the threshold for patterns with the same relative
frequency would be 40 (4x10). Instead, we decided to set it to 10, meaning that we
kept only patterns that were at least four times more frequent in requirements than in
newspaper articles. Thanks to this final step, an additional 1,413 patterns® were elimi-
nated.

The resulting list is composed of 2,441 patterns (the longest one is composed of 9
items and the average length is 2.8 items) that were manually reviewed. Some of them
are commented in the next section.

3 Examples

Unlike those proposed by CESAR, very few of the patterns that were extracted can be
used directly as full sentences or even as clauses. Among them are “Il est a noter
que...” (“It should be noted that...”) — where “Il est” is actually often omitted — and
“Il doit étre possible de...” (“It must be possible to...”).

Unsurprisingly, “étre” (“to be”) and “devoir” (“must”) are by far the most common
verbs found in the patterns. The copula “étre” may be followed by an adjective:
“actif” (“active”), “autonome” (“autonomous”), “cohérent” (“consistent”), “compati-
ble”, “responsable” (“responsible”), etc. From these patterns, it may be possible to
propose a very generic boilerplate, e.g. <subject> must be <adjective>, or somewhat
more restrictive ones, such as <system> must be <adjective>, where <adjective>
could be any of the above mentioned values. However, “compatible” would not be an
acceptable parameter if the subject was <human operator>.

As the auxiliary of the passive voice, “étre” is also often followed by another verb
(a past participle): “activé” (“activated”), “calculé” (“calculated”), “sauvegardé”

“saved”), “validé” (“validated”), etc. The modal “devoir” too is followed by several
verbs (infinitives): “exécuter” (“to execute”), “générer” (“t0 generate”), “fournir” (“to
provide”). Interestingly, some of these verbs can be found after “étre” and after “de-
voir”, which proves that a same need is sometimes expressed in the active voice (“Le

® For instance, “différer I’envoi” (“defer sending”) appears twice in Pleiades, but never in

Microscope, while “étre calculé a bord” (“to be computed on board”) has three utterances in
Microscope, but none in Pleiades.
Such as “par rapport a” (“in relation to””) and “la position de” (“the position of”).

CECT doit conserver une copie locale”: “must keep a local copy”) and sometimes in
the passive voice (“la donnée est conservée en ligne”: “is kept online)'°. Some verbs
are peculiar, because they are found after the negation of “devoir”*: “entrainer” (“to
cause”), “dépasser” and “excéder” (both meaning “to exceed”).

Some expressions are very specialized such as “gérer en configuration” (used only
in software configuration management), while others exist in general language but
seem to be specific collocations in the corpus, such as “en phase de [rou-
tine/qualification]” (“in routine/qualification phase”), or even “en phase de recette en
vol”, which seems to be used only at CNES.

Finally, we would like to show that several expressions may be used with the same
purpose. This is the case, among many other examples, with the prepositional phrases
“a I’aide de [I’IHM]”/“grace a [la fonction]”/“au moyen de [I’outil]”/“au travers de
[cette fonction]”, that can be all translated by “through”, “thanks to” or “by means
of”; the past participles “[étre] décrit/défini/spécifié/détaillé [dans le document...]”
(“[be] described/defined/specified/detailed [in document...]”); the verbs “avoir en
charge [la réception]”/“étre responsable de [la gestion]”/“gérer [la liste des clés]” (“to
be in charge of’/“to be responsible for”/“to manage”); the patterns “étre conforme a
[la spécification]”/*conformément a [la définition]”/“dans le respect de [la spécifica-
tion]”/“doit respecter [les exigences de sécurité]” (“in compliance with”/“in keeping
with”/“must respect”); or “La durée maximale/maximum [avant délivrance] est de
<nombre> <unité>"/*“La durée [de stockage] est limitée a/ne doit pas dépasser/ne doit
pas excéder/doit étre inférieure ou eégale & <nombre> <unité>" (“The maximum dura-
tion is <number> <unit>"/“The duration is limited to/must not exceed/must be less
than or equal to <number> <unit>"). This last case is very frequent and, as can be
seen, there are plenty of possible variations; a simple boilerplate such as The <maxi-
mum|minimum> <duration/length/...> <complement> is <number> <unit> might be
useful to maintain consistency among requirements. In the other cases, one could
simply recommend to use only one of the phrases whenever possible.

4 Conclusion

In this paper, we evaluated the feasibility and interest of a simple method (which can
still be refined) for extracting frequent patterns in a corpus with the aim of reducing
linguistic variation in requirements, either by suggesting boilerplates or by identifying
“competing” phrases expressing the same need. Of course, for each of them, the ex-
perts will be in charge of choosing the most relevant one before the list can be added
to requirements authoring tools for automatic suggestion. This decision could be
made through a survey where variants are presented in context and must be rated [21].

We believe that in specific contexts, such as technical writing, rules and norms
may be very useful to users, as long as they are based on existing regularities, and not
on mere intuitions or value judgments, as is unfortunately too often the case.

0 Of course, a combination is possible as well: “must be kept”.
11 «ne pas devoir” is sometimes ambiguous in French: “must not”/“does not have to”. Here, the
first translation is very likely to be preferred.

Acknowledgment

We would like to thank Daniel Galarreta, Nicolas Deslandres and Jean-Frangois Gory
for their strong involvement in this doctoral research, which was granted by CNES
and the Regional Council of Midi-Pyrénées (France). We also wish to thank the de-
velopers of SDMC, especially because this study would not have been possible with-
out the offline version.

References

10.

11.

12.

13.

14.

15.

16.

Kamsties, E., Peach, B.: Taming ambiguity in natural language requirements. In: Proceed-
ings of the Thirteenth International Conference on Software and Systems Engineering and
Applications (2000).

Zhang, Q.: Fuzziness - vagueness - generality - ambiguity. Journal of Pragmatics. 29, 13—
31 (1998).

IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990. 1—
84 (1990).

Nuseibeh, B., Easterbrook, S.: Requirements Engineering: A Roadmap. In: Proceedings of
the Conference on the Future of Software Engineering. pp. 35-46. ACM, New York, NY,
USA (2000).

Kuhn, T.: A Survey and Classification of Controlled Natural Languages. Computational
Linguistics. 40, 121-170 (2014).

Meyer, B.: On Formalism in Specifications. IEEE Softw. 2, 6-26 (1985).

Swales, J.M.: Reflections on the concept of discourse community. ASp. La revue du
GERAS. 7-19 (2016).

Condamines, A., Warnier, M.: Towards the creation of a CNL adapted to requirements
writing by combining writing recommendations and spontaneous regularities: example in a
space project. Lang Resources & Evaluation. 51, 221-247 (2017).

Tognini-Bonelli, E.: Corpus Linguistics at Work. John Benjamins Publishing (2001).
Biber, D.: Corpus-Based and Corpus-driven Analyses of Language Variation and Use. In:
Heine, B. and Narrog, H. (eds.) The Oxford Handbook of Linguistic Analysis. Oxford
University Press (2009).

Bhatia, VV.K.: Analysing genre: Language use in professional settings. Longman, London
(1993).

Quiniou, S., Cellier, P., Charnois, T., Legallois, D.: Fouille de données pour la stylistique:
cas des motifs séquentiels émergents. In: Journées Internationales d’Analyse Statistique
des Données Textuelles (JADT’12). pp. 821-833 (2012).

Sitri, F., Tutin, A.: Présentation. Lidil. Revue de linguistique et de didactique des langues.
5-18 (2016).

Legallois, D., Charnois, T., Poibeau, T.: Repérer les clichés dans les romans sentimentaux
grice a la méthode des «motifs». Lidil. Revue de linguistique et de didactique des
langues. 95-117 (2016).

Warnier, M., Condamines, A.: A Methodology for Identifying Terms and Patterns Specific
to Requirements as a Textual Genre Using Automated Tools. Presented at the Terminology
and Artificial Intelligence (TIA’2015) November 4 (2015).

Tommila, T., Pakonen, A.: Controlled natural language requirements in the design and
analysis of safety critical 1&C systems. SAFIR2014 Reference group. 2, (2014).

17.

18.

19.

20.
21.

Rajan, A., Wahl, T. eds: CESAR - Cost-efficient Methods and Processes for Safety-
relevant Embedded Systems. Springer Vienna, Vienna (2013).

Quiniou, S., Cellier, P., Charnois, T., Legallois, D.: What About Sequential Data Mining
Techniques to Identify Linguistic Patterns for Stylistics? In: International Conference on
Intelligent Text Processing and Computational Linguistics (CICLing’12). pp. 166-177.
New Delhi, India (2012).

Biber, D.: A corpus-driven approach to formulaic language in English: Multi-word pat-
terns in speech and writing. International journal of corpus linguistics. 14, 275-311 (2009).
Schmid, H.: Treetagger: a language independent part-of-speech tagger.

Warnier, M., Condamines, A.: A Case Study on Evaluating the Relevance of Some Rules
for Writing Requirements through an Online Survey. In: 25th IEEE International Re-
quirements Engineering Conference. To appear.

