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Abstract – In this paper we consider the problem of filming
sport events, ensuring high quality image transmission to the
spectators. A fleet of drones is used to cover the area in which
the play takes place and to track all events. Auxiliary drones
are used to support filming drones in order to transmit high
quality image to the disadvantaged spectators with respect
to the event that takes place in a certain instant of time.
The main goal is to decide the position of the filming and
auxiliary drones, aiming to provide high view satisfaction
and, at the same time, minimizing the distance travelled
by the drones. The two objectives are in conflict with each
other, thus we formulate the problem as a bi-objective mixed
integer model. A unique optimal solution does not exist,
rather a set of optimal solutions, named Pareto optimal,
can be considered efficient.

Keywords – sport event film problem, mobile camera
drones, drones routing problem, multi-objective optimiza-
tion

I. INTRODUCTION

In this paper, we address the problem of managing
a fleet of drones for filming sport events and streaming
images to the spectators within the stadium.

The Sport Event Filming (SEF) problem, recently in-
troduced in [1], aims at determining a planning of the
filming drones in terms of positions they have to occupy
and the time in which the drones should be in each
position. The objective is to film each event maximizing
the viewer satisfaction of the spectators. In order to
have the maximum satisfaction, each event have to be
monitored for all its duration. In the case the drone is late
with respect to the event, the viewer satisfaction decrease
reaching the value of zero if the event is not filmed.
In addition, we suppose there are parts of the stadium,
i.e. the corners, for which the quality of images sent to
the spectators, located in the opposite ones, decreases. To
overcome this issue, we use a fleet of supporting drones
that operate as a relay between the filming drone and the
disadvantaged spectators.

The aim of this paper is to define an optimization
model that gives insight on how to manage the fleet of
filming and supporting drones when the play takes place.
In particular, we suppose to have a-priori knowledge of
the events in term of positions in the stadium and time

in which they happen. This is an off-line configuration
that provides to the decision maker an initial planning of
the fleets and suggests the number, the positions and the
movements of both filming and supporting drones.

From a modeling viewpoint, the problem belongs to the
Vehicle Routing Problem with Time Windows (VRPTW)
family, where vehicles, starting from a depot, visit a set
of customers within their time window. For more details
on the VRPTW and its variants, the reader is referred
to [2]. Each event can be viewed as a customer and the
time between the end of the event and its starting time
represents the time window. All events have to be visit
by the drones within their time windows. We admit the
drone can start to monitor the position in which an event
will take place before it start.

Since the viewer satisfaction is related to the time in
which the drone starts to film the event, the time windows
are considered soft in the sense that the quality of the
service is influenced by the instant time in which the
customer (event in our application) is visited. More details
on the VRP with soft time windows can be found in [3]–
[5].

In this paper we formulate the SEF problem with
supporting drones (SEF-SD) as a variant of the VRPTW,
where two different fleets of vehicles have to be manage
in order to film the events within their time windows and
provide high quality image using supporting drones.

The distance travelled by the drones has to be taken into
consideration. Indeed, assuming a constant flying speed
and altitude, the distance travelled is related to the flying
autonomy of the drone. Thus, this parameter needs to be
controlled and it plays a crucial role in the determination
of the optimal planning.

Whilst the viewer satisfaction has to be maximized
in order to ensure quality of service requirements, the
distance travelled needs to be minimized in order to
preserve the efficiency of the system in term of energy
consumption. The two objectives are in conflict with each
other. Indeed, to guarantee a higher viewer satisfaction,
the drones have to move frequently in order to film the
events and supporting drones have to be activated.

We present the SEF-SD under the bi-objective opti-



mization framework, where a unique optimal solution
does not exist. Rather, a set of solutions, named Pareto,
can be considered optimal in the sense each of them
optimizes the two objective functions.

The common way to address bi-objective optimization
problem is to define a scalarization function, that allows to
manage the problem as a single-objective one. Modifying
the parameters of the scalarizing function, different Pareto
optimal solutions can be found.

In this paper, we consider two types of scalarization
functions. The first one relies on a convex combina-
tion of the objective functions, and the second uses the
Chebishev-norm as in the reference point methodology
[6], [7]. In addition, we apply the so-called ε-constraint
method [8], where an objective function is optimized and
the other is viewed as a hard constraint. Varying the
right-hand side of the constraint, different Pareto optimal
solutions can be determined.

The paper is organized as follows. Section II formalizes
the viewer satisfaction and the problem. The bi-objective
formulation is given along with the methods adopted to
search Pareto optimal solutions. Section III presents an
illustrative example with the aim of showing how the pro-
posed solution strategies behaves. Section IV concludes
the paper. The mathematical formulation of the problem
is presented in the appendix.

II. PROBLEM DEFINITION AND SOLUTION
APPROACHES

In this section, we describe the problem at hand, along
with its mathematical formulation as a bi-objective model.
Then, we propose three solution strategies in order to
obtain Pareto solutions.

a) Problem definition: We assume that the stadium
is characterized by two typologies of zones. The first one,
located in the center, and the others are represented by the
four corners. According to the measurements presented in
[9], we define as 1-Hop the center of the field, i.e. the first
zone typology.

The filming drones broadcast high definition images
evaluated as SmaxH of the events in the 1-Hop area with-
out the help of the supporting drones. On the other hand,
the images sent from the corners are of low definition
(SmaxL) for the spectators located at the opposite corner.
In this situation, the supporting drones are used as relay
between filming drones and disadvantaged spectators in
order to provide them high definition images.

An important factor that determines the quality of the
images is the time in which the drones start to film the
events. The function defining the viewer satisfaction is
depicted in the Figure 1.

The total satisfaction of the viewer, named vs(x) where
x represents a solution, is obtained by averaging the sum
of the satisfaction experienced from each action on the
whole event.

The satisfaction is maximized if the filming drone
arrives at the action location and the supporting drone at
the location from where it can relay before tstart, and
it decreases linearly until becoming 0 when t = tstop.
The definition of viewer satisfaction matches with the
definition of Soft Time Window, because the only effect
of a drone not arriving before tstart at the action location
is to reduce the overall satisfaction of the viewer without
invalidating the solution of the problem.

Figure 1. Game action’s soft time window for the viewer’s
satisfaction.

Given a solution x, let d(x) be the total distance
travelled by the filming and the supporting drones. The
bi-objective formulation of the problem is reported in the
following

SEF-SD = {max vs(x),min d(x) : x ∈ X} , (1)

where the set X represents the feasible region. More
details on the mathematical formulation and the definition
of set X are reported in the Appendix.

A solution to problem (1) is represented by the set of
efficient solutions. Given an efficient solution x̄, the vector
[vs(x̄), d(x̄)] is the so-called Pareto point in the criteria
space associated with the efficient solution x̄. The set of
efficient solutions X̄ contains the non-dominated Pareto
points.

Given two efficient solutions x̄1 and x̄2, we say that
solution x̄1 dominates x̄2 if vs(x̄1) ≥ vs(x̄2), d(x̄1) ≤
d(x̄2), and at least one inequality is strict.

We can distinguish two typologies of non-dominated
solutions, the first, named supported non-dominated, lies
on the convex hull of the Pareto front, the second ones
are known as non-supported non-dominated solutions.

b) Solution approaches: In this paper we propose
to solve problem (1) by using three different methods.
The first two are based on scalarizing function S(·, x).
In particular, we consider a convex combination with
S(λ, x) = λαd(x) − (1 − λ)vs(x) to be minimized and
λ ∈ [0, 1]. Varying the parameter λ, different supported
non-dominated solutions are obtained. The term α is used
to scale the function d(x). In particular, α = 1/(dN−dU )



where dN is the nadir point and dU is the utopia point
associated with the function d(x). The problem is defined
as SEF-SDλ = {minS(λ, x) : x ∈ X}.

The second scalarizing technique uses the refer-
ence point methodology. A reference point is a vec-
tor q̄ containing values for d and vs that the deci-
sion maker would to achieve. In other words, q̄ rep-
resents the decision maker’s desiderata. In this case,
S(q̄, y, x) = min {y1(q̄1 − d(x)), y2(vs(x)− q̄2)} +
γ [y1(q̄1 − d(x)) + y2(vs(x)− q̄2)], γ << 1. Maximiz-
ing S(q̄, y, x) means to obtain a Pareto optimal solution
[d(x̄), vs(x̄)] that is the nearest, with respect to the
Chebishev norm, to the reference point q̄. The problem
to be solved is SEF-SDq̄ = {maxS(q̄, y, x) : x ∈ X}.

The last technique refers to the so-called ε-constraint
method. The main idea of this strategy is to solve a single-
objective problem optimizing a function and treats the
other one as a hard constraint. In our application, we
decide to maximize the viewer satisfaction imposing a
limitation ε on the distance travelled. Varying the pa-
rameter ε, different solution are determined. The problem
addressed with the ε-constraint method is denoted as SEF-
SDε = {max vs(x) : x ∈ X, d(x) ≤ ε}.

III. ILLUSTRATIVE EXAMPLE

In order to show how the considered solution strate-
gies behave in solving the SEF-SD, we present in this
section an example reporting the Pareto optimal solutions
obtained by solving SEF-SDλ, SEF-SDq̄ , and SEF-SDε.
The three models are solved with Cplex and implemented
in Lingo [10].

We generate a simple example, whose main charac-
teristics are described in what follows. We consider two
filming drones and two supporting ones. The events to be
filmed are randomly distributed in the game field and we
consider 5 events, three of them are located in the 1-Hop
area. There is one initial position, where both filming and
supporting drones start their work and one final position.
Two positions are devoted to the supporting drones.

All the Pareto solutions for the considered instance are
depicted in Figure 2.

Figure 2. Pareto optimal solutions for the considered example.

It is worth observing that five solutions represent sup-
ported non-dominated points, whereas the Pareto point
[282.60; 0.80] is associated with a non-supported non-
dominated solution.

Table I reports the Pareto solutions obtained by solving
SEF-SDλ. We have chosen λ ∈ {0.1, 0.2, . . . , 0.9}.

Table I. PARETO OPTIMAL SOLUTIONS DETERMINED BY SOLVING
SEF-SDλ

λ PO
d(x) vs(x)

0.1 386.0 1.00
0.2 - 0.3 306.1 0.99
0.4 - 0.6 220.6 0.79
0.7 - 0.9 175.7 0.40

Column λ reports the values of λ for which SEF-SDλ

returns the corresponding solution. Column PO shows
the Pareto optimal solutions obtained. It is evident that
for λ = 0.1, the corresponding d(x) represents the nadir
point for function d, whereas when λ is set equal to 0.9,
the values for d(x) of the corresponding Pareto optimal
solution is the utopia point. An expected results is that
SEF-SDλ is not able to determine the non-supported
non-dominated solution, i.e. [288.1, 0.80]. This is true in
general since optimizing the convex combination of the
objective functions leads to search solutions in the corner
of the convex hull.

The Pareto optimal solutions obtained with SEF-SDε

with ε ∈ {400, 300, 200, 100} are given in Table II.

Table II. PARETO OPTIMAL SOLUTIONS DETERMINED BY SOLVING
SEF-SDε

ε PO
d(x) vs(x)

400 386.0 1.00
300 288.1 0.80
200 199.3 0.60
100 infeasible

Problem SEF-SDε is strongly affected by the parameter
ε. Indeed, table II shows that only three Pareto optimal
solutions are determined considering the chosen values for
ε. However, SEF-SDε overcomes the issue related to the
determination of non-supported non-dominated solutions
observed for SEF-SDλ. Indeed, for ε = 300, SEF-SDε

returns the Pareto solution [288.1, 0.80].
The Pareto optimal solutions determined by SEF-SDq̄

are given in table III.
We solve SEF-SDq̄ considering q̄1 ∈
{400, 300, 200, 100} and q̄2 ∈ {0, 0.2, . . . , 0.8, 1}.
Column q̄ of table III reports the reference points for
which the corresponding Pareto optimal solutions are
obtained. Table III shows the potential of SEF-SDq̄ that
is able to determine all the Pareto optimal solutions.
However, the number of times SEF-SDq̄ is solved
is higher that the other two methods. On the other
hand, SEF-SDq̄ takes into account the decision maker’s
desiderata providing solutions near to his/her aspiration.



Table III. PARETO OPTIMAL SOLUTIONS DETERMINED BY SOLVING
SEF-SDq̄

q̄ PO
d(x) vs(x)

[400, 1] 386.0 1.00
[300, 1], [400, 0.8], [400, 0.6] 306.1 0.99
[400, 0.4]
[300, 0.8] 282.6 0.80
[200, 1], [200, 0.8], [300, 0.6] 220.6 0.79
[300, 0.4], [400, 0.2], [400, 0]
[100, 1], [200, 0.6], [200, 0.4] 199.3 0.60
[300, 0.2], [300, 0]
[100, 0.8], [100, 0.6], [100, 0.4] 175.7 0.40
[100, 0.2], [100, 0], [200, 0.2]
[200, 0]

IV. CONCLUSIONS

In this paper we address the problem of filming sport
events with drones. The aim is to provide high quality
images to the spectators within the stadium. The images
sent from the corners of the stadium to the spectators
located to the opposite ones are of low quality. In order to
ensure a maximum viewer satisfaction, supporting drones
are considered and they play the role of relay between
the filming drones and the disadvantaged spectators.

Beside the quality of the images, the distance travelled
by the drones is taken into account. The two objectives are
in conflict with each other, thus we formulate the problem
as a bi-objective mixed integer program. Three methods
are applied to solve the problem. Two of them are based
on scalarizing functions and the other on the ε-constraint
strategy. The behavior of the proposed approaches are
shown considering an illustrative example.

APPENDIX - VARIABLES AND MODEL ASSUMPTIONS

In this section we introduce all the parameters, variables,
constraints and assumptions used to formulate the proposed
mathematical model.

Parameters
• Fstadium = Bs ×Hs size-limited stadium;
• Ffield = Bf ×Hf size-limited field;
• 0→ T event time duration;
• M = {1, . . . ,m} set of m drones able to move in 2

dimensions;
• M̄ = {1, . . . , m̄} set of m̄ drones supporting the drones

in M ;
• N = {1...n} actions spatially distributed in F and time-

distributed in 0→ T , n represents the final event;
• S = {1, . . . , p} set of the supporting positions;
• Ñ = {1, . . . ,m} set of the initial positions of the drones,

before they start moving to film/support the actions;
• tbirth,i birth time of action i, ∀i ∈ N \ {N1...Nm};
• tstart,i start time of action i, ∀i ∈ N \ {N1...Nm};
• tstop,i stop time of action i, ∀i ∈ N \ {N1...Nm};
• tbirth,i < tstart,i < tstop,i ∀i ∈ N \ {N1...Nm};
• tstop,i < tbirth,j ∀i, j ∈ N \ {N1...Nm} with i < j

ensures that actions are sequential and non-simultaneous;
• tstop,n = T ensures that all actions terminate within the

given time frame.
• dij Euclidean distance between the location of action

(supporting position) i and action (supporting position) j;
• dik ≤ dij+djk triangle inequality for the distances among

filming/supporting actions locations ∀i, j, k ∈ N ;

• V Smax = V SmaxHD = 1 maximum satisfaction obtain-
able by the farthest viewer in a single action when both
the drones are well placed;

• V SmaxSD = 1/2 maximum satisfaction obtainable by
the farthest viewer in a single action when no support is
guaranteed to the filming drone;

Variables
• tkarr,i arrival time of filming drone k to the location of

action i ∀i ∈ N \ {N1...Nm} and ∀k ∈M ;
• tkarr,p arrival time of supporting drone k to the location of

supporting position p, ∀p ∈ S and ∀k ∈ M̄ ;
• tkdep,i departure time of filming drone k from the location

of action i ∀i ∈ N \ {Nn} and ∀k ∈M ;
• tkdep,p departure time of supporting drone k from the

location of supporting action p, ∀p ∈ S and ∀k ∈ M̄ ;
• tki→j =

dij
v

time required by drone k to move from
filming/supporting action i to filming/supporting action j
∀i, j ∈ N and ∀k ∈M ∪ M̄ ;

• xkij on/off variable with the following meaning:

xkij =


1 if arc i− j is crossed by

filming/supporting drone k ∈M ∪ M̄
0 otherwise

• yki on/off variable with the following meaning:

yki =


1 if filming drone k ∈M was on

the position i of game action
0 otherwise

• V Ski,HD viewer’s satisfaction due to the drone k that
filmed action i when the action belongs to the set 1-HOP;

• V Ski,SD viewer’s satisfaction due to the drone k that filmed
action i when the action does not belong to the set 1-HOP.

Assumptions
• The time and spatial sequences of actions are known;
• Each action (except the last one) must be filmed by exactly

one drone;
• Since the last game action represents a dummy location,

where the drones come together, so that maintenance
operations can be performed, the distance traveled to reach
this final position is not considered in evaluating the total
distance travelled by the drones.

• All actions i ∈ N have their own Soft Time Window
already presented in Figure 1;

• All actions i ∈ N have a set of supporting positions, which
are good for relaying the transmission. We assume that
sip = 1 if position p ∈ P is able to support the event
i ∈ N , sip = 0, otherwise. When the position of the
action is in the 1-Hop zone, then there is no needs of
using supporting drones.

Problem Formulation
The objective functions are the total distance traveled by the

drones involved in the sport event filming (to be minimized) and
the viewer satisfaction to be maximized. This can be expressed
as

min
∑
k∈M

∑
i∈N∪S

∑
j∈N∪S

dij · xkij (2)

max

∑
i∈N

∑
k∈M (V Ski,HD + V Ski,SD)

n
(3)



Thise objectives have to be accomplished by satisfying the
constraints reported in the following.

Each action have to be filmed by exactly one drone.∑
k∈M

yki = 1 ∀i ∈ N \ {n} (4)∑
k∈M

ykn = m (5)

A supporting drone positioned in p could support the drone,
which films the actions i /∈ 1-HOP. We define the binary
variables βki,p that is set equal to 1 when a supporting drone
k ∈ M̄ is in position p for supporting the action i.

βki,p ≤ si,p∀i ∈ N \ 1−Hop, p ∈ S, k ∈ M̄ (6)

∑
k∈M̄

∑
p∈S

βki,p ≤ 1 ∀i ∈ N \ 1−Hop (7)

The binary variable yki is equal to 1 when the drone k ∈M
films action i.

yki ≥ xkji ∀i, j ∈ N and ∀k ∈M (8)

yki ≥ xkij ∀i, j ∈ N and ∀k ∈M (9)

Each drone starts from its initial position and all drones end
at the final action n.∑

i∈Ñ

∑
j∈N

xkij = 1 ∀k ∈M (10)

∑
i∈{N−{n}}

xkin = 1 ∀k ∈M (11)

Flow constraints defining the path of the filming drone k ∈
M . ∑

k∈M

∑
j∈{Ñ∪N−{n}}

xkji = 1 ∀i ∈ N (12)

∑
k∈M

∑
j∈N

xkij = 1 ∀i ∈ N − {n} (13)

∑
i∈N∪Ñ

xkiz −
∑

j∈N∪Ñ

xkzj = 0 (14)

∀z ∈ N − {n} and ∀k ∈M

Flow constraints defining the path of the supporting drone
k ∈ M̄ . ∑

i∈Ñ

∑
j∈S

xkij ≤ 1, ∀k ∈ M̄. (15)

∑
i∈Ñ∪S

xkin ≤ 1, ∀k ∈ M̄. (16)

∑
i∈S∪Ñ

xkiz −
∑

j∈S∪{n}

xkzj = 0, ∀k ∈ M̄, z ∈ S. (17)

The supporting point p ∈ S have to be visited by exactly one
supporting drone.∑

k∈M̄

xkij ≤ 1, ∀i ∈ S ∪ Ñ , j ∈ S ∪ {n}. (18)

All drones start at time 0, that is, tkarr,i = 0, ∀i ∈ Ñand∀k ∈
M ∪ M̄ .

The arrival time to action j of drone k is equal to the
departure time from node i plus the time needed to reach node
j.

tkarr,j =
∑

i∈N∪S∪Ñ−{n}

(tkdep,i + tki→j)x
k
ij (19)

∀j ∈ N ∪ S ∪ Ñ and ∀k ∈M ∪ M̄

A drone can leave an action after the action is concluded and
before the end of the match.

tkdep,i ≥ tstop,i · yki , ∀i ∈ N and ∀k ∈M (20)

tkdep,i ≤ tstop,n · yki , ∀i ∈ N and ∀k ∈M (21)

tkdep,p ≥ tstop,i · βki,p,∀i ∈ N and ∀p ∈ S and ∀k ∈ M̄ (22)

tkdep,p ≤ tstop,n · βki,p, ∀i ∈ N and ∀p ∈ S and ∀k ∈ M̄ (23)

The following constraints are introduced in order to linearize
the satisfaction function.

δk1,i + δk2,i + δk3,i = yki , ∀i ∈ N and ∀k ∈M (24)

0 ≤ ζk1,i ≤ tstart,iδk1,i, ∀i ∈ N and ∀k ∈M (25)

0 ≤ ζk2,i ≤ (tstop,i − tstart,i)δk2,i, ∀i ∈ N and ∀k ∈M (26)

0 ≤ ζk3,i ≤ (tstop,n − tstop,i)δk3,i, ∀i ∈ N and ∀k ∈M (27)

tkarr,i = tstart,iδ
k
2,i + tstop,iδ

k
3,i + ζk1,i + ζk2,i + ζk3,i, (28)

Definition of V Ski,HD .

V Ski,HD = V SmaxHDδ
k
1,i + V SmaxHDδ

k
2,i+ (29)

+(
−V SmaxHD
tstop,i − tstart,i

)ζk2,i,∀i ∈ 1-Hop and ∀k ∈M.

The following constraints allow to define the satisfaction for
the actions i /∈ 1-HOP.

The binary variables αkip is equal to 1 if the supporting drone
k ∈ M̄ starts to support action i before the starting time of
action i.

tkarr,i − tk̃arr,p + Θ(1− yki ) ≥ Θ (αk̃i,p − 1) (30)

∀i ∈ N \ 1-Hop, ∀k ∈M, k̃ ∈ M̄ ∀p ∈ S

The binary variables lk̃i,p define whether the supporting drone
k ∈ M̄ support the action i, i.e. βk̃i,p = 1 and they arrive before
the actions start (αk̃i,p = 1).

lk̃i,p ≥ αk̃i,p+βk̃i,p−1,∀i ∈ N \ 1-Hop, ∀k̃ ∈ M̄ ∀p ∈ S (31)

lk̃i,p ≤
1

2
(αk̃i,p+βk̃i,p), ∀i ∈ N \ 1-Hop, ∀k̃ ∈ M̄ ∀p ∈ S (32)



In the case lk̃i,p = 1, we have an HD satisfaction. The
following constraints allow to define the HD satisfaction for
the actions i /∈ 1-HOP.

δ̄k1i ≥
∑
k̃∈M̄

∑
p∈S

lk̃i,p + δk1i − 1, ∀i ∈ N \ 1-Hop,∀k ∈M (33)

δ̄k1i ≤
1

2
(
∑
k̃∈M̄

∑
p∈S

lk̃i,p + δk1i), ∀i ∈ N \ 1-Hop, ∀k ∈M (34)

δ̄k2i ≥
∑
k̃∈M̄

∑
p∈S

lk̃i,p + δk2i − 1, ∀i ∈ N \ 1-Hop,∀k ∈M (35)

δ̄k2i ≤
1

2
(
∑
k̃∈M̄

∑
p∈S

lk̃i,p + δk2i), ∀i ∈ N \ 1-Hop, ∀k ∈M (36)

ζ̄k2,i ≥
∑
k̃∈M̄

∑
p∈S

lk̃i,p + ζk2i − 1, ∀i ∈ N \ 1-Hop, ∀k ∈M (37)

ζ̄k2i ≤
1

2
(
∑
k̃∈M̄

∑
p∈S

lk̃i,p + ζk2i), ∀i ∈ N \ 1-Hop, ∀k ∈M (38)

When lk̃i,p = 0, ∀k̃ ∈ M̄ , then no supporting drone is avail-
able for the action i. In this case, we have an SD satisfaction.
The following constraints are used to define the satisfaction for
the actions i /∈ 1-HOP.

fk1i ≥ −
∑
k̃∈M̄

∑
p∈S

lk̃i,p + δk1i, ∀i ∈ N \ 1-Hop,∀k ∈M (39)

fk1i ≤
1

2
(1−

∑
k̃∈M̄

∑
p∈S

lk̃i,p + δk1i),∀i ∈ N \ 1-Hop, ∀k ∈M

(40)

fk2i ≥ −
∑
k̃∈M̄

∑
p∈S

lk̃i,p + δk2i, ∀i ∈ N \ 1-Hop, ∀k ∈M (41)

fk2i ≤
1

2
(1−

∑
k̃∈M̄

∑
p∈S

lk̃i,p + δk2i),∀i ∈ N \ 1-Hop, ∀k ∈M

(42)

fk3,i ≥ −
∑
k̃∈M̄

∑
p∈S

lk̃i,p + ζk2i, ∀i ∈ N \ 1-Hop,∀k ∈M, (43)

fk3i ≤
1

2
(1−

∑
k̃∈M̄

∑
p∈S

lk̃i,p + ζk2i), ∀i ∈ N \ 1-Hop,∀k ∈M

(44)
The satisfaction level of the spectators for the actions i /∈

1-HOP is defined in equation (45).

V Ski,SD = V SmaxHD δ̄
k
1,i + V SmaxHD δ̄

k
2,i+

(
−V SmaxHD
tstop,i − tstart,i

)ζ̄k2,i+

+V SmaxSDf
k
1,i + V SmaxSDf

k
2,i+

+(
−V SmaxSD

tstop,i − tstart,i
)fk3,i (45)

∀i ∈ N \ 1-Hop and ∀k ∈M
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