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LIOUVILLE TYPE RESULTS FOR A NONLOCAL OBSTACLE PROBLEM

JULIEN BRASSEUR, JÉRÔME COVILLE, FRANÇOIS HAMEL, AND ENRICO VALDINOCI

Abstract. This paper is concerned with qualitative properties of solutions to nonlocal
reaction-diffusion equations of the form

ˆ

RN\K

J(x− y)
(
u(y)− u(x)

)
dy + f(u(x)) = 0, x ∈ R

N \K,

set in a perforated open set RN \K, where K ⊂ RN is a bounded compact “obstacle” and f is
a bistable nonlinearity. When K is convex, we prove some Liouville-type results for solutions
satisfying some asymptotic limiting conditions at infinity. We also establish a robustness result,
assuming slightly relaxed conditions on K.
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1. Introduction

A classical topic in applied analysis consists in the study of diffusive processes in media with
an obstacle: roughly speaking, a dispersal follows a Brownian motion in an environment that
possess an inaccessible region. At the level of partial differential equations, this translates into
a reaction/diffusion equation that is defined outside a set K, which acts as an impenetrable
obstacle and along which Neumann conditions are prescribed.

One of the cornerstones in the study of these processes lies in suitable rigidity results of
Liouville-type, which allow the classification of stationary solutions, at least under some geo-
metric assumption on the obstacle K.

In this paper, we will study a nonlocal version of a diffusion equation and provide a series of
Liouville-type results (whose precise statements will be given in Section 2). Not only the results
obtained have a theoretical interest in the development of the theory of nonlocal equations,
but they also possess several potential applications (especially in mathematical biology, where
the dispersal of biological populations often presents nonlocal features, see e.g. formula (1)
in [11], or in [6]).

Concretely, we will suppose that the diffusion operator arises by convolution with an in-
tegrable kernel and we will show that solutions of bistable stationary equations with fixed
behavior at infinity are necessarily constant, at least when the obstacle is convex or “close to
being convex” (we also observe that similar rigidity results do not hold in general for nonconvex
obstacles).

Interestingly, in the nonlocal case, the boundary conditions along the obstacle do not need
to be prescribed a priori (differently from the classical case).

In addition, the nonlocal operator that we consider here is not “regularizing”, so some care
is needed in our case to deal with a possible lack of regularity of the solutions.

We now provide the detailed mathematical description of the problem that we take into
account.

1.1. A nonlocal obstacle problem. Throughout this paper, K denotes a compact set of
RN with N > 2, and |·| denotes the Euclidean norm in RN . We are interested in qualitative
properties of bounded solutions to the following nonlocal semilinear equation

Lu+ f(u) = 0 in R
N \K,(1.1)

where L is the nonlocal diffusion operator given by

(1.2) Lu(x) :=

ˆ

RN\K

J(x− y)
(
u(y)− u(x)

)
dy.

The kernel J ∈ L1(RN ) is a radially symmetric non-negative function with unit mass and f is
a C1 “bistable” nonlinearity (precise assumptions on f and J will be given later on).

This problem may be thought of (see the next page for more explanations) as a nonlocal
version of the following problem

(1.3)

{
∆u+ f(u) = 0 in RN \K,

∇u · ν = 0 on ∂K,

where ν is the outward unit vector normal to K, assuming for (1.3) that K is smooth enough.
For problem (1.3) with the local diffusion operator ∆u, it was shown in [5] that there exist a
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time-global classical solution u(t, x) to the parabolic problem

(1.4)





∂u

∂t
= ∆u+ f(u) in R× RN \K,

∇u · ν = 0 on R× ∂K

satisfying 0 < u(t, x) < 1 for all (t, x) ∈ R × RN \K, and a classical solution u∞(x) to the
elliptic problem





∆u∞ + f(u∞) = 0 in RN \K,

∇u∞ · ν = 0 on ∂K,

0 6 u∞ 6 1 in RN \K,

u∞(x) → 1 as |x| → +∞.

(1.5)

The function u∞ is a stationary solution of (1.4) and it is actually obtained as the large time

limit of u(t, x), in the sense that u(t, x) → u∞(x) as t→ +∞ locally uniformly in x ∈ RN \K.
Under some geometric conditions on K (e.g. if K is starshaped or directionally convex, see [5]
for precise assumptions) it is shown in [5, Theorems 6.1 and 6.4] that solutions to (1.5) are

actually identically equal to 1 in the whole set RN \K. This Liouville property shows that
the solutions u(t, x) of (1.4) constructed in [5] then satisfy

u(t, x) −→
t→+∞

1 locally uniformly in x ∈ RN \K.(1.6)

To some extent, this result can be given an ecological interpretation. Consider a population
with trajectories describing a Brownian motion in an environment consisting of the whole
space R

N with a compact obstacle K, and suppose that f represents the demographic rate
of the population. Then, the solution u(t, x) to (1.4) can be understood as the density of
the population at time t and location x. In this context, (1.6) means that, at large time, the
population tends to occupy the whole space.

Assuming now that the trajectories follow, say, a compound Poisson process, then the dif-
fusion phenomena are better described by a convolution-type operator such as (1.2). The
reaction-diffusion equation ∂u

∂t
= ∆u+ f(u) is then replaced by the equation

∂u

∂t
= Lu+ f(u)

with the nonlocal dispersion operator L, see [15, 17]. In this paper, we deal with qualitative
properties of the stationary solutions of equation (1.1), together with some asymptotic limiting
conditions at infinity similar to those appearing in (1.5). Namely, we will be mainly concerned
with solutions of 




Lu+ f(u) = 0 in RN \K,

0 6 u 6 1 in RN \K,

u(x) → 1 as |x| → +∞.

(1.7)

It is expected that (1.5) and (1.7) share some common properties. One of the goals of the
present paper is, as for (1.5), to find some geometric conditions on K which guarantee that
the solutions u to (1.7) are identically equal to 1. Moreover, as in [7] for (1.5), we will also
show the robustness of the Liouville type results for (1.7).
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We notice however that, whereas the solutions of (1.5) are automatically classical C2 solu-

tions in RN \K if the boundary ∂K is smooth enough (by standard interior and boundary
elliptic estimates), there is in general no smoothing effect for the nonlocal problems (1.1)
or (1.7). The solutions u may even not be continuous in general. Yet some regularity results
(uniform or Hölder continuity) will be shown here under additional assumptions on the data
J and f . Actually, one of the difficulties and novelties of this paper, as compared to [5], is to
deal with this a priori lack of regularity in general.

We observe also that, in (1.1) or (1.7), we do not ask for any additional boundary condition

on ∂K. To understand why this is so, let us make some heuristic comments. First of all, the
most intuitive nonlocal counterpart of (1.5) would be to replace ∆u in (1.5) by L̃εu with ε > 0
small, where

L̃εu(x) :=
1

βε2

ˆ

RN\K

J̃ε(x− y)
(
u(y)− u(x)

)
dy

and J̃ε(z) = ε−N J̃(ε−1z), J̃ being a radially symmetric kernel with β = (2N)−1
´

RN J̃(z) |z|
2 dz.

In other words, the nonlocal dispersion operator Lu in (1.1) or (1.7) would be replaced by

L̃εu and the kernel J would be given by (βε2)−1J̃ε. Furthermore, using for example [8], the

associated energy of (1.7), with L̃ε in place of L, can be thought of as an approximation of
that of (1.5) (see [1] and also [3, 6, 17] where similar quantities are considered in a biological
framework). Now, to see how the Neumann boundary condition in (1.5) can be recovered

from (1.1) or (1.7) with L̃ε as ε → 0+, let us consider for simplicity the case where ∂K is

of class C1 with unit normal ν and the bounded function u is of class C1(RN \K) and is
extended as a C1(RN) function still denoted by u. Formula (1.1) then also holds by continuity

in RN \K and, for every x, y ∈ RN \K, there exists a point cx,y ∈ [x, y] such that u(y)−u(x) =

∇u(cx,y) · (y − x). It follows that, for every x ∈ RN \K,

−f(u(x)) =
1

βε

ˆ

RN\K

Ĵε(x− y)∇u(cx,y) ·
y − x

|y − x|
dy,

where Ĵε(z) = ε−N Ĵ(ε−1z) and Ĵ(z) = J̃(z)|z|. Then, for all x ∈ ∂K, a formal computation
leads to

γ∇u(x) · ν = lim
ε→0+

ˆ

RN\K

Ĵε(x− y)∇u(cx,y) ·
y − x

|y − x|
dy = lim

ε→0+

(
− εβf(u(x))

)
= 0,

where γ = (1/2)
´

RN J̃(z) |z1| dz > 0. Hence, ∇u · ν = 0 on ∂K and (1.7) is then a reasonable
nonlocal counterpart for (1.5). The above calculation justifies, at least formally, why no
additional boundary condition on ∂K is required in (1.1) or (1.7).

1.2. General assumptions, notations and definitions. Let us now specify the detailed
assumptions made throughout the paper. As already mentioned above, we suppose that f is
of “bistable” type and J is a radially symmetric kernel. More precisely, we will assume that

(1.8) f ∈ C1([0, 1]), f(0) > 0, f ′(1) < 0,

(1.9)

{
J ∈ L1(RN) is a non-negative, radially symmetric kernel with unit mass,

there are 0 6 r1 < r2 such that J(x) > 0 for a.e. x with r1 < |x| < r2,
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and there exists a function φ ∈ C(R) satisfying

(1.10)

{
J1 ∗ φ− φ+ f(φ) > 0 in R,

φ is increasing in R, φ(−∞) = 0, φ(+∞) = 1,

where J1 ∈ L1(R) is the non-negative even function with unit mass given for a.e. x ∈ R by

J1(x) :=

ˆ

RN−1

J(x, y2, · · · , yN) dy2 · · ·dyN .

We notice that, in addition to the first property in (1.9), the second one is immediately fulfilled
if J is assumed to be continuous. Moreover, we notice that condition (1.10) implies immediately
that 0 < φ < 1 in R. As is well-known (see e.g. [2, 12]), condition (1.10) is satisfied if, in
addition to (1.8) and (1.9), the following assumptions are made on f and J :

(1.11)





∃ θ ∈ (0, 1), f(0) = f(θ) = f(1) = 0, f < 0 in (0, θ), f > 0 in (θ, 1),
ˆ 1

0

f > 0, f ′(0) < 0, f ′(θ) > 0, f ′(1) < 0, f ′ < 1 in [0, 1],
ˆ

R

J1(x)|x| dx < +∞ and J ∈ W 1,1(RN).

Let us also list in this subsection a few notations and definitions used in the paper:
|E| is the Lebesgue measure of the measurable set E;
1E is the characteristic function of the set E;
BR is the open Euclidean ball of radius R > 0 centered at the origin;

BR(x) is the open Euclidean ball of radius R > 0 centered at x ∈ RN ;
A(R1, R2) is the open annulus BR2 \BR1 for 0 6 R1 < R2, by setting B0 = {0};

A(x,R1, R2) is the open annulus x+A(R1, R2);
g ∗ h is the convolution of g and h;
g+ is the positive part of g, i.e. g+ := max{0, g}.

Given Ω ⊂ RN and p ∈ [1,∞], we denote by Lp(Ω) the Lebesgue space of (equivalence
classes of) measurable functions g for which the p-th power of the absolute value is Lebesgue
integrable when p < ∞ (resp. essentially bounded when p = ∞). When the context is clear,
we will write ‖g‖p instead of ‖g‖Lp(Ω). Given α ∈ (0, 1] and p ∈ [1,∞], Bα

p,∞(RN) stands for

the Nikol’skii space consisting in all measurable functions g ∈ Lp(RN) such that

[g]Bα
p,∞(RN ) := sup

h 6=0

‖g(·+ h)− g‖Lp(RN )

|h|α
< +∞.

We note that, when p = ∞, the space Bα
∞,∞(RN) coincides with the classical Hölder

space C0,α(RN). For a set E ⊂ RN and g : E → R, we set

[g]C0,α(E) = sup
x∈E,y∈E, x 6=y

|g(x)− g(y)|

|x− y|α
.

Let us finally recall some useful notions of regularity of a compact set K.

Definition 1.1. Let α ∈ (0, 1]. We say that a compact set K ⊂ RN has C0,α boundary if
there exist r > 0, p ∈ N, p rotations (Ri)16i6p of RN , p points (zi)16i6p of ∂K and p functions
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(ψi)16i6p defined in the (N − 1)-dimensional ball BN−1
r =

{
x′ ∈ RN−1; |x′| < r

}
of class

C0,α(BN−1
r ) and such that

(1.12) ∂K =
⋃

16i6p

Ri

({
xN = ψi(x

′); x′ ∈ BN−1
r

})

and

(1.13)
◦

K ∩ Br(zi) = Ri

({
xN > ψi(x

′); x′ ∈ BN−1
r

})
∩Br(zi)

for every 1 6 i 6 p.

Definition 1.2. Let α ∈ (0, 1], let K ⊂ RN be a compact convex set with non-empty interior
(∂K is then automatically of class C0,α) and let (Kε)0<ε61 ⊂ RN be a family of compact, simply
connected sets having C0,α boundary. We say that (Kε)0<ε61 is a family of C0,α deformations

of K if the following conditions are fulfilled:

(i) K ⊂ Kε1 ⊂ Kε2 for all 0 < ε1 6 ε2 6 1;
(ii) Kε → K as ε ↓ 0 in C0,α, in the sense that there exist r > 0, p ∈ N, p rotations

(Ri)16i6p of RN , p points (zi)16i6p of ∂K, p functions (ψi)16i6p and p families of func-
tions (ψi,ε)16i6p,0<ε61 of class C

0,α(BN−1
r ) describing ∂K and ∂Kε as in (1.12) and (1.13)

above, and such that

‖ψi − ψi,ε‖C0,α(BN−1
r ) → 0 as ε ↓ 0, for every 1 6 i 6 p.

2. Main results

The Liouville property for the local problem (1.5) says that u = 1 in RN \K under some
geometric conditions on K, in particular when K is convex, see [5]. When the obstacle K is
convex, we prove that this Liouville property still holds for (1.7) with the nonlocal operator L.
We will actually prove several results, which correspond to various assumptions on the solutions
u and the data f and J . We will also show the robustness of the Liouville type property with
respect to small deformations of the obstacle K. The assumptions (1.8), (1.9) and (1.10)
will be common assumptions of almost all results. In some statements, assumption (1.10) is
sometimes replaced by the stronger assumption (1.11).

2.1. A first rough Liouville type result. Under rather mild additional assumptions on K,
we first state a “rough” Liouville type property for the solutions of (1.7), if f is assumed to
be non-negative on the range of u.

Proposition 2.1. Let K ⊂ RN be a compact set such that RN \ K is connected. Assume

that f ∈ C1([0, 1]) and J satisfies (1.9). Let θ ∈ [0, 1) and assume that f > 0 in [θ, 1]. Let

u : RN \K → [θ, 1] be a continuous solution of
{
Lu+ f(u) = 0 in RN \K,

u(x) → 1 as |x| → +∞.
(2.1)

Then, u = 1 in RN \K.

One of the main goals of the paper is to understand under which conditions on K this
Liouville type property still holds or does not hold when u ranges in the whole interval [0, 1].
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2.2. Liouville type properties for convex obstacles. Our first main theorem is the fol-
lowing result dealing with continuous super-solutions to L(u) + f(u) = 0 ranging in [0, 1].

Theorem 2.2. Let K ⊂ R
N be a compact convex set. Assume (1.8), (1.9), (1.10) and let

u ∈ C(RN \K, [0, 1])(2.2)

be a function satisfying
{
Lu+ f(u) 6 0 in RN \K,

u(x) → 1 as |x| → +∞.
(2.3)

Then, u = 1 in RN \K.

If we ask for a solution of (1.7) instead of a super-solution, it turns out that the regularity
or limiting conditions required on u to obtain a Liouville type result can be considerably
weakened, by strengthening the assumptions made on f and/or J .

Firstly, the continuity assumption (2.2) can be relaxed provided the nonlinearity does not
vary too much. More precisely, we will prove the following result.

Theorem 2.3. Let K ⊂ R
N be a compact convex set. Assume (1.8), (1.9), (1.10) and

max
[0,1]

f ′ <
1

2
.(2.4)

Let u : RN \K → [0, 1] be a measurable function satisfying
{
Lu+ f(u) = 0 a.e. in RN \K,

u(x) → 1 as |x| → +∞.

Then, u = 1 a.e. in RN \K.

Secondly, assuming that f and J satisfy (1.11) instead of (1.10), that J ∈ L2(RN) and is
compactly supported, and that f does not vary too much or u is a priori uniformly continuous,
then the assumptions on the asymptotic behaviour of u at infinity can be noticeably weakened.
More precisely, the following result holds.

Theorem 2.4. Let K ⊂ R
N be a compact convex set and assume that f and J sat-

isfy (1.8), (1.9) and (1.11). Assume further that J is compactly supported and J ∈ L2(RN).

If u : RN \K → [0, 1] is uniformly continuous in RN \K and obeys

(2.5)





Lu+ f(u) = 0 in RN \K,

sup
RN\K

u = 1,

then u = 1 in RN \K. Similarly, if (2.4) holds and if u : RN \ K → [0, 1] is a measurable

function satisfying

(2.6)





Lu+ f(u) = 0 a.e. in RN \K,

ess sup
RN\K

u = 1,

then u = 1 a.e. in RN \K.
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Remark 2.5. Condition (2.4) ensures that u actually has a uniformly continuous representative

in RN \K (see Lemma 3.2 and Remark 3.3). However, if u is already known to be uniformly
continuous, then Theorem 2.4 provides the same conclusion without assumption (2.4) (see
Lemma 7.2 for further details).

2.3. Robustness of the Liouville property for nearly convex obstacles K. Under some
flatness assumptions on f , and following a line of ideas in [7], it turns out that the Liouville
property is still available under small Hölder perturbations of a given convex obstacle K.
Namely, the following result holds.

Theorem 2.6. Let α ∈ (0, 1], let K ⊂ RN be a compact convex set with non-empty interior

and let (Kε)0<ε61 be a family of C0,α deformations of K. Assume (1.8), (1.9), (1.11) and

suppose that J ∈ Bα
1,∞(RN) and

max
[0,1]

f ′ < inf
0<ε61

inf
x∈RN\Kε

‖J(x− ·)‖L1(RN\Kε).

For 0 < ε 6 1, let Lε be the operator given by, for every v ∈ L∞(RN \Kε),

Lεv(x) :=

ˆ

RN\Kε

J(x− y)
(
v(y)− v(x)

)
dy.

Then there exists ε0 ∈ (0, 1] such that for all ε ∈ (0, ε0] the unique measurable solution uε of

(2.7)





Lεuε + f(uε) = 0 a.e. in RN \Kε,

0 6 uε 6 1 a.e. in RN \Kε,

uε(x) → 1 as |x| → +∞,

is uε = 1 a.e. in RN \Kε.

Remark 2.7. It should be noted that the monotonicity assumption (i) in Definition 1.2 has
been made for simplicity and is not necessary for our purposes. Moreover, the conclusion of
Theorem 2.6 remains true whenever (Kε)0<ε61 is a family of C0,α deformations of any compact
setK for which the conclusion of Theorem 2.3 is valid. Since there exist some smooth, compact,
non-convex and simply connected sets which are C0,α close to a smooth, compact and convex
set, Theorem 2.6 implies that the Liouville property holds for some smooth, compact and
non-convex obstacles, and then also for their C0,α perturbations. Finally, we conjecture that
the Liouville property of Theorem 2.3 holds for any starshaped compact obstacle as well.

However, as in the local case (see [5, Theorem 6.5]), the above Liouville type properties
cannot be expected for general obstacles. For example, one can easily find counterexamples if
K is no longer simply connected. Take for instance K = A(1, 2) = B2 \ B1 and suppose that
J is supported in B1/2. Then, the function u defined by

u(x) =

{
1 if x ∈ RN \B2,

0 if x ∈ B1,

is a continuous solution of (2.1). Yet, u is not identically 1 in the whole set RN \K.

Outline of the paper. The following first sections are concerned with general results on
the solutions to problems (1.1) or (1.7). Namely, in Section 3, we show that the solutions
are uniformly continuous, more precisely they have a uniformly continuous representative, if
rather mild assumptions are made on f . In Section 4, we give several comparison principles
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that fit our purposes. We then use these comparison principles in Section 5 to construct a
radially symmetric lower bound for the solutions. In Section 6, we study an auxiliary problem
which will enable us to pave the way towards the proof of Theorem 2.4. The remaining
part of the paper is devoted to the proofs of our main results. In Section 7, we prove, at a
stroke, Theorems 2.2 and 2.3, and with more work we show how to relax the assumptions
on u when the kernel J is compactly supported, that is we prove Theorem 2.4. In Section 8,
as a preliminary result we prove the rough Liouville-type result Proposition 2.1 and then we
establish our robustness result Theorem 2.6.

3. Some auxiliary regularity results

Throughout this section, K is any compact subset of RN , f is any C1(R) function, and J is
any L1(RN) non-negative and radially symmetric kernel with unit mass. For x ∈ RN , we write

J (x) :=

ˆ

RN\K

J(x− y) dy.

Notice that J is a uniformly continuous function in RN . In the sequel, for any δ > 0, we will
denote Kδ the closed thickening of K with width δ, defined by

Kδ := K +Bδ.

We now prove that, when J is compactly supported and f ′ is not too large in [0, 1], then
the measurable solutions u to (1.7) are continuous far away from the obstacle.

Lemma 3.1. Suppose that K ⊂ RN is a compact set and that J is supported in the ball Bδ

for some δ > 0. Suppose that

max
[0,1]

f ′ < 1.(3.1)

Let u ∈ L∞(RN \K, [0, 1]) be a solution of Lu+ f(u) = 0 a.e. in RN \K. Then u is uniformly

continuous in RN \Kδ, in the sense that u has a representative in its class of equivalence that

is uniformly continuous in RN \Kδ. If, in addition, J ∈ Bα
1,∞(RN) for some α ∈ (0, 1], then

u ∈ C0,α(RN \Kδ) and
(
1−max[0,1] f

′
)
[u]

C0,α(RN\Kδ)
6 [J ]Bα

1,∞(RN ).

Proof. For every x and y in RN \Kδ, we have

Lu(x)− Lu(y) =

ˆ

RN\K

u(z)
(
J(x− z)− J(y − z)

)
dz

−u(x)

ˆ

RN\K

J(x− z) dz + u(y)

ˆ

RN\K

J(y − z) dz

= −J (x) u(x) + J (y) u(y) +

ˆ

RN\K

u(z)
(
J(x− z)− J(y − z)

)
dz.

Since J has unit mass and is supported in Bδ, we get that J (x) = J (y) = 1. Therefore,

Lu(x)− Lu(y) + u(x)− u(y) =

ˆ

RN\K

u(z)
(
J(x− z)− J(y − z)

)
dz.
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Now, remember that u is a solution to Lu + f(u) = 0 a.e. in RN \K. In particular, there
exists a measurable negligible set E such that Lu(z) + f(u(z)) = 0 (and u(z) ∈ [0, 1]) for all
z ∈ R

N \ (K ∪ E). Hence, letting
g(t) := t− f(t)

for t ∈ [0, 1], we obtain that

(3.2) ∀ x, y ∈ R
N \ (Kδ ∪E), g(u(x))− g(u(y))=

ˆ

RN\K

u(z)
(
J(x−z)−J(y−z)

)
dz =: h(x, y).

Notice that, since J ∈ L1(RN) and u ∈ L∞(RN \K), the function h defined by the right-hand
side of the previous equation can actually be defined in RN×RN and it is uniformly continuous
in RN × RN . Furthermore, by (3.1), the function g ∈ C1([0, 1]) is such that g′ > 0 in [0, 1].
It is then a C1 diffeomorphism from [0, 1] to [g(0), g(1)] = [−f(0), 1 − f(1)]. Let us denote
g−1 : [g(0), g(1)] → [0, 1] its reciprocal.

Fix y0 ∈ RN \ (Kδ ∪ E). For every x ∈ RN \ (Kδ ∪ E), (3.2) yields

g(u(y0)) + h(x, y0) = g(u(x)) ∈ [g(0), g(1)].

Since the function x 7→ g(u(y0)) + h(x, y0) is continuous (in the whole RN) and since E is
negligible, it follows that g(u(y0)) + h(x, y0) ∈ [g(0), g(1)] for all x ∈ RN \Kδ (since any point
of the open set RN \Kδ is the limit of a sequence of points in RN \ (Kδ ∪ E)). Define now

ũ(x) = g−1
(
g(u(y0)) + h(x, y0)

)
for x ∈ RN \Kδ.

By (3.2), one has ũ = u in RN \ (Kδ ∪E). Furthermore, ũ is uniformly continuous in RN \Kδ

owing to its definition, since h is uniformly continuous in R
N×R

N and g−1 is C1 hence Lipschitz
continuous in [g(0), g(1)].

Even if it means redefining u by ũ in RN \Kδ, it follows that u is uniformly continuous

in RN \Kδ and that (3.2) holds, by continuity, for all x, y ∈ RN \Kδ. In particular, since
0 6 u 6 1 in RN \K, we get that

(3.3) ∀ x, y ∈ RN \Kδ, |g(u(x))− g(u(y))| 6 ‖J(·+ x− y)− J‖L1(RN ).

Finally, if J ∈ Bα
1,∞(RN) with α ∈ (0, 1], then (3.3) yields g(u) ∈ C0,α(RN \Kδ) and

[g(u)]
C0,α(RN\Kδ)

6 sup
h 6=0

‖J(·+ h)− J‖L1(RN )

|h|α
= [J ]Bα

1,∞(RN ).

Since max[g(0),g(1)] |(g
−1)′| 6 (1 − max[0,1] f

′)−1 and 0 6 u 6 1, one concludes that u ∈

C0,α(RN \Kδ) and
(
1−max[0,1] f

′
)
[u]

C0,α(RN\Kδ)
6 [J ]Bα

1,∞(RN ). �

We now establish a regularity result for u in the whole set RN \K for flatter nonlinearities.

Lemma 3.2. Suppose that K ⊂ RN is a compact set and that

max
[0,1]

f ′ < inf
RN\K

J .(3.4)

Let u ∈ L∞(RN \ K, [0, 1]) be a solution of Lu + f(u) = 0 a.e. in RN \ K. Then, u can be

redefined up to a negligible set and extended as a uniformly continuous function in RN \K. If,

in addition, J ∈ Bα
1,∞(RN) for some α ∈ (0, 1], then u ∈ C0,α(RN \K) and

(
inf

RN\K
J −max

[0,1]
f ′
)
[u]C0,α(RN\K) 6 2 [J ]Bα

1,∞(RN ).
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Remark 3.3. In the case of a compact convex obstacle K, then the conclusion of Lemma 3.2
still holds if (3.4) is replaced by

max
[0,1]

f ′ <
1

2
.

Indeed, J > 1/2 in RN \K when K is convex (remember also that J is always assumed to be a
non-negative radially symmetric kernel with unit mass). The bound 1/2 is somehow optimal,
since K can be as large as desired, still in the class of compact convex sets. However, this
bound deteriorates considerably if K is only starshaped, as the infimum of J in RN \K can
become arbitrarily small. Roughly speaking, the less convex the obstacle K, the flatter the
nonlinearity f needs to be to insure (3.4) and the interior continuity of the solution u.

Proof of Lemma 3.2. Reasoning exactly as in the proof of Lemma 3.1, there exists a measurable
negligible set E such that

(3.5) ∀ x, y ∈ R
N \ (K ∪ E), G(x, u(x))−G(y, u(y)) = h(x, y),

where h(x, y) is defined in (3.2) (remember also that h is uniformly continuous in R
N × R

N)
and

G(x, s) = J (x) s− f(s) for (x, s) ∈ R
N × [0, 1].

By (3.4) and the continuity of J , the function G is such that ∂sG(x, s) > 0 for all (x, s) ∈
RN \K × [0, 1]. For every x ∈ RN \K, the function G(x, ·) is then a C1 diffeomorphism
from [0, 1] to [G(x, 0), G(x, 1)]. Let us denote Hx : [G(x, 0), G(x, 1)] → [0, 1] its reciprocal,

that is, Hx(G(x, t)) = t for all x ∈ RN \K and t ∈ [0, 1].
Fix y0 ∈ RN \ (K ∪ E). For every x ∈ RN \ (K ∪ E), (3.5) yields

G(y0, u(y0)) + h(x, y0) = G(x, u(x)) ∈ [G(x, 0), G(x, 1)].

Since the function x 7→ G(y0, u(y0))+h(x, y0) is continuous (in the whole space RN ), since G is
itself continuous in RN × [0, 1] and since E is negligible, it follows that G(y0, u(y0))+h(x, y0) ∈
[G(x, 0), G(x, 1)] for all x in the open set RN \K. Define now

ũ(x) = Hx

(
G(y0, u(y0)) + h(x, y0)

)
for x ∈ RN \K.

By (3.5), one has ũ = u in RN \ (K ∪ E). Furthermore, ũ is continuous in RN \K owing to
its definition, since h is continuous in RN × RN and (x, s) 7→ Hx(s) is continuous in the set{
(x, s) ∈ RN \K × R; s ∈ [G(x, 0), G(x, 1)]

}
. Even if it means redefining u by ũ in RN \ K

and extending it by ũ in RN \K, it follows that u is continuous in RN \K and that (3.5)

holds, by continuity, for all x, y in the open set RN \ K and then in RN \K. In particular,

since 0 6 u 6 1 in RN \K, we get that

(3.6) ∀ x, y ∈ RN \K, |G(x, u(x)))−G(y, u(y))| 6 ‖J(·+ x− y)− J‖L1(RN ).

Finally, define
β := inf

RN\K
J −max

[0,1]
f ′ > 0,

the positivity of β resulting from (3.4). From (3.6) together with the definition of G and the

inequalities 0 6 u 6 1 in RN \K, one infers that, for all x, y ∈ RN \K,
∣∣J (x) (u(x)−u(y))− (f(u(x))−f(u(y)))

∣∣ 6 ‖J(·+x−y)− J‖L1(RN ) +
∣∣u(y) (J (x)−J (y))

∣∣
6 2 ‖J(·+ x− y)− J‖L1(RN ).
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It follows from the mean value theorem and the above definition of β that

β |u(x)− u(y)| 6 2 ‖J(·+ x− y)− J‖L1(RN )

for all x, y ∈ RN \K. In particular, the function u is uniformly continuous in RN \K. Fur-

thermore, if J ∈ Bα
1,∞(RN) for some α ∈ (0, 1], then u ∈ C0,α(RN \K) and β [u]C0,α(RN\K) 6

2 [J ]Bα
1,∞(RN ). The proof of Lemma 3.2 is thereby complete. �

4. Comparison principles

In this section, we collect some comparison principles that fit for our purposes. Throughout
this section, K is any compact subset of RN , f is any C1(R) function, and J is any L1(RN)
non-negative and radially symmetric kernel with unit mass.

We start with a weak maximum principle.

Lemma 4.1 (Weak maximum principle). Assume that

(4.1) f ′ 6 −c1 in [1− c0,+∞), for some c0 > 0, c1 > 0.

Let H ⊂ RN be an open affine half-space such that K ⊂ Hc = RN \H. Let u, v ∈ L∞(RN \K)
be such that

(4.2) u, v ∈ C
(
H
)

and

(4.3)

{
Lu+ f(u) 6 0 in H,

Lv + f(v) > 0 in H.

Assume also that

(4.4) u > 1− c0 in H,

that

(4.5) lim sup
|x|→+∞

(
v(x)− u(x)

)
6 0

and that

(4.6) v 6 u a.e. in Hc \K.

Then, v 6 u a.e. in R
N \K.

Proof. We let w := v − u. We want to prove that w 6 0 a.e. in RN \K. From (4.6), we only
have to show that w 6 0 in H (remember that from (4.2) both functions u and v are assumed
to be continuous in H). We argue by contradiction and we suppose that supH w > 0. Then,
thanks to (4.6), one has supRN\K w = supH w > 0 and there exists a sequence (xj)j∈N in H
such that

lim
j→+∞

w(xj) = sup
RN\K

w > 0.

It follows then from (4.5) that the sequence (xj)j∈N is bounded. Thus, up to extraction of

a subsequence, there exists a point x̄ ∈ H such that xj → x̄ as j → +∞, hence w(x̄) =
limj→+∞w(xj) > 0 by (4.2). As a consequence, (4.3) yields

(4.7) Lw(x̄) = Lv(x̄)−Lu(x̄) > −f
(
v(x̄)

)
+ f

(
u(x̄)

)
= −w(x̄)

ˆ 1

0

f ′
(
tv(x̄) + (1− t)u(x̄)

)
dt.
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Moreover, combining (4.4) and w(x̄) > 0, we obtain that v(x̄) = w(x̄) + u(x̄) > u(x̄) > 1− c0,
and so tv(x̄) + (1 − t)u(x̄) > 1 − c0 for all t ∈ [0, 1]. From this and (4.1), we conclude that
f ′
(
tv(x̄) + (1 − t)u(x̄)

)
6 −c1 < 0 for all t ∈ [0, 1]. This inequality, together with w(x̄) > 0,

yields

−w(x̄)

ˆ 1

0

f ′
(
tv(x̄) + (1− t)u(x̄)

)
dt > 0.

By inserting this information into (4.7), we get Lw(x̄) > 0. That is, recalling (1.2) and the
nonnegativity of J ,

0 < Lw(x̄) =

ˆ

RN\K

J(x̄− y)
(
w(y)− w(x̄)

)
dy =

ˆ

RN\K

J(x̄− y)

(
w(y)− sup

RN\K

w

)
dy 6 0.

This is a contradiction, and so the desired result is established. �

The next lemma is concerned with a strong maximum principle.

Lemma 4.2 (Strong maximum principle). Assume that J satisfies (1.9), with 0 6 r1 < r2. Let
H ⊂ R

N be an open affine half-space such that K ⊂ Hc. Let u, v ∈ L∞(RN \K) satisfy (4.2)
and (4.3). Assume also that

(4.8) v 6 u a.e. in R
N \K

and that there exists x̄ ∈ H such that v(x̄) = u(x̄). Then,

v = u a.e. in (H +Br2) \K.

Proof. We let w := v − u. Notice that w(x̄) = 0. As a consequence, using (4.3), we can write

Lw(x̄) = Lv(x̄)− Lu(x̄) > −f(v(x̄)) + f(u(x̄)) = 0.

On the other hand, w(y) 6 0 = w(x̄) for a.e. y ∈ RN \K, thanks to (4.8), and therefore

Lw(x̄) =

ˆ

RN\K

J(x̄− y)
(
w(y)− w(x̄)

)
dy 6 0.

Hence, Lw(x̄) = 0 and

0 =

ˆ

RN\K

J(x̄− y)
(
w(y)− w(x̄)

)
dy =

ˆ

RN\K

J(x̄− y)w(y) dy.

From our assumptions, we have w 6 0 a.e. in R
N \K. Accordingly, since J is such that J > 0

a.e. in the annulus A(r1, r2) from the general assumption (1.9), it follows that

w(x) = 0, i.e. v(x) = u(x), for a.e. x ∈ A(x̄, r1, r2) ∩ R
N \K.

In particular, since u and v are continuous in H and H ⊂ RN \K, we get that

v(x) = u(x) for all x ∈ A(x̄, r1, r2) ∩H =: Ω1(x̄).

Applying the same arguments as above to the new set of contact points Ω1(x̄) we obtain that

v(x) = u(x) for all x ∈ A(x1, r1, r2)∩H and for all x1 ∈ Ω1(x̄). As a consequence, v(x) = u(x)

for all x ∈ Bµ(x̄) ∩ H with µ := r2 − r1. Iterating this procedure over again implies that

v(x) = u(x) for each x in B2µ(x̄) ∩ H and so on in Bkµ(x̄) ∩ H for any k ∈ N. Hence, v = u
in H.
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Therefore, as in the beginning of the proof, it follows that Lw(x) = 0 for all x ∈ H and

v = u a.e. in
(
H +A(r1, r2)

)
∩
(
R

N \K
)
= (H +Br2) \K.

The proof of Lemma 4.2 is thereby complete. �

Finally, we derive a sweeping-type result in the spirit of Serrin’s sweeping theorem [21] (see
also [18], and page 29 in [20] for a very clear explanation of the method).

Lemma 4.3 (Sweeping principle). Assume that J satisfies (1.9), with 0 6 r1 < r2. Let

g : R → R be a continuous function, let a, b, s1, s2, s3, s4 be some real numbers such that a 6 b
and r2 6 s1 6 s2 < s3 6 s4. Let u ∈ C(A(s1, s4)) satisfy

(4.9)

ˆ

A(s1,s4)

J(x− y) u(y) dy− u(x) + g
(
u(x)

)
6 0 for all x ∈ A(s1, s4),

and

(4.10)

ˆ

A(s1,s4)

J(x− y) u(y) dy− u(x) + g
(
u(x)

)
< 0 for all x ∈ A(s2, s3).

Let (wτ )τ∈[a,b] be a continuous family in C(A(s1, s4)) such that

(4.11)

ˆ

A(s1,s4)

J(x− y)wτ(y) dy − wτ(x) + g
(
wτ (x)

)
> 0 for all x ∈ A(s1, s4).

Assume further that there exists τ0 ∈ [a, b] such that wτ0 6 u in A(s1, s4). Then wτ 6 u

in A(s1, s4) for every τ ∈ [a, b].

Proof. Let us define Σ ⊂ [a, b] to be the following set:

Σ :=
{
τ ∈ [a, b]; wτ 6 u in A(s1, s4)

}
.

To prove the theorem, we will show that Σ is a non-empty open and closed set relatively
to [a, b]. It will then follow that Σ = [a, b] and the theorem will be proved. First of all, by
definition, Σ is a closed subset of [a, b] and τ0 ∈ Σ. To finish our proof, it remains to show

that Σ is an open set relatively to [a, b]. So let us pick τ ∈ Σ. We have wτ 6 u in A(s1, s4).

By continuity of u and wτ in the compact set A(s1, s4), either maxA(s1,s4)
(wτ −u) < 0 or there

exists z ∈ A(s1, s4) such that wτ (z) = u(z). In the latter case, using wτ 6 u in A(s1, s4)
together with (4.9) and (4.11) at the point z, we get that

0 6

ˆ

A(s1,s4)

J(z − y)
(
u(y)− wτ (y)

)
dy 6 0.

Using the continuity of both u and wτ and the fact that J > 0 a.e. in A(r1, r2) for some

0 6 r1 < r2 by (1.9), it follows that wτ = u in A(z, r1, r2)∩A(s1, s4) (which is nonempty since

r2 6 s1) and then wτ = u in A(z′, r1, r2) ∩ A(s1, s4) for all z′ ∈ A(z, r1, r2) ∩ A(s1, s4). In

particular, it is easy to see that there exists r > 0 such that wτ = u in Br(z) ∩ A(s1, s4). As

a consequence, the non-empty set
{
x ∈ A(s1, s4); wτ (x) = u(x)

}
is both (obviously) closed
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and open relatively to the (connected) set A(s1, s4) and it is thus equal to A(s1, s4). In other

words, wτ = u in A(s1, s4), hence
ˆ

A(s1,s4)

J(x− y) u(y) dy − u(x) + g
(
u(x)

)
= 0 for all x ∈ A(s1, s4),

contradicting (4.10) in A(s2, s3). Therefore, we must have maxA(s1,s4)
(wτ − u) < 0. Since wτ

is continuous with respect to τ in the uniform norm, there exists δ > 0 such that wτ ′ 6 u in
A(s1, s4) for all τ

′ ∈ (τ − δ, τ + δ) ∩ [a, b]. Hence, (τ − δ, τ + δ) ∩ [a, b] ⊂ Σ, which shows that
Σ is open relatively to [a, b]. �

Remark 4.4. The previous arguments immediately show that, when r1 = 0 in (1.9), the sweep-
ing principle holds in any compact connected set F . Namely, if J satisfies (1.9) with r1 = 0, if

u ∈ C(F ) satisfies (4.9) with F instead of A(s1, s4) and the strict inequality somewhere in F ,

if (wτ)τ∈[a,b] is a continuous family in C(F ) satisfying (4.11) with F instead of A(s1, s4) and if
wτ0 6 u in F for some τ0 ∈ [a, b], then wτ 6 u in F for every τ ∈ [a, b].

5. Construction of radially symmetric lower bounds

In this section, we derive a first lower bound on continuous non-negative super-solutions u
of (2.3) that we constantly use along this paper. Throughout this section, K is any compact
subset of RN , f is any C1(R) function, and J is any L1(RN) non-negative and radially sym-
metric kernel with unit mass. We recall that J1 is the non-negative even L1(R) kernel with
unit mass defined for a.e. y1 ∈ R by

J1(y1) :=

ˆ

RN−1

J(y1, y2, · · · , yN) dy2 · · · dyN ,

and that assumption (1.10) means the existence of a continuous increasing function φ : R →
(0, 1) such that

(5.1)





ˆ

R

J1(τ − σ)
(
φ(σ)− φ(τ)

)
dσ + f

(
φ(τ)

)
> 0 for all τ ∈ R,

φ(−∞) = 0, φ(+∞) = 1.

Then, for such φ, we establish the following lemma:

Lemma 5.1. Assume that f and J satisfy (4.1) and (1.10), let γ ∈ (0, 1] and let u ∈

C
(
RN \K, [γ, 1]

)
be a function satisfying (2.3). Then, there exists r0 > 0 such that

φ(|x| − r0) 6 u(x) for all x ∈ RN \K.

Proof. Since u(x) → 1 as |x| → +∞, there exists R0 > 0 so large that K ⊂ BR0 and u > 1−c0
in RN \ BR0 , where c0 > 0 is given in (4.1). By (5.1), there exists A > 0 such that φ 6 γ in
(−∞,−A]. Define

r0 = R0 + A > 0

and let us check that the conclusion of Lemma 5.1 holds with this real number r0.
Let e be any unit vector of RN , that is, e ∈ ∂B1 = SN−1. For r ∈ R, let φr,e be the function

defined by

φr,e(x) := φ(e · x− r) for x ∈ R
N ,
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where e ·x stands for the standard inner product in RN . Let (e1, · · · , eN) be the canonical basis
of RN and let R be a rotation such that e = Re1. Set now ẽi := Rei for all i ∈ {2, · · · , N}
and, for x, y ∈ R

N and r ∈ R, let us define x∗ = x− re, y∗ = y − re and
{
X = (X1, · · · , XN) = (x∗ · e, x∗ · ẽ2, · · · , x

∗ · ẽN) = R−1y∗,

Y = (Y1, · · · , YN) = (y∗ · e, y∗ · ẽ2, · · · , y
∗ · ẽN) = R−1y∗.

Since J is rotationally invariant, we deduce from (5.1) that, for all x ∈ RN and r ∈ R,

(5.2)

LRNφr,e(x) :=

ˆ

RN

J(x−y)
(
φr,e(y)−φr,e(x)

)
dy =

ˆ

R

J1(X1−Y1)
(
φ(Y1)−φ(X1)

)
dY1

> −f
(
φ(X1)

)

= −f
(
φ(x · e− r)

)
= −f

(
φr,e(x)

)
.

Set He := {x ∈ R
N ; x · e > R0} (notice that He ∩ K = ∅). We remark that, if r > r0

and x ∈ Hc
e \K, then

φr,e(x) = φ(x · e− r) 6 φ(R0 − r0) = φ(−A) 6 γ 6 u(x).

Furthermore, if r > r0, y ∈ K and x ∈ He, then y · e− r 6 |y| − r 6 R0 − r and

φr,e(x) = φ(x · e− r) > φ(R0 − r) > φ(y · e− r) = φr,e(y).

Accordingly, by (5.2) and the definition of He, for any r > r0 and x ∈ He,

(5.3) Lφr,e(x) = LRNφr,e(x)−

ˆ

K

J(x− y)
(
φr,e(y)− φr,e(x)

)
dy > −f

(
φr,e(x)

)
.

Consequently, we can exploit the weak comparison principle of Lemma 4.1 (used here with H =
He ⊂ RN \K and v = φr0,e) and deduce that

φ(x · e− r0) = φr0,e(x) 6 u(x)

for every x ∈ RN \K and also for every x ∈ RN \K by continuity. This inequality holds for
every e ∈ ∂B1, while r0 > 0 does not depend on e. In particular, taking into account the
possible choice of e = x/|x| if x 6= 0 (and any e ∈ ∂B1 if x = 0), we conclude that

φ(|x| − r0) 6 u(x) for all x ∈ RN \K.

This proves Lemma 5.1. �

Remark 5.2. If RN \ K is connected, if f(0) > 0 and if J satisfies (1.9) with r1 = 0 (for
instance, if J is continuous at the origin with J(0) > 0), then Lemma 5.1 holds with γ = 0.
Indeed, these additional assumptions imply that infRN\K u > 0. If not, then by continuity of

u and the limiting conditions in (2.3), there exists x0 ∈ RN \K such that u(x0) = 0. Thus,
by (2.3) and f(0) > 0,

0 > Lu(x0) =

ˆ

RN\K

J(x0 − y)
(
u(y)− u(x0)

)
dy

and u(y) = u(x0) = 0 for all y ∈ Br2(x0)∩RN \K. Therefore, u(y) = 0 for all y ∈ RN \K by
repeating this argument and by connectedness of RN \K. This contradicts the limit u(y) → 1
as |y| → +∞. Finally, infRN\K u > 0 and the conclusion of Lemma 5.1 holds.
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6. Construction of solutions in large balls

We recall that BR(x) denotes the open Euclidean ball of RN centered at x ∈ RN and of
radius R > 0, and that BR = BR(0). Throughout this section we suppose that f and J
satisfy (1.8), (1.9) and (1.11). Here, for any R > 0 large enough and any x0 ∈ RN , we will
construct and study the properties of positive continuous solutions of the following auxiliary
problem

(6.1) LBR(x0)[v](x)− v(x) + f(v(x)) = 0 for x ∈ BR(x0),

where

(6.2) LBR(x0)[v](x) :=

ˆ

BR(x0)

J(x− y) v(y) dy.

Besides the own interest of (6.1), the properties of some particular solutions v of (6.1) are
essential in the proof of Theorem 2.4, as they will provide key estimates ensuring to derive
the asymptotic behaviour of the solutions u of (2.5) or (2.6). So in Sections 6.1 and 6.2, our
main concern will be to establish, for any x0 ∈ RN and R > 0 large enough, the existence
of a positive maximal solution vx0,R to (6.1), such that vx0,R → 1 locally uniformly in RN as

R → +∞. Based on the construction of these solutions in closed balls BR(x0), we will next
show in Section 6.3 the existence of continuous and compactly supported sub-solutions in RN .

6.1. Existence of a positive solution in BR(x0). This section is devoted to the proof of

the existence of a positive continuous solution of (6.1) in BR(x0), for any R > 0 large enough
and any x0 ∈ RN .

Lemma 6.1. Assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that J is

compactly supported and J ∈ L2(RN). Then there exists d0 = d0(f, J) > 0 such that for every

x0 ∈ RN and R > d0, problem (6.1) admits a positive continuous solution v : BR(x0) → (0, 1)
such that maxBR(x0)

v > θ, where θ ∈ (0, 1) is defined in (1.11).

Proof. Let x0 ∈ RN be fixed, let also RJ > 0 be fixed (independently of x0) such that

supp(J) ⊂ BRJ
,

and pick any R > RJ . To construct a solution, we adapt the strategy used in [10] for the
construction of a solution of a local reaction-diffusion equation. The proof is divided into
three main steps.

Step 1: definition and elementary properties of an energy functional E

In the proof of Lemma 6.1, let us extend f by f ′(1)(s− 1) for s > 1 and by −f(−s) for s 6 0

and denote f̃ this extension. Now, define

F (t) :=

ˆ t

0

f̃(s) ds for t ∈ R, c(x) := 1−

ˆ

BR(x0)

J(x− y) dy ∈ [0, 1] for x ∈ R
N ,

and consider the following energy functional

(6.3) E(u) :=
1

4

ˆ

BR(x0)

ˆ

BR(x0)

J(x−y)
(
u(y)−u(x)

)2
dxdy+

1

2

ˆ

BR(x0)

c(x)u2(x)dx−

ˆ

BR(x0)

F (u(x)) dx
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defined for u ∈ L2(BR(x0)). Since J ∈ L1(RN ), E is well defined in L2(BR(x0)). Moreover,

using the definition of F and the oddness of f̃ , we have

(6.4)

ˆ

BR(x0)

F (u(x)) dx =

ˆ

BR(x0)

F (|u(x)|) dx

for any u ∈ L2(BR(x0)), while elementary computations yield

(6.5) E(u) = −
1

2

ˆ

BR(x0)

ˆ

BR(x0)

J(x−y)u(x)u(y) dxdy+
1

2

ˆ

BR(x0)

u2(x) dx−

ˆ

BR(x0)

F (u(x)) dx.

From the last two formulas, one infers that, for any u ∈ L2(BR(x0)),

E(|u|) = −
1

2

ˆ

BR(x0)

ˆ

BR(x0)

J(x−y)|u(y)||u(x)| dxdy+
1

2

ˆ

BR(x0)

|u(x)|2 dx−

ˆ

BR(x0)

F (|u(x)|) dx

6 E(u).

To complete Step 1, let us check that the functional E is bounded from below in L2(BR(x0)).

From (1.11) and (6.4), the definition of F and f̃ , and since f̃(s) 6 0 for s > 1, we see that,
for any u ∈ L2(BR(x0)),
ˆ

BR(x0)

F (u(x)) dx =

ˆ

BR(x0)

F (|u(x)|) dx 6

ˆ

BR(x0)

ˆ min{1,|u(x)|}

0

f̃(s) ds 6 RN |B1|

ˆ 1

0

f(s) ds,

where |B1| denotes the Lebesgue measure of the unit ball. Setting C0 := |B1|
´ 1

0
f(s) ds > 0,

we thus get that

(6.6) E(u)>
1

4

ˆ

BR(x0)

ˆ

BR(x0)

J(x−y)(u(y)−u(x))2 dxdy+
1

2

ˆ

BR(x0)

c(x)u2(x)dx−C0R
N >−C0R

N

for any u ∈ L2(BR(x0)). Hence, the quantity

(6.7) γ := inf
u∈L2(BR(x0))

E(u)

is a well defined real number.

Step 2: the infimum of E in L2(BR(x0)) is achieved

We shall now see that γ is achieved for some v ∈ L2(BR(x0)). So let (un)n∈N be a minimising
sequence. From the inequality E(|u|) 6 E(u), we may assume without loss of generality that
the functions un are all non-negative. Let us first check that the sequence (un)n∈N is bounded in
L2(BR(x0)). To do so, we recall the definition (6.2) of LBR(x0) and we notice that the principal
eigenvalue λp of the operator LBR(x0)− Id is negative (see for example [1, 4, 13, 16] for a precise
definition of λp and some of its properties) and satisfies

−λp = inf
‖ϕ‖

L2(BR(x0))
=1

(
1

2

ˆ

BR(x0)

ˆ

BR(x0)

J(x− y)
(
ϕ(y)− ϕ(x)

)2
dxdy +

ˆ

BR(x0)

c(x)ϕ2(x) dx

)
.

As a consequence, from (6.6), we get

E(un) > −
λp
2

ˆ

BR(x0)

u2n(x) dx− C0R
N
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for all n ∈ N. Therefore the sequence (un)n∈N is bounded in L2(BR(x0)) since it is a minimising
sequence and since λp < 0. Up to extraction of a subsequence, the sequence (un)n∈N converges
weakly in L2(BR(x0)) to a non-negative function v ∈ L2(BR(x0)).

We actually claim that

(6.8) E(v) = γ.

Due to the lack of compactness in this non-local minimisation problem, we cannot expect to
get a strong convergence in L2(BR(x0)) for the minimising subsequence and therefore passing
to the limit in the energy (6.3) is not immediate. To overcome this difficulty, let us observe
that by introducing the function

G(t) :=

ˆ t

0

(
s− f̃(s)

)
ds =

t2

2
− F (t),

we get from (6.5) that, for any n ∈ N,

E(un) = −
1

2

ˆ

BR(x0)

ˆ

BR(x0)

J(x− y)un(x)un(y)dxdy +

ˆ

BR(x0)

G(un(x)) dx

and therefore

(6.9)

E(un)− E(v) = −
1

2

ˆ

BR(x0)

ˆ

BR(x0)

J(x− y)
[
un(x)un(y)− v(x)v(y)

]
dxdy

+

ˆ

BR(x0)

[
G(un(x))−G(v(x))

]
dx.

We observe that the double integral
´

BR(x0)

´

BR(x0)
J(x− y)un(x)un(y) dxdy can be rewritten

as
ˆ

BR(x0)

ˆ

BR(x0)

J(x−y)un(x)un(y)dxdy =

ˆ

BR(x0)

un(x)

(
ˆ

BR(x0)

J(x−y)
[
un(y)−v(y)

]
dy

)
dx

+

ˆ

BR(x0)

v(y)

(
ˆ

BR(x0)

J(x− y)un(x) dx

)
dy.

Using Lebesgue’s dominated convergence theorem, together with the assumption J ∈ L2(RN)
and the L2(BR(x0)) weak convergence of the sequence (un)n∈N, it is easy to see that

lim
n→+∞

ˆ

BR(x0)

ˆ

BR(x0)

J(x− y)un(x)un(y)dxdy =

ˆ

BR(x0)

ˆ

BR(x0)

J(x− y)v(x)v(y)dxdy

and therefore

(6.10) lim
n→+∞

−
1

2

ˆ

BR(x0)

ˆ

BR(x0)

J(x− y)
[
un(x)un(y)− v(x)v(y)

]
dxdy = 0.

On the other hand, since by assumption f̃ ′(s) < 1 for all s ∈ R, the function G is convex and,
for all n ∈ N, we get

ˆ

BR(x0)

[
G(un(x))−G(v)(x)

]
dx >

ˆ

BR(x0)

G′(v(x))
[
un(x)− v(x)

]
dx.
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From the definition of G and f̃ , together with the fact that v ∈ L2(BR(x0)), we infer that
G′(v) ∈ L2(BR(x0)). Using the L2(BR(x0)) weak convergence of (un)n∈N to v, it follows that

(6.11) lim inf
n→+∞

ˆ

BR(x0)

[
G(un(x))−G(v(x))

]
dx > 0.

Thus passing to the limit in (6.9), and using (6.10) and (6.11), we obtain γ − E(v) > 0.
Together with the definition (6.7) of γ, this shows that v is a minimiser of the energy E , that
is, (6.8) holds.

Step 3: v is a continuous positive solution u of (6.1)

We first show in this step that v is a solution to (6.1) with f̃ instead of f . From (6.8), v is a
critical point of E and in particular, it follows from the formulation (6.5) of E that v is a non-

negative weak solution of LBR(x0)[v] − v + f̃(v) = 0 in BR(x0). Since all functions LBR(x0)[v],

v and f̃(v) belong to L2(BR(x0)), the function v satisfies LBR(x0)[v](x) − v(x) + f̃(v(x)) = 0
for a.e. x ∈ BR(x0). Furthermore, since J ∈ L2(RN), the Cauchy-Schwarz inequality implies

that LBR(x0)[v] ∈ L∞(BR(x0)). Therefore, since by (1.11) the function s 7→ s − f̃(s) is a C1

diffeomorphism from R+ onto R+ and since v is non-negative, it follows from the equation

LBR(x0)[v] − v + f̃(v) = 0 a.e. in BR(x0) that v ∈ L∞(BR(x0)). Thus by reproducing the
arguments of the proof of Lemma 3.1 we deduce that v has a representative, still denoted v,
which is continuous in BR(x0) and satisfies

(6.12) LBR(x0)[v](x)− v(x) + f̃(v(x)) = 0 for all x ∈ BR(x0).

Remember now that, from (1.9), J > 0 a.e. inA(r1, r2) with 0 6 r1 < r2, and that R > RJ >

r2 > r1, with supp(J) ⊂ BRJ
. As a consequence, if there exists a point x ∈ BR(x0) such that

v(x) = 0, then, arguing as in the proof of the strong maximum principle (Lemma 4.2) or as in

the proof of the sweeping principle (Lemma 4.3), it follows that v = 0 in A(x, r1, r2)∩BR(x0),

hence v = 0 in A(y, r1, r2) ∩ BR(x0) for all y ∈ A(x, r1, r2) ∩ BR(x0) and finally v = 0 in

Br(x) ∩ BR(x0) for some r > 0. Therefore, the non-empty set
{
x ∈ BR(x0); v(x) = 0

}
is

both (obviously) closed and open relatively to BR(x0) and is thus equal to BR(x0). As a

consequence, either v ≡ 0 in BR(x0) or v > 0 in BR(x0).
In this paragraph, we prove that the solution v constructed is a solution of (6.1), namely

we just need to show that v 6 1 in BR(x0). To do so, define M = maxBR(x0)
v > 0 and let

x̄ ∈ BR(x0) be such that v(x̄) =M . Assume by contradiction thatM > 1. By evaluating (6.12)

at x̄ and using the definition of f̃ , we get that
ˆ

BR(x0)

J(x̄− y)v(y)dy = LBR(x0)[v](x̄) =M − f̃(M) > M.

Since v 6M in BR(x0), this leads to a contradiction. HenceM 6 1 and thus v is a non-negative

continuous solution of (6.1) in BR(x0). Furthermore, as for the positivity of v, one gets that

either v ≡ 1 in BR(x0) or v < 1 in BR(x0). The former case is impossible since LBR(x0)[v] 6≡ 1

in BR(x0) (indeed,
´

BR(x0)
J(x− y) dy < 1 for all x ∈ ∂BR(x0)). Thus, 0 6 v < 1 in BR(x0).

Finally, let us verify that the solution v constructed is not the trivial solution. To do so, it
is enough to show that E(v) 6= E(0) = 0. We claim that, for R > RJ large enough, E(v) < 0.
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Indeed, let us consider the test function ϕ := 1BR(x0) ∈ L2(BR(x0)). We have

E(ϕ) =
1

4

ˆ

BR(x0)

ˆ

BR(x0)

J(x−y)
(
ϕ(y)−ϕ(x)

)2
dxdy +

1

2

ˆ

BR(x0)

c(x)ϕ2(x) dx−

ˆ

BR(x0)

F (ϕ(x)) dx

=
1

2

ˆ

BR(x0)

c(x) dx−RN |B1|

ˆ 1

0

f(s) ds

=
1

2

ˆ

BR(x0)

ˆ

RN\BR(x0)

J(x− y) dy dx− RN |B1|

ˆ 1

0

f(s) ds.

Since supp(J) ⊂ BRJ
, the above equality yields

E(ϕ) =
1

2

ˆ

BR(x0)\BR−RJ
(x0)

ˆ

RN\BR(x0)

J(x− y) dy dx− RN |B1|

ˆ 1

0

f(s) ds,

6
1

2
|B1|

(
RN − (R− RJ)

N
)
− RN |B1|

ˆ 1

0

f(s) ds.

Thus, since
´ 1

0
f(s) ds > 0, there exists d0 = d0(J, f) ∈ (RJ ,+∞), independent of x0, such

that, for every R > d0, the right-hand side of the above inequality is negative and thus
E(v) 6 E(ϕ) < 0, which proves our claim. Furthermore, since 0 6 v < 1 in BR(x0) and F 6 0

in [0, θ], one infers that maxBR(x0)
v > θ, hence v > 0 in BR(x0) (remember that v was either

positive or identically equal to 0 in BR(x0)).

As a conclusion, for every R such that R > d0, there exists a solution v ∈ C(BR(x0), (0, 1))
to (6.1) with maxBR(x0)

v > θ. The point x0 ∈ R
N being arbitrary and the constant d0 being

independent of x0, the proof of Lemma 6.1 is thereby complete. �

6.2. Existence and properties of the maximal solution in BR(x0). Let us now look
more closely at the properties of positive solutions of (6.1) and in particular at the maximal
solution, if any. To this end, let us in this subsection extend continuously f by f ′(1)(s − 1)
for s > 1 and by 0 for s 6 0. To simplify our presentation let us still denote f this extension.

Let us first recall the notion of maximal solution for problem (6.1).

Definition 6.2. Let x0 ∈ RN and R > 0. A function v ∈ C(BR(x0), [0, 1]) is called a maximal

solution to (6.1) in BR(x0) if any solution w ∈ C(BR(x0), [0, 1]) satisfies w 6 v in BR(x0).

The following lemma provides the existence and uniqueness of a maximal solution to the
problem (6.1) when R > 0 is large enough.

Lemma 6.3. Assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that J
is compactly supported and J ∈ L2(RN). Then there exists d0 = d0(f, J) > 0, given as in

Lemma 6.1, such that for every x0 ∈ RN and R > d0, problem (6.1) admits a unique maximal

solution vx0,R in BR(x0) and vx0,R satisfies 0 < vx0,R < 1 in BR(x0).

Proof. Let x0 ∈ RN be fixed and let R be fixed such that R > d0, where d0 = d0(f, J) > 0
is given in Lemma 6.1. We will check that the conclusion holds with this quantity d0. First
of all, the uniqueness of the maximal solution in BR(x0), if any, is a trivial consequence of its
definition.

Let us then focus on the construction of a maximal solution. From Lemma 6.1, there exists
a solution v ∈ C(BR(x0), (0, 1)) to (6.1). Now, remember that 1 is a strict super-solution
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to (6.1). Therefore, since f is Lipschitz continuous, it follows that we can construct a maximal

solution vx0,R ∈ C(BR(x0), (0, 1)) to (6.1) such that

0 < v 6 vx0,R < 1 in BR(x0)

by using standard monotone iterative scheme as in [13, Theorem A.1]. For the sake of com-
pleteness, let us describe this scheme in the next paragraph.

First, let us observe that, from the assumptions on J , the linear operator LBR(x0) is a

continuous operator in C(BR(x0)). Next let us choose a real number k > 0 large enough such
that the function s 7→ −ks− f(s) is decreasing in R. We can increase further k if necessary to
ensure that k+1 ∈ ρ(LBR(x0)), where ρ(LBR(x0)) denotes the resolvent of the operator LBR(x0).
We note that, by this choice of k, the operator LBR(x0)−(k+1) satisfies a comparison principle,

in the sense that if w ∈ C(BR(x0)) satisfies LBR(x0)[w]− (k+1)w > 0 in BR(x0) then w 6 0 in

BR(x0) (see [13, 14]). Now, set v0 = 1 and let v1 ∈ C(BR(x0)) be the solution of the following
linear problem

(6.13) LBR(x0)[v1](x)− (k + 1)v1(x) = −kv0(x)− f(v0(x)) for x ∈ BR(x0).

The function v1 is well defined, since by construction the continuous operator LBR(x0)− (k+1)

is invertible. We claim that v 6 v1 6 v0 in BR(x0). Indeed, since v (6 1) and v0 = 1 are

respectively a solution and a super-solution of (6.1), we have, for x ∈ BR(x0),

LBR(x0)[v1 − v0](x)− (k + 1)(v1(x)− v0(x)) = −LBR(x0)[1](x) + 1 > 0,

LBR(x0)[v1 − v](x)− (k + 1)(v1(x)− v(x)) = −kv0(x)− f(v0(x)) + kv(x) + f(v(x)) 6 0.

So, the inequality v 6 v1 6 v0 in BR(x0) follows from the comparison principle satisfied by

the operator LBR(x0) − (k + 1). In particular, 0 < v1 6 1 in BR(x0). Now let v2 ∈ C(BR(x0))
be the solution of (6.13) with v2 instead of v1 in the left-hand side and v1 instead of v0 in the
right-hand side. From the monotonicity of s 7→ −ks−f(s) and from the comparison principle,

we have v 6 v2 6 v1 6 v0 in BR(x0). By induction, we can construct a non-increasing sequence

of functions (vn)n∈N in C(BR(x0)) satisfying v 6 vn+1 6 vn 6 v0 in BR(x0) and

(6.14) LBR(x0)[vn+1](x)− (k + 1)vn+1(x) = −kvn(x)− f(vn(x)) for x ∈ BR(x0).

Since the sequence is non-increasing and bounded from below, the quantity

vx0,R(x) := inf
n∈N

vn(x) = lim
n→+∞

vn(x) ∈ [v(x), 1] (⊂ (0, 1])

is well defined for every x ∈ BR(x0). Moreover, by passing to the limit in the equation (6.14)
and using Lebesgue’s dominated convergence theorem, it follows that vx0,R is a solution of (6.1).

As in the proof of Lemma 3.1, we infer that vx0,R is continuous in BR(x0) and, as in the proof of

Lemma 6.1, we get that vx0,R < 1 in BR(x0). To sum up, vx0,R is a solution of (6.1) belonging

to C(BR(x0), (0, 1)).

We finally claim that vx0,R is a maximal solution to (6.1). Indeed, let w ∈ C(BR(x0), [0, 1])
be any solution to (6.1). By replacing v with w in the arguments of the previous paragraph
and using the fact that the sequence (vn)n∈N is defined with the same initial value v0 = 1,

we get that w 6 vn in BR(x0) for every n ∈ N, hence w 6 vx0,R in BR(x0). The proof of
Lemma 6.3 is thereby complete. �
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The maximal solutions vx0,R possess some important properties, in particular they are mono-
tone non-decreasing with respect to the domains.

Lemma 6.4. Let us assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that

J is compactly supported and J ∈ L2(RN). Let d0 = d0(f, J) > 0 be given as in Lemmas 6.1
and 6.3. The following properties hold:

(i) for every x1, x2 ∈ RN and d0 6 R1 6 R2 such that BR1(x1) ⊂ BR2(x2), then

vx1,R1(x) 6 vx2,R2(x) for all x ∈ BR1(x1);

(ii) for every x0 ∈ RN and R > d0, the function v0,R(· − x0) defined in BR(x0) satisfies

v0,R(· − x0) = vx0,R in BR(x0);
(iii) for every x0 ∈ R

N and R > d0,

min
BR(x0)

vx0,4R > max
BR(x0)

vx0,2R.

Proof. The proof of (i) is straightforward. Indeed, let x1, x2 ∈ R
N and d0 6 R1 6 R2 be such

that BR1(x1) ⊂ BR2(x2). Recall from the proof of Lemma 6.3 that vx2,R2 ∈ C(BR2(x2), (0, 1))
can be defined as vx2,R2 = limn→+∞ vn, where (vn)n∈N is the sequence of positive functions in

C(BR2(x2), (0, 1]) defined by induction by v0 = 1 in BR2(x2) and, for n ∈ N,

LBR2
(x2)[vn+1](x)− (k + 1)vn+1(x) = −kvn(x)− f(vn(x)) for x ∈ BR2(x2).

Here k > 0 is such that k+1 ∈ ρ(LBR2
(x2)) and the function s 7→ −ks− f(s) is decreasing. By

increasing k if necessary we may assume that k + 1 ∈ ρ(LBR2
(x2)) ∩ ρ(LBR1

(x1)). Now observe
that, for any n ∈ N, vn satisfies

(6.15) LBR1
(x1)[vn+1](x)− (k + 1)vn+1(x) 6 −kvn(x)− f(vn(x)) for x ∈ BR1(x1),

that is, the function vn+1 is a super-solution to problem (6.14) in BR1(x1). We claim that, for
every n ∈ N,

vx1,R1(x) 6 vn(x) for all x ∈ BR1(x1).

To do so, we proceed by induction. By construction of vx1,R1 and the definition of v0, we

know that vx1,R1(x) 6 v0(x) for all x ∈ BR1(x1). For n ∈ N, assume that vx1,R1(x) 6 vn(x)

for all x ∈ BR1(x1), and let us prove that vx1,R1(x) 6 vn+1(x) for all x ∈ BR1(x1). Let

w := vx1,R1 − vn+1 in BR1(x1). From (6.15), since the function s 7→ −ks − f(s) is decreasing

and vx1,R1(x) 6 vn(x) for all x ∈ BR1(x1), we see that w satisfies

LBR1
(x1)[w](x)−(k+1)w(x)>−kvx1,R1(x)−f(vx1,R1(x))+kvn(x)+f(vn(x))>0 for x∈BR1(x1).

Since the operator LBR1
(x1)−(k+1) satisfies the maximum principle we then deduce that w 6 0

in BR1(x1), that is, vx1,R1(x) 6 vn+1(x) for all x ∈ BR1(x1). Therefore, for every x ∈ BR1(x1),
we have vx1,R1(x) 6 limn→+∞ vn(x) = vx2,R2(x).

Part (ii) follows from the following observations. For any x0 ∈ RN , the function v0,R(·−x0) ∈

C(BR(x0), (0, 1)) satisfies

LBR(x0)[v0,R(· − x0)](x)− v0,R(x− x0) + f(v0,R(x− x0)) = 0 for all x ∈ BR(x0).

Therefore, by the maximality of vx0,R, it follows that v0,R(· − x0) 6 vx0,R in BR(x0). Similarly,

one can show that vx0,R(·+ x0) 6 v0,R in BR. Finally, v0,R(· − x0) = vx0,R in BR(x0).
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To prove (iii), we simply observe that, for any x1 ∈ B2R(x0), one has B2R(x1) ⊂ B4R(x0)

and, by (i), vx0,4R > vx1,2R in B2R(x1). Property (ii) yields vx0,2R(· − (x1 − x0)) = vx1,2R in

B2R(x1), hence

vx0,4R(x) > vx0,2R(x− (x1 − x0)) for all x1 ∈ B2R(x0) and x ∈ B2R(x1).

Now, since for every x, y ∈ BR(x0) there exists (a unique) x1 ∈ B2R(x0) such that y =

x− (x1 − x0) and x ∈ BR(x1) ⊂ B2R(x1), the latter inequality implies that

vx0,4R(x) > vx0,2R(x− (x1 − x0)) = vx0,2R(y)

for all x, y ∈ BR(x0), which completes the proof. �

We can now state our last property about the maximal solution.

Lemma 6.5. Let us assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that

J is compactly supported and J ∈ L2(RN). Then, for every x0 ∈ RN , vx0,R → 1 as R → +∞
locally uniformly in RN .

Proof. Let x0 ∈ RN be fixed. Consider any non-decreasing sequence (Rn)n∈N in [d0,+∞) and
converging to +∞, where d0 = d0(f, J) > 0 is given in Lemmas 6.1 and 6.3 (we recall that
d0 > RJ , where supp(J) ⊂ BRJ

). Thanks to part (i) of Lemma 6.4, the sequence (vx0,Rn)n∈N
is non-decreasing, in the sense that vx0,Rn 6 vx0,Rp in BRn(x0) for all n 6 p. Moreover,

0 < vx0,Rn < 1 in BRn(x0) for each n ∈ N. As a consequence, the sequence (vx0,Rn)n∈N
converges pointwise in RN to a function 0 < v̄ 6 1 which, thanks to Lebesgue’s dominated
convergence theorem, satisfies

(6.16) J ∗ v̄(x)− v̄(x) + f(v̄(x)) = 0 for all x ∈ R
N .

As in the proof of Lemma 3.1, the function v̄ can be viewed as a uniformly continuous function
and therefore the limit vx0,Rn → v̄ holds locally uniformly in RN .

Consider now any x1 ∈ R
N and any δ ∈ [d0,+∞). We can then extract a subsequence

of (Rn)n∈N that we still denote (Rn)n∈N such that, for all n ∈ N, Bδ(x1) ⊂ BRn(x0) and
Rn+1 > 4Rn. By Lemma 6.1 and parts (i) and (iii) of Lemma 6.4, we get that

(6.17)

1 > min
Bδ(x1)

vx0,Rn+1 > min
BRn (x0)

vx0,Rn+1 > min
BRn(x0)

vx0,4Rn > max
BRn (x0)

vx0,2Rn > · · ·

· · · > max
BRn(x0)

vx0,Rn > max
Bδ(x1)

vx0,Rn > max
Bδ(x1)

vx1,δ > θ.

Taking the limit as n→ +∞ in the inequality

min
Bδ(x1)

vx0,Rn+1 > max
Bδ(x1)

vx0,Rn,

we obtain that
min
Bδ(x1)

v̄ > max
Bδ(x1)

v̄.

Hence, v̄ is equal to a constant Cx1,δ in Bδ(x1) and, thanks to (6.17), there holds θ < Cx1,δ 6 1.
Furthermore, since x1 ∈ RN is arbitrary, it follows that v̄ is equal to a constant C ∈ (θ, 1] in
RN .

Lastly, (6.16) yields f(C) = 0. Since f satisfies (1.11) and θ < C 6 1, we infer that C = 1.
Therefore, v̄ = 1 in RN and thus the sequence (vx0,Rn)n∈N converges to 1 locally uniformly in
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RN as n → +∞. Since the non-decreasing sequence (Rn)n∈N converging to +∞ is arbitrary,
and so is δ ∈ [d0,+∞), it follows that vx0,R converges to 1 locally uniformly in RN as R → +∞.
The proof of Lemma 6.5 is thereby complete. �

6.3. Compactly supported continuous sub-solutions in RN . In this section, we con-
struct compactly supported continuous sub-solutions from R

N to [0, 1] of problems of the
type (6.1). Such continuous sub-solutions will then serve as a building block of some lower
bounds in the proof of Theorem 2.4.

Let us first introduce some useful notations. For x0 ∈ RN , R > 0 and x ∈ RN , let Px0,R(x)

be the projection of x on the closed convex set BR(x0), that is, Px0,R(x) ∈ BR(x0) and

|x− Px0,R(x)| = dist(x,BR(x0)) = min
y∈BR(x0)

|x− y|.

Lemma 6.6. Assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that J
is compactly supported and J ∈ L2(RN). Let d0 = d0(f, J) > 0 be given as in Lemmas 6.1

and 6.3 and, for any x0 ∈ RN and R > d0, let vx0,R ∈ C(BR(x0), (0, 1)) be the maximal solution

of (6.1). Then there exists δ0 > 0 such that, for any x0 ∈ RN , R > d0 and δ ∈ (0, δ0], the
continuous function wx0,R,δ : R

N → [0, 1) defined by

(6.18) wx0,R,δ(x) = max
{
vx0,R(Px0,R(x))− δ−1 |x− Px0,R(x)|, 0

}

satisfies

(6.19)

ˆ

BR′(x0)

J(x− y)wx0,R,δ(y) dy

︸ ︷︷ ︸
=LB

R′ (x0)
[wx0,R,δ](x)

−wx0,R,δ(x) + f(wx0,R,δ(x)) > 0 for all x ∈ R
N

and for all R′ > R + δ.

Proof. In view of (6.18), we see that, for every x0 ∈ RN , R > d0 and δ > 0, the function

wx0,R,δ is continuous RN , that 0 6 wx0,R,δ < 1 in RN , that wx0,R,δ = vx0,R in BR(x0) and that
wx0,R,δ = 0 in R

N \BR+δ(x0).
We set g(s) := s− f(s) for s ∈ [0, 1]. From (1.11), we see that

(6.20) γ := min
[0,1]

g′ > 0.

We recall that, by (1.11), J is assumed to belong to W 1,1(RN ), and set

(6.21) δ0 := γ ×
(ˆ

RN

|∇J(z)| dz
)−1

> 0.

Let us now fix any x0 ∈ RN , R > d0, δ ∈ (0, δ0] and let us check that (6.19) holds for any
R′ > R+ δ. Since both wx0,R,δ and J are non-negative and since wx0,R,δ = 0 in RN \BR+δ(x0),
recalling also that f(0) = 0 due to (1.11), we see that it is sufficient to show (6.19) for
x ∈ BR+δ(x0). Furthermore, by monotonicity of the integral with respect to R′, it is enough
to show (6.19) for R′ = R + δ.

For any x ∈ BR+δ(x0), there holds
ˆ

BR+δ(x0)

J(x−y)wx0,R,δ(y) dy =

ˆ

BR+δ(x0)\BR(x0)

J(x−y)wx0,R,δ(y) dy+

ˆ

BR(x0)

J(x−y) vx0,R(y) dy.
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Therefore, it follows from the above equality and the definitions of vx0,R and wx0,R,δ that, for

x ∈ BR(x0),
ˆ

BR+δ(x0)

J(x−y)wx0,R,δ(y) dy−wx0,R,δ(x)+f(wx0,R,δ(x))=

ˆ

BR+δ(x0)\BR(x0)

J(x−y)wx0,R,δ(y) dy>0.

To complete our proof, we have to show that the above inequality holds also for x ∈
BR+δ(x0) \BR(x0). To this end, let us consider x ∈ BR+δ(x0) \BR(x0) and set

s(x) := vx0,R(Px0,R(x)) and τ(x) := dist(x,BR(x0)) = |x− Px0,R(x)| > 0,

that is, wx0,R,δ(x) = max{s(x)− δ−1τ(x), 0}. From the nonnegativity of J and wx0,R,δ and the

fact that wx0,R,δ = vx0,R in BR(x0), we have

(6.22)

ˆ

BR+δ(x0)

J(x− y)wx0,R,δ(y) dy − wδ,R,x0(x) + f(wδ,R,x0(x))

>

ˆ

BR(x0)

J(x−y) vx0,R(y) dy−max{s(x)−δ−1τ(x), 0}+f(max{s(x)−δ−1τ(x), 0}).

Now, two situations may occur: either s(x) 6 δ−1τ(x) (that is, wx0,R,δ(x) = 0), or s(x) >
δ−1τ(x) (that is, wx0,R,δ(x) > 0). In the first situation, we easily conclude that
ˆ

BR+δ(x0)

J(x− y)wx0,R,δ(y) dy − wx0,R,δ(x) + f(wx0,R,δ(x)) >

ˆ

BR(x0)

J(x− y) vx0,R(y) dy > 0.

So let us now assume that s(x) > δ−1τ(x), that is,

(6.23) 0 < wx0,R,δ(x) = s(x)− δ−1τ(x) 6 s(x) = vx0,R(Px0,R(x)) < 1.

Let us rewrite the first integral in the right-hand side of (6.22) as
ˆ

BR(x0)

J(x− y) vx0,R(y) dy =

ˆ

BR(x0)

[J(x− y)− J(Px0,R(x)− y)] vx0,R(y) dy

+

ˆ

BR(x0)

J(Px0,R(x)− y)vx0,R(y) dy.

Since vx0,R solves (6.1) in BR(x0), since Px0,R(x) ∈ BR(x0) and s(x) = vx0,R(Px0,R(x)), and
since J ∈ W 1,1(RN), the above equality yields
ˆ

BR(x0)

J(x− y) vx0,R(y) dy > s(x)− f(s(x))−

ˆ

BR(x0)

|J(x− y)− J(Px0,R(x)− y)| dy.

> s(x)− f(s(x))−

ˆ

RN

|J(x− y)− J(Px0,R(x)− y)| dy.

> s(x)− f(s(x))− τ(x)×

ˆ

RN

|∇J(z)| dz.

Combining now the above inequality with (6.22) and s(x) − δ−1τ(x) > 0, and us-
ing (6.20), (6.21) and (6.23), we get

ˆ

BR+δ(x0)

J(x− y)wx0,R,δ(y) dy − wx0,R,δ(x) + f(wx0,R,δ(x))

> g(s(x))− g(s(x)− δ−1τ(x))− γ δ−1
0 τ(x) > (γ δ−1 − γ δ−1

0 )τ(x) > 0.
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This is the desired inequality and the proof of Lemma 6.6 is thereby complete. �

7. The case of convex obstacles: proofs of the main Liouville type results

In this section, we prove our main results. We first consider in Section 7.1 the case where
J is a general kernel satisfying (1.9), namely we prove Theorems 2.2 and 2.3. Once this is
done, we consider in Section 7.2 kernels having compact support and we prove Theorem 2.4.
Section 7.3 is devoted to the proof of a lemma used in the proof of Theorem 2.4. Throughout
Section 7, we always assume that K is a compact convex set and that f and J satisfy the
conditions (1.8), (1.9) and (1.10).

7.1. General kernels: proofs of Theorems 2.2 and 2.3. Let us start our proof of Theo-
rem 2.2 with the following simple observation.

Lemma 7.1. Let K ⊂ R
N be a compact convex set and assume (1.8) and (1.9). Let u ∈

C(RN \K, [0, 1]) satisfy (2.3), that is,

Lu+ f(u) 6 0 in RN \K,(7.1)

u(x) → 1 as |x| → +∞.(7.2)

Then there exists γ ∈ (0, 1] such that γ 6 u 6 1 in RN \K.

Proof. We proceed by contradiction. Suppose that the conclusion does not hold. Then, by
continuity of u and (7.2), there exists a point x0 ∈ RN \K, such that u(x0) = 0. Arguing as
in the proof of the strong maximum principle (Lemma 4.2) or in the proof of the sweeping

principle (Lemma 4.3), we get that u = 0 in A(x0, r1, r2)∩RN \K, where 0 6 r1 < r2 are given

in (1.9), and then u = 0 in A(x1, r1, r2) ∩RN \K for all x1 ∈ A(x0, r1, r2) ∩ RN \K. Since K

is convex, it follows in particular that u = 0 in Br(x0) ∩ RN \K for some r > 0. Finally, the

non-empty set
{
x ∈ RN \K; u(x) = 0

}
is both (obviously) closed and open relatively to the

connected set RN \K. Hence u = 0 in RN \K, contradicting (7.2). �

We now turn to the proof of Theorem 2.2.

Proof of Theorem 2.2. Let K, f , J and u be as in Theorem 2.2. Firstly, without loss of
generality, one can assume by (1.8) that f is extended to a C1(R) function satisfying (4.1).
Secondly, by (2.3) and the boundedness ofK, there exists R0 > 0 large enough so thatK ⊂ BR0

and u > 1− c0 in RN \BR0 , where c0 > 0 is given in (4.1).
We proceed the proof by contradiction, and suppose that

inf
RN\K

u < 1.(7.3)

From (2.3) and (7.3), together with the continuity of u, there exists then x0 ∈ RN \K such
that

u(x0) = min
RN\K

u ∈ [0, 1).

We observe that, by Lemma 7.1, one has u(x0) > 0. Now, since K is convex, there exists
e ∈ ∂B1 such that K ⊂ Hc

e , where He is the open affine half-space defined by

He := x0 +
{
x ∈ R

N ; x · e > 0
}
.
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In light of assumption (1.10), there exists an increasing function φ ∈ C(R) such that
{
J1 ∗ φ− φ+ f(φ) > 0 in R,

φ(−∞) = 0, φ(+∞) = 1.

Let us also define the function

ϕr(x) := φr,e(x) = φ(x · e− r), x ∈ R
N ,

and the following quantity

r∗ := inf
{
r ∈ R ; ϕr 6 u in RN \K

}
.

From Lemmas 5.1 and 7.1, we know that r∗ ∈ [−∞, r0], where r0 > 0 is given in Lemma 5.1.
We claim that in fact

(7.4) r∗ = −∞.

The proof of (7.4) is by contradiction. We assume that r∗ ∈ R. Then, there exists a se-
quence (εj)j∈N of positive real numbers such that ϕr∗+εj(x) = φ(x · e − r∗ − εj) 6 u(x) for

all x ∈ RN \K and εj → 0 as j → +∞. Thus passing to the limit as j → +∞, we obtain that

ϕr∗(x) 6 u(x) for all x ∈ RN \K.

Let us denote H the open affine half-space

H =
{
x ∈ R

N ; x · e > R0

}
.

Notice that H ∩K = ∅ and that u is well defined and continuous in H . We also observe that,
by construction,

sup
Hc

ϕr∗ < 1.(7.5)

Two cases may occur.
Case 1: infHc\K(u−ϕr∗) > 0. In this situation, thanks to the uniform continuity of φ, there

exists ε > 0 such that

inf
Hc\K

(u− ϕr∗−ε) > 0.

Now, we observe that u and ϕr∗−ε satisfy



Lu+ f(u) 6 0 in H,

Lϕr∗−ε + f(ϕr∗−ε) > 0 in H (by (5.3)),

u > ϕr∗−ε in Hc \K,

together with u > 1−c0 in RN\BR0 ⊃ H and lim|x|→+∞ u(x) = 1, while ϕr∗−ε 6 1 in RN . Thus,

by the weak maximum principle (Lemma 4.1) and the continuity of u and ϕr∗−ε in RN \K,

we get that u > ϕr∗−ε in RN \K. This contradicts the minimality of r∗ and therefore Case 1
is ruled out.

Case 2: infHc\K(u − ϕr∗) = 0. In this situation, by (7.2) and (7.5), and by continuity of u

and ϕr∗ , there exists a point x̄ ∈ Hc \K such that u(x̄) = ϕr∗(x̄). Note that x̄ ∈ He, since
otherwise x̄ ∈ RN \He, namely x̄ · e < x0 · e, and the chain of inequalities

u(x̄) = ϕr∗(x̄) < ϕr∗(x0) 6 u(x0) = min
RN\K

u
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leads to a contradiction. Therefore, we have ϕr∗ 6 u in RN \K with equality at a point

x̄ ∈ RN \K ∩He. Since K ⊂ Hc
e and ϕr∗ and u satisfy respectively

{
Lu+ f(u) 6 0 in He,

Lϕr∗ + f(ϕr∗) > 0 in He (by (5.3)),
,

it follows in particular from the strong maximum principle (Lemma 4.2) that ϕr∗ = u in He.
Thus, for any e⊥ ∈ ∂B1 such that e⊥ · e = 0, one infers from (7.2) and the definition of ϕr∗

that

1 = lim
t→+∞

u(x0 + t e⊥) = lim
t→+∞

ϕr∗(x0 + t e⊥) = ϕr∗(x0) < 1.

This contradiction rules out Case 2 too.
Hence (7.4) holds true and as a consequence we have that ϕr 6 u in RN \K for any r ∈ R.

In particular, recalling that φ(+∞) = 1, we get that

1 > u(x0) > lim
r→−∞

ϕr(x0) = lim
r→−∞

φ(x0 · e− r) = 1,

a contradiction. Therefore, (7.3) can not hold. In other words, inf
RN\K u = 1, i.e. u = 1 in

RN \K. The proof of Theorem 2.2 is thereby complete. �

We observe that, by the same token, we obtain Theorem 2.3.

Proof of Theorem 2.3. By Lemma 3.2, Remark 3.3 and our assumptions on f , we know that u
has a (uniformly) continuous representative u∗ ∈ C(RN \K) in its class of equivalence and we
can identify u with u∗. The desired result now follows as a consequence of Theorem 2.2. �

7.2. Compactly supported kernels: proof of Theorem 2.4. In this subsection we prove
Theorem 2.4. That is, provided some additional assumptions on f and J are satisfied, we show
that the Liouville result obtained in Theorem 2.2 holds true when the uniform limit of u as
|x| → +∞, namely condition (7.2), is replaced by the following weaker condition

(7.6) ess sup
RN\K

u = 1,

where u : RN \ K → [0, 1] is a measurable solution of Lu + f(u) = 0 a.e. in RN \ K. The
condition (7.6) can be rewritten as

(7.7) sup
RN\K

u = 1,

if u is already assumed to be uniformly continuous in RN \K. Note that the extra assump-
tions (2.4) made on f (namely f ′ < 1/2 in [0, 1]) actually guarantees that u has a uniformly
continuous representative in its class of equivalence, as follows from Lemma 3.2 and Remark 3.3.
As a consequence, in the proof of Theorem 2.4 we can assume without loss of generality that
u : RN \K → [0, 1] is uniformly continuous and satisfies (7.7). Notice immediately that the
same arguments as in the proof of Lemma 7.1 imply that

(7.8) u > 0 in RN \K.

Otherwise u would be identically equal to 0 in RN \K, contradicting the assumption (7.7).
The key-point in the proof of Theorem 2.4 is the following lemma.
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Lemma 7.2. Let K ⊂ RN be a compact set and assume that f and J satisfy (1.8), (1.9)

and (1.11). Assume further that J is compactly supported and J ∈ L2(RN ). Let u : RN \K →
[0, 1] be a uniformly continuous solution of (2.5). Then, u(x) → 1 as |x| → +∞.

The proof of Lemma 7.2 is postponed in Section 7.3. In this section, we complete the proof
of Theorem 2.4.

Proof of Theorem 2.4. From the previous paragraphs, the function u can be assumed to be
uniformly continuous in RN \K without loss of generality. Then, since the condition (1.11),
together with (1.8) and (1.9), implies the condition (1.10), the assumptions of Theorem 2.2

are all fulfilled, thanks to Lemma 7.2. Therefore u = 1 in RN \K, completing the proof of
Theorem 2.4. �

7.3. Proof of Lemma 7.2. This section is devoted to the proof of Lemma 7.2. It is divided
into four main steps. To prove Lemma 7.2, it suffices to show that for any ε > 0 small enough
there exists R(ε) > 0 such that u > 1 − ε in RN \ BR(ε). To obtain such a lower bound,
our strategy relies on the existence of continuous families of continuous sub-solutions wτ which
satisfy wτ > 1−ε in B1(xτ ) for some xτ ∈ RN (these sub-solutions are drawn from Section 6.3).
Then, we use the sweeping principle to propagate the lower bound satisfied by the wτ ’s to a
lower bound for u.

Step 1: the solution u is close to 1 in some large balls

In this step, we show that, for any ε > 0, ℓ > 0, and R > 0, there exists a point x∗ ∈ RN \K
such that

(7.9) |x∗| > ℓ, BR(x
∗) ⊂ R

N \K, and u > 1− ε in BR(x∗).

To do so, notice first that, from (2.5) and the continuity of u in RN \K, two situations may
occur: namely, either there exists a sequence (xn)n∈N ⊂ R

N \K such that

(7.10) lim
n→+∞

|xn| = +∞ and lim
n→+∞

u(xn) = 1,

or there exists a point x̄ ∈ RN \K such that u(x̄) = 1. In the latter case, since f(u(x̄)) =

f(1) = 0, we get, as in the proof of Lemma 7.1, that u = 1 in RN \K: the claim (7.9) is
therefore trivial in this case.

Thus, it suffices to treat the former case (7.10) only. Consider the functions un defined in

RN \K − xn by

un(x) = u(x+ xn).

Since u is uniformly continuous in RN \K and since K is compact and limn→+∞ |xn| = +∞,
it follows that, for every r > 0, the functions un’s, ranging in [0, 1], are defined in Br for all
n large enough and are uniformly equicontinuous in Br. From Arzela-Ascoli theorem and the
diagonal extraction process, there exists a continuous function u∞ : RN → [0, 1] such that, up
to extraction of a subsequence, un → u∞ locally uniformly in RN as n → +∞. Furthermore,
u∞(0) = 1 by (7.10). On the other hand, the functions un’s satisfy

ˆ

(RN\K)−xn

J(x− y) un(y) dy −
(ˆ

(RN\K)−xn

J(x− y) dy
)
un(x) + f(un(x)) = 0
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for all x ∈ RN \K − xn. Lebesgue’s dominated convergence theorem implies that

J ∗ u∞ − u∞ + f(u∞) = 0 in R
N .

Since f(u∞(0)) = f(1) = 0 and u∞ 6 1 in RN , we get as in the proof of Lemma 7.1 that
u∞ = 1 in RN . In particular, for any fixed ε > 0, ℓ > 0, and R > 0, it follows that, for every
n ∈ N large enough, there holds |xn| > ℓ, BR(xn) ⊂ R

N \ K and un > 1 − ε in BR, that is,
u > 1− ε in BR(xn). In other words, the claim (7.9) holds with x∗ = xn and n large enough.

Step 2: a sub-solution in a ball

Fix ε > 0 small enough so that f ′ < 0 in [1 − ε, 1], and let us now establish a lower bound
for u in a ball far away from K, by using a sub-solution drawn from Section 6.3. We recall
here that RJ > 0 is such that supp(J) ⊂ BRJ

.
We first claim that there exist x∗ ∈ RN , 0 < RJ 6 RK 6 R and a function w ∈ C(RN , [0, 1))

such that

(7.11)

{
BR+1(x

∗) ⊂ RN \BRK
⊂ RN \K, u > 1− ε in BR+1(x∗),

L
BR+1(x

∗)
[w]−w+f(w) > 0 in RN , w>1−ε in B1(x∗), w=0 in RN \BR+1(x

∗).

To show this claim, let RK > max{1, RJ} be such that K ⊂ BRK
. Then choose R >

max{RK , d0} > 1 (d0 > 0 is given as in Lemmas 6.1 and 6.3) such that the maximal so-
lution v0,R ∈ C(BR, (0, 1)) to problem (6.1) in BR satisfies

(7.12) v0,R > 1− ε in B1.

Note that such a real number R exists according to Lemmas 6.3 and 6.5. On the one hand, as
far as the first line in (7.11) is concerned, formula (7.9), applied here with ℓ = R+1+RK > 0
and R + 1 > 0 in place of R, yields the existence of x∗ ∈ RN such that

(7.13) |x∗| > R + 1 +RK

(hence, BR+1(x
∗) ⊂ RN \BRK

⊂ RN \K) and

(7.14) u > 1− ε in BR+1(x∗).

Thanks to (7.12) and part (ii) of Lemma 6.4, the maximal solution vx∗,R ∈ C(BR(x∗), (0, 1)) to

problem (6.1) in BR(x∗) satisfies vx∗,R > 1−ε in B1(x∗). On the other hand, as far as the second
line in (7.11) is concerned, Lemma 6.6 provides the existence of a function w ∈ C(RN , [0, 1))
such that

L
BR+1(x

∗)
[w]− w + f(w) > 0 in R

N , w = vx∗,R in BR(x∗) ⊃ B1(x∗)

and w = 0 in RN \BR+1(x
∗). As a consequence, x∗, RK , R and w fulfill (7.11).

We then claim that

(7.15) w 6 u in RN \K.

Since w = 0 in RN \ BR+1(x
∗) and u > 0 in RN \K, we only need to show that w 6 u in

BR+1(x∗) (⊂ RN \K). Denote
z := w − u

in BR+1(x∗) and assume that
max

BR+1(x∗)
z = z(x̄) > 0
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for some x̄ ∈ BR+1(x∗). Since BR+1(x∗) ⊂ RN \K and u and J are non-negative with J having

a unit mass in L1(RN), it follows from the equation Lu + f(u) = 0 satisfied by u in RN \K
that

LBR+1(x∗)[u](x̄)− u(x̄) + f(u(x̄)) 6 0.

Together with the first inequality of the second line of (7.11) applied at x̄, we get that

(7.16) LBR+1(x∗)[z](x̄)− z(x̄) + f(w(x̄))− f(u(x̄)) > 0.

Since z 6 z(x̄) in BR+1(x∗), one has LBR+1(x∗)[z](x̄) − z(x̄) 6 0. Furthermore, remember-
ing (7.14) and the choice of ε, there holds 1− ε 6 u(x̄) = w(x̄)− z(x̄) < w(x̄) < 1 and f ′ < 0
in [1−ε, 1], hence f(w(x̄))−f(u(x̄)) < 0. This contradicts (7.16). Therefore, maxBR+1(x∗) z 6 0,

that is, w 6 u in BR+1(x∗) and then in RN \K.

Step 3: a lower bound in annuli with large inner radii

Let us now construct some families of sub-solutions and exploit the sweeping principle
(Lemma 4.3) to get a lower bound of u in some annuli. To do so, let x∗ ∈ RN , 0 < RJ 6

RK 6 R and w ∈ C(RN , [0, 1)) be as in (7.11). Consider any orthonormal basis (e1, · · · , eN)
of RN and, for τ ∈ [0, 2π], let Rτ be the rotation of angle τ in the plane spanned by (e1, e2)
(that is, Rτe1 = (cos τ)e1 + (sin τ)e2 and Rτe2 = −(sin τ)e1 + (cos τ)e2) and leaving invariant
the vectors e3, · · · , eN . We set

A := A(|x∗| −R− 1, |x∗|+R + 1) = B|x∗|+R+1 \B|x∗|−R−1.

From (7.11), note that A ⊂ RN\BRK
⊂ RN\K (hence, A∩K = ∅). Now for each τ ∈ [0, 2π]

and x ∈ RN , we set

wτ (x) := w(Rτx).

Thanks to the rotational invariance of J and A, and since BR+1(x
∗) ⊂ A and both J and w

are non-negative, it follows from (7.11) that each function wτ satisfies

L
A
[wτ ]− wτ + f(wτ) > 0 in R

N .

On the other hand, it follows from (2.5) that the function u obeys

L
A
[u](x)−u(x)+f(u(x)) = −

ˆ

RN\(K∪A)

J(x−y) u(y) dy− u(x)

(
1−

ˆ

RN\K

J(x−y) dy

)
6 0

for all x ∈ RN \K and therefore for all x ∈ A. In addition, thanks to positivity of u in RN \K
(remember (7.8)) and the fact that J > 0 a.e. in A(r1, r2) with 0 6 r1 < r2 6 RJ 6 RK 6 R
(remember (1.9) and supp(J) ⊂ BRJ

), one infers that
ˆ

RN\(K∪A)

J(x−y) u(y) dy > 0 for all x ∈ A′ := A(|x∗|+R+1−r2, |x
∗|+R+1) (⊂ A),

hence

L
A
[u](x)− u(x) + f(u(x)) < 0 for all x ∈ A′.

Since w 6 u in A (⊂ RN \K) by (7.15) and r2 6 RK 6 |x∗| −R− 1 by (7.13), it follows from
the sweeping principle (Lemma 4.3) applied to u, to the family (wτ )τ∈[0,2π] and to

(s1, s2, s3, s4) = (|x∗| −R − 1, |x∗|+R + 1− r2, |x
∗|+R + 1, |x∗|+R + 1),
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that

(7.17) wτ 6 u in A for every τ ∈ [0, 2π].

Notice also (even if the following inequalities will not explicitly be used in the next step) that,

since w > 1− ε in B1(x∗) by (7.11), the family of estimates in (7.17) implies in particular that

u > 1− ε in
⋃

τ∈[0,2π]B1(R−1
τ x∗). Since the previous arguments are independent of the choice

of the orthonormal basis (e1, . . . , eN), we also get that u > 1− ε in A(|x∗| − 1, |x∗|+ 1).

Step 4: conclusion

Let us now finish our argument. To complete the proof of Lemma 7.2, we will again construct
an adequate family of sub-solutions and use the sweeping principle to push further the estimates
obtained in the previous step. To do so, pick some ρ > 0 and consider the domain

Aρ := A(|x∗| − R− 1, |x∗|+R + 1 + ρ),

where R > 0 is defined in Steps 2 and 3. From (7.11), we note that Aρ ⊂ RN\BRK
⊂ RN\K

(hence, Aρ ∩ K = ∅). Next, consider any rotation R of RN , let e := x∗/|x∗| ∈ ∂B1 and, for
each σ ∈ [0, ρ] and x ∈ RN , denote

Wσ(x) := w(Rx− σ e).

As in the previous step, from the rotational invariance of J and Aρ, and since BR+1(x
∗+σe) ⊂

Aρ for every σ ∈ [0, ρ] and both J and w are non-negative, it follows from (7.11) that each
function Wσ satisfies

L
Aρ
[Wσ]−Wσ + f(Wσ) > 0 in R

N .

Similarly, it follows from (2.5) that the function u obeys

L
Aρ
[u]− u+ f(u) 6 0 in RN \K

(and therefore in Aρ), while

L
Aρ
[u]− u+ f(u) < 0 in A(|x∗|+R + 1 + ρ− r2, |x

∗|+R + 1 + ρ) (⊂ Aρ).

From the inequality (7.17) of the previous step (which holds for every τ ∈ [0, 2π] and for every

orthonormal basis (e1, · · · , eN)), we have W0 6 u in A and then in RN \K (since W0 = 0 in

RN \ A and u > 0 in RN \K. As a consequence, W0 6 u in Aρ. Finally, it follows from the
sweeping principle (Lemma 4.3) applied to u, to the family (Wσ)σ∈[0,ρ] and to

(s1, s2, s3, s4) = (|x∗| − R− 1, |x∗|+R + 1 + ρ− r2, |x
∗|+R + 1 + ρ, |x∗|+R + 1 + ρ),

that Wσ 6 u in Aρ for every σ ∈ [0, ρ]. Since w > 1 − ε in B1(x∗) by (7.11), we obtain in
particular that

u > 1− ε in
⋃

σ∈[0,ρ]

B1(R−1(x∗ + σe)).

The previous arguments being independent of the choice of ρ > 0 and the rotation R of RN ,
we conclude that

u(x) > 1− ε for all |x| > |x∗| − 1.

Since ε > 0 can be arbitrarily small, the proof of Lemma 7.2 is thereby complete.
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8. The case of small perturbations of convex obstacles

In this section, we explore further the validity of the Liouville Theorem 2.2 and we prove
Theorem 2.6, a kind of stability result for the Liouville property. In the spirit of the results of
Bouhours [7], we show that the Liouville property obtained in Theorem 2.2 still holds true for
small perturbations of convex obstacles, provided some additional assumptions are made on f
and J . To do so, we adapt to our problem the arguments developed in [7] and, in particular,
we will rely on the following

Lemma 8.1. Assume all hypotheses of Theorem 2.6. Then, for every δ ∈ (0, 1), there exists a

real number Rδ > 0 such that, for any ε ∈ (0, 1] and any measurable solution uε : R
N \Kε →

[0, 1] of (2.7), there holds uε(x) > 1− δ for a.e. |x| > Rδ.

Before proving Lemma 8.1, let us first establish a preliminary “rough” Liouville-type result,
namely Proposition 2.1.

Proof of Proposition 2.1. We recall that f ∈ C1([0, 1]), that J is assumed to satisfy (1.9), that

K is a compact set such that RN \K is connected, and that u : RN \K → [θ, 1] is a continuous
solution of (2.1) such that f > 0 on [θ, 1]. Let us set

m = inf
R\K

u ∈ [θ, 1].

Suppose, by contradiction, that m < 1. Let (xn)n∈N ⊂ RN \K be a sequence such that
u(xn) → m as n → +∞. Since u(x) → 1 as |x| → +∞, the sequence (xn)n∈N is bounded

and, up to extraction of a subsequence, we may assume that it converges to some x̄ ∈ RN \K.
Evaluating the equation satisfied by u at xn, we obtain

ˆ

RN\K

J(xn − y)
(
u(y)− u(xn)

)
dy + f

(
u(xn)

)
= 0.

By assumption, f(u(x)) > 0 for all x ∈ RN \K and therefore
ˆ

RN\K

J(xn − y)
(
u(y)− u(xn)

)
dy 6 0.

Since J ∈ L1(RN ) passing to the limit in the above inequality results in

0 6

ˆ

RN\K

J(x̄− y)
(
u(y)−m

)
dy 6 0.

Thus, arguing as in Section 4 and using (1.9) and the connectedness of RN \K, we obtain that

u = m (< 1) in RN \K. Since u(x) → 1 as |x| → +∞, we get a contradiction. The proof of
Proposition 2.1 is thereby complete. �

Let us now turn our attention to the proof of Lemma 8.1.

Proof of Lemma 8.1. First of all, in virtue of Lemma 3.2, we know that, for every ε ∈ (0, 1],
every measurable solution uε : RN \ Kε → [0, 1] of (2.7) possesses a Hölder continuous rep-

resentative u∗ε ∈ C0,α(RN \Kε). Consequently, we are allowed to identify uε with u∗ε. For
simplicity, we omit the superscript ∗ and write simply uε instead of u∗ε.
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Let us then continuously extend f by f ′(0)s for s 6 0 and by f ′(1)(s− 1) for s > 1 and still
denote f this extension. We also observe that, since (Kε)0<ε61 is a family of (at least) C0,α

deformations of K in the sense of Definition 1.2, there exists a real number R0 > 0 such that

(8.1) Kε ⊂ BR0 for all 0 < ε 6 1.

Notice now that it is sufficient to show the conclusion of Lemma 8.1 for δ > 0 small enough.
For any δ > 0 small enough, we are going to consider an auxiliary problem whose solutions
will provide an appropriate lower bound for uε, allowing us to prove the desired uniform
convergence as |x| → +∞. To this end, for δ ∈ (0, 1), denote

fδ(s) := f(s)− f(1− δ/2) for s ∈ R, and sδ :=
f(1− δ/2)

f ′(0)
.

It is immediate to check that there exists δ1 ∈ (0, 1) such that, for every δ ∈ (0, δ1), one has
sδ < 0 < 1− δ/2 < 1 and





fδ 6 f in R, f ′
δ = f ′ < 1/2 in R,

fδ(sδ) = 0, f ′
δ(sδ) < 0, fδ(1− δ/2) = 0, f ′

δ(1− δ/2) < 0,

ˆ 1−δ/2

sδ

fδ(r) dr > 0,

fδ vanishes only once in (sδ, 1− δ/2).

Using the results obtained in [2, 9, 12, 22], we know that, for every δ ∈ (0, δ1), there exists a
continuous function φδ : R → (sδ, 1− δ/2) satisfying





LRφδ + fδ(φδ) = J1 ∗ φδ − φδ + fδ(φδ) > 0 in R,

φδ is increasing in R,

φδ(−∞) = sδ, φδ(0) = 0, φδ(+∞) = 1− δ/2.

Fix in the sequel any δ ∈ (0, δ1), any ε ∈ (0, 1] and any (Hölder-continuous) function

uε : RN \Kε → [0, 1] solving (2.7). For A > 0, we let Φδ,A be the function defined in RN by

Φδ,A(x) := φδ(|x| − A).

We observe that, by construction, we have

(8.2) Φδ,R0(x) 6 0 6 uε for all x ∈ BR0 \Kε.

Our aim is to extend the above relation to all x ∈ RN \ BR0 . Since uε(x) → 1 as |x| → +∞,
there exists Rε > R0 such that uε(x) > max(1 − c0, 1 − δ/2) for all |x| > Rε where c0 > 0 is
such that f ′ < 0 in [1 − c0,+∞). Then, reasoning as in Lemma 5.1 (or using directly that
Φδ,A → sδ < 0 as A→ +∞ locally uniformly in R

N and Φδ,A < 1− δ/2 < 1 in R
N), we obtain

that, for some Aε > 0,

Φδ,Aε 6 uε in RN \Kε.

Consequently, it makes sense to define

A∗ := inf
{
A ∈ R ; Φδ,A 6 uε in RN \Kε

}
6 Aε.

We claim that

(8.3) A∗ 6 R0
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We argue by contradiction and assume that A∗ > R0. From the definition of A∗ and the
continuity of φδ, we have

(8.4) Φδ,A∗ 6 uε in RN \Kε.

If minBRε\Kε
(uε − Φδ,A∗) > 0, then from the uniform continuity of φδ, there exists τ > 0 small

enough such that Φδ,A∗−τ 6 uε in BRε \Kε. On the other hand, Φδ,A∗−τ < 1 − δ/2 6 uε in

RN \BRε . Hence, Φδ,A∗−τ 6 uε in RN \Kε, a contradiction with the definition of A∗. Therefore,

minBRε\Kε
(uε −Φδ,A∗) = 0. Since uε and Φδ,A∗ are continuous, there exists x0 ∈ BRε \Kε such

that

Φδ,A∗(x0) = uε(x0).

Since A∗ > R0 by assumption, it follows from (8.2) and the strict monotonicity of Φδ,A with

respect to A that x0 ∈ BRε \BR0 . Let us set e0 = x0/|x0| and define the open affine half-space

H :=
{
x ∈ R

N ; x · e0 > R0

}
(⊂ R

N \Kε).

From (8.4) and the definition of Φδ,A∗, we have

uε(x) > ϕ(x) := φδ(x · e0 −A∗) for all x ∈ RN \Kε.

Reasoning as in Lemma 5.1 and recalling the assumptions on fδ, we have that




Lεuε + f(uε) = 0 in H,

Lεϕ+ f(ϕ) > 0 in H (as in (5.3)),

uε > ϕ in RN \Kε,

uε(x0) = ϕ(x0) with x0 ∈ H.

Applying the strong maximum principle (Lemma 4.2) we obtain in particular that uε = ϕ in
H . This is impossible since uε(x) → 1 as |x| → +∞, while ϕ < 1 − δ/2 < 1 in RN . As a
consequence, the claim (8.3) holds true.

From (8.3) and the monotonicity of Φδ,A with respect to A, we then deduce that

Φδ,R0 6 Φδ,A∗ 6 uε in RN \Kε.

Since ε ∈ (0, 1] and uε : RN \Kε → [0, 1] solving (2.7) were arbitrary, since R0 > 0 verify-
ing (8.1) was independent of ε, and since φδ(+∞) = 1 − δ/2 > 1 − δ, the desired conclusion
follows. �

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. First of all, as in the proof of Lemma 8.1, it follows from Lemma 3.2
that, for every ε ∈ (0, 1], every measurable solution uε : RN \ Kε → [0, 1] of (2.7) can be

identified with its Hölder continuous C0,α(RN \Kε) representative. Furthermore, Lemma 3.2
yields

[uε]C0,α(RN \Kε)
6 A :=

2[J ]Bα
1,∞(RN )

inf
0<η61

inf
x∈RN\Kη

‖J(x− ·)‖L1(RN\Kη) −max
[0,1]

f ′ .

Note that A is independent of ε. In particular, for every ε∗ ∈ (0, 1] and every R > R0, where

R0 > 0 is chosen as in (8.1), the family (uε)0<ε6ε∗ is uniformly bounded in C0,α(BR \Kε∗).
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Recalling that Kε → K as ε → 0+ in the C0,α sense, there exists a sequence (εj)j∈N ∈ (0, 1]

converging to 0+ and a function u0 ∈ C0,α(RN \K) such that, for all R > R0 and β ∈ (0, α),

(8.5) ‖uεj − u0‖C0,β(BR\Kεj
) → 0 as j → +∞.

Notice that 0 6 u0 6 1 in RN \K. By Lemma 8.1 we know that uε(x) → 1 uniformly in ε > 0
as |x| → +∞. Consequently,

u0(x) → 1 as |x| → +∞.(8.6)

Now, we claim that

Lu0(x) + f(u0(x)) = 0 in RN \K,(8.7)

where L is given by (1.2). This can be seen as follows. First, fix x in the open set RN \K and an
integer j0 large enough such that x ∈ RN \Kεj for all j > j0. Notice that f(uεj(x)) → f(u0(x))
as j → +∞ since f is continuous. Next, for all j > j0 we have

Lεjuεj(x)− Lu0(x) =

ˆ

RN\Kεj

J(x− y)
[
(uεj − u0)(y)− (uεj − u0)(x)

]
dy

−

ˆ

Kεj
\K

J(x− y)
(
u0(y)− u0(x)

)
dy.

For every R > R0 and j > j0, there holds

|Lεjuεj(x)− Lu0(x)| 6 2

ˆ

Kεj
\K

J(x− y) dy + 2

ˆ

RN\BR

J(x− y) dy

+‖uεj − u0‖L∞(BR\Kεj
) + |uεj(x)− u0(x)|.

Since Kεj → K in the C0,α sense and J ∈ L1(RN), we have in particular that the first term in
the right-hand side converges to 0 as j → +∞. Recalling (8.5) and letting first j → +∞ and
then R → +∞, we find that

Lεjuεj(x)− Lu0(x) → 0 as j → +∞.

Therefore, (8.7) holds for all x ∈ RN \ K and finally for all x ∈ RN \K by continuity and

boundedness of u0 in RN \K.

Remember now that u0 ∈ C(RN \K, [0, 1]). By (8.6), (8.7) and Theorem 2.2, we infer that

u0 = 1 in RN \K. This also shows that the limit of the functions uεj is unique and, hence,
uε → 1 as ε → 0+ in the sense of (8.5), not only along a subsequence.

We conclude by contradiction. Suppose then that there exists countably infinitely many
numbers in (0, 1], which we label in decreasing order as (εj)j∈N, such that εj → 0+ as j → +∞
and

∀ j ∈ N, ∃ xj ∈ RN \Kεj , uεj(xj) = min
RN\Kεj

uεj < 1.(8.8)

Note that this makes sense since, without loss of generality, we have identified the functions
uεj with their continuous representatives in RN \Kεj . We observe that (1.11), (8.8) and
Proposition 2.1 yield that

uεj(xj) < θ for all j ∈ N.
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Now, since the functions uεj converge uniformly to 1 as |x| → +∞ (by Lemma 8.1), the
sequence (xj)j∈N is bounded. Hence, up to extraction of a subsequence, we may assume that

xj → x̄ as j → +∞, for some x̄ ∈ RN \K. Furthermore, since the functions uεj converge to
u0 ≡ 1 as j → +∞ in the sense of (8.5), we obtain that

1 > θ > uεj(xj) −→
j→+∞

u0(x̄) = 1.

This is a contradiction. Therefore, there exists an ε0 ∈ (0, 1] such that uε = 1 in RN \Kε

for every ε ∈ (0, ε0) and for every measurable solution uε : RN \ Kε → [0, 1] of (2.7) (af-
ter identification with its continuous representative). The proof of Theorem 2.6 is thereby
complete. �
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