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Introduction

A classical topic in applied analysis consists in the study of diffusive processes in media with an obstacle: roughly speaking, a dispersal follows a Brownian motion in an environment that possess an inaccessible region. At the level of partial differential equations, this translates into a reaction/diffusion equation that is defined outside a set K, which acts as an impenetrable obstacle and along which Neumann conditions are prescribed.

One of the cornerstones in the study of these processes lies in suitable rigidity results of Liouville-type, which allow the classification of stationary solutions, at least under some geometric assumption on the obstacle K.

In this paper, we will study a nonlocal version of a diffusion equation and provide a series of Liouville-type results (whose precise statements will be given in Section 2). Not only the results obtained have a theoretical interest in the development of the theory of nonlocal equations, but they also possess several potential applications (especially in mathematical biology, where the dispersal of biological populations often presents nonlocal features, see e.g. formula [START_REF] Andreu-Vaillo | Nonlocal Diffusion Problems[END_REF] in [START_REF] Cosner | Evolutionary stability of ideal free nonlocal dispersal[END_REF], or in [START_REF] Berestycki | A non-local bistable reaction-diffusion equation with a gap[END_REF]).

Concretely, we will suppose that the diffusion operator arises by convolution with an integrable kernel and we will show that solutions of bistable stationary equations with fixed behavior at infinity are necessarily constant, at least when the obstacle is convex or "close to being convex" (we also observe that similar rigidity results do not hold in general for nonconvex obstacles).

Interestingly, in the nonlocal case, the boundary conditions along the obstacle do not need to be prescribed a priori (differently from the classical case).

In addition, the nonlocal operator that we consider here is not "regularizing", so some care is needed in our case to deal with a possible lack of regularity of the solutions.

We now provide the detailed mathematical description of the problem that we take into account.

1.1. A nonlocal obstacle problem. Throughout this paper, K denotes a compact set of R N with N 2, and |•| denotes the Euclidean norm in R N . We are interested in qualitative properties of bounded solutions to the following nonlocal semilinear equation

Lu + f (u) = 0 in R N \ K, (1.1)
where L is the nonlocal diffusion operator given by (1.2) Lu(x) := ˆRN \K J(xy) u(y)u(x) dy.

The kernel J ∈ L 1 (R N ) is a radially symmetric non-negative function with unit mass and f is a C 1 "bistable" nonlinearity (precise assumptions on f and J will be given later on). This problem may be thought of (see the next page for more explanations) as a nonlocal version of the following problem

(1.3) ∆u + f (u) = 0 in R N \ K, ∇u • ν = 0 on ∂K,
where ν is the outward unit vector normal to K, assuming for (1.3) that K is smooth enough.

For problem (1.3) with the local diffusion operator ∆u, it was shown in [START_REF] Berestycki | Bistable travelling waves around an obstacle[END_REF] that there exist a time-global classical solution u(t, x) to the parabolic problem (1.4)

   ∂u ∂t = ∆u + f (u) in R × R N \ K, ∇u • ν = 0 on R × ∂K
satisfying 0 < u(t, x) < 1 for all (t, x) ∈ R × R N \ K, and a classical solution u ∞ (x) to the elliptic problem

         ∆u ∞ + f (u ∞ ) = 0 in R N \ K, ∇u ∞ • ν = 0 on ∂K, 0 u ∞ 1 in R N \ K, u ∞ (x) → 1 as |x| → +∞.
(1.5)

The function u ∞ is a stationary solution of (1.4) and it is actually obtained as the large time limit of u(t, x), in the sense that u(t, x) → u ∞ (x) as t → +∞ locally uniformly in x ∈ R N \ K.

Under some geometric conditions on K (e.g. if K is starshaped or directionally convex, see [START_REF] Berestycki | Bistable travelling waves around an obstacle[END_REF] for precise assumptions) it is shown in [5, Theorems 6.1 and 6.4] that solutions to (1.5) are actually identically equal to 1 in the whole set R N \ K. This Liouville property shows that the solutions u(t, x) of (1.4) constructed in [START_REF] Berestycki | Bistable travelling waves around an obstacle[END_REF] then satisfy

u(t, x) -→ t→+∞ 1 locally uniformly in x ∈ R N \ K. (1.6)
To some extent, this result can be given an ecological interpretation. Consider a population with trajectories describing a Brownian motion in an environment consisting of the whole space R N with a compact obstacle K, and suppose that f represents the demographic rate of the population. Then, the solution u(t, x) to (1.4) can be understood as the density of the population at time t and location x. In this context, (1.6) means that, at large time, the population tends to occupy the whole space.

Assuming now that the trajectories follow, say, a compound Poisson process, then the diffusion phenomena are better described by a convolution-type operator such as (1.2). The reaction-diffusion equation ∂u ∂t = ∆u + f (u) is then replaced by the equation

∂u ∂t = Lu + f (u)
with the nonlocal dispersion operator L, see [START_REF] Fife | An integrodifferential analog of semilinear parabolic PDEs[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF]. In this paper, we deal with qualitative properties of the stationary solutions of equation (1.1), together with some asymptotic limiting conditions at infinity similar to those appearing in (1.5). Namely, we will be mainly concerned with solutions of

     Lu + f (u) = 0 in R N \ K, 0 u 1 in R N \ K, u(x) → 1 as |x| → +∞.
(1.7)

It is expected that (1.5) and (1.7) share some common properties. One of the goals of the present paper is, as for (1.5), to find some geometric conditions on K which guarantee that the solutions u to (1.7) are identically equal to 1. Moreover, as in [START_REF] Bouhours | Robustness for a Liouville type theorem in exterior domains[END_REF] for (1.5), we will also show the robustness of the Liouville type results for (1.7).

We notice however that, whereas the solutions of (1.5) are automatically classical C 2 solutions in R N \ K if the boundary ∂K is smooth enough (by standard interior and boundary elliptic estimates), there is in general no smoothing effect for the nonlocal problems (1.1) or (1.7). The solutions u may even not be continuous in general. Yet some regularity results (uniform or Hölder continuity) will be shown here under additional assumptions on the data J and f . Actually, one of the difficulties and novelties of this paper, as compared to [START_REF] Berestycki | Bistable travelling waves around an obstacle[END_REF], is to deal with this a priori lack of regularity in general.

We observe also that, in (1.1) or (1.7), we do not ask for any additional boundary condition on ∂K. To understand why this is so, let us make some heuristic comments. First of all, the most intuitive nonlocal counterpart of (1.5) would be to replace ∆u in (1.5) by L ε u with ε > 0 small, where L ε u(x) := 1 βε 2 ˆRN \K J ε (xy) u(y)u(x) dy and J ε (z) = ε -N J(ε -1 z), J being a radially symmetric kernel with β = (2N) -1 ´RN J (z) |z| 2 dz. In other words, the nonlocal dispersion operator Lu in (1.1) or (1.7) would be replaced by L ε u and the kernel J would be given by (βε 2 ) -1 J ε . Furthermore, using for example [START_REF] Bourgain | Another look at Sobolev spaces[END_REF], the associated energy of (1.7), with L ε in place of L, can be thought of as an approximation of that of (1.5) (see [START_REF] Andreu-Vaillo | Nonlocal Diffusion Problems[END_REF] and also [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF][START_REF] Berestycki | A non-local bistable reaction-diffusion equation with a gap[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF] where similar quantities are considered in a biological framework). Now, to see how the Neumann boundary condition in (1.5) can be recovered from (1.1) or (1.7) with L ε as ε → 0 + , let us consider for simplicity the case where ∂K is of class C 1 with unit normal ν and the bounded function u is of class C 1 (R N \ K) and is extended as a C 1 (R N ) function still denoted by u. Formula (1.1) then also holds by continuity in R N \ K and, for every x, y ∈ R N \ K, there exists a point c x,y ∈ [x, y] such that u(y)-u(x) = ∇u(c x,y ) • (yx). It follows that, for every

x ∈ R N \ K, -f (u(x)) = 1 βε ˆRN \K J ε (x -y) ∇u(c x,y ) • y -x |y -x| dy,
where J ε (z) = ε -N J(ε -1 z) and J(z) = J(z)|z|. Then, for all x ∈ ∂K, a formal computation leads to

γ ∇u(x) • ν = lim ε→0 + ˆRN \K J ε (x -y) ∇u(c x,y ) • y -x |y -x| dy = lim ε→0 + -εβf (u(x)) = 0, where γ = (1/2) ´RN J(z) |z 1 | dz > 0.
Hence, ∇u • ν = 0 on ∂K and (1.7) is then a reasonable nonlocal counterpart for (1.5). The above calculation justifies, at least formally, why no additional boundary condition on ∂K is required in (1.1) or (1.7).

1.2. General assumptions, notations and definitions. Let us now specify the detailed assumptions made throughout the paper. As already mentioned above, we suppose that f is of "bistable" type and J is a radially symmetric kernel. More precisely, we will assume that

(1.8) f ∈ C 1 ([0, 1]), f (0) 0, f ′ (1) < 0, (1.9) J ∈ L 1 (R N
) is a non-negative, radially symmetric kernel with unit mass, there are 0 r 1 < r 2 such that J(x) > 0 for a.e. x with r 1 < |x| < r 2 , and there exists a function φ ∈ C(R) satisfying

(1.10)

J 1 * φ -φ + f (φ) 0 in R, φ is increasing in R, φ(-∞) = 0, φ(+∞) = 1,
where J 1 ∈ L 1 (R) is the non-negative even function with unit mass given for a.e. x ∈ R by

J 1 (x) := ˆRN-1 J(x, y 2 , • • • , y N ) dy 2 • • • dy N .
We notice that, in addition to the first property in (1.9), the second one is immediately fulfilled if J is assumed to be continuous. Moreover, we notice that condition (1.10) implies immediately that 0 < φ < 1 in R. As is well-known (see e.g. [START_REF] Bates | Travelling waves in a convolution model for phase transitions[END_REF][START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases[END_REF]), condition (1.10) is satisfied if, in addition to (1.8) and (1.9), the following assumptions are made on f and J:

(1.11)            ∃ θ ∈ (0, 1), f (0) = f (θ) = f (1) = 0, f < 0 in (0, θ), f > 0 in (θ, 1), ˆ1 0 f > 0, f ′ (0) < 0, f ′ (θ) > 0, f ′ (1) < 0, f ′ < 1 in [0, 1], ˆR J 1 (x)|x| dx < +∞ and J ∈ W 1,1 (R N ).
Let us also list in this subsection a few notations and definitions used in the paper: |E| is the Lebesgue measure of the measurable set E;

1 E is the characteristic function of the set E; B R is the open Euclidean ball of radius R > 0 centered at the origin; B R (x) is the open Euclidean ball of radius R > 0 centered at x ∈ R N ; A(R 1 , R 2 ) is the open annulus B R 2 \ B R 1 for 0 R 1 < R 2 , by setting B 0 = {0}; A(x, R 1 , R 2 ) is the open annulus x + A(R 1 , R 2 );
g * h is the convolution of g and h; g + is the positive part of g, i.e. g + := max{0, g}.

Given Ω ⊂ R N and p ∈ [1, ∞], we denote by L p (Ω) the Lebesgue space of (equivalence classes of) measurable functions g for which the p-th power of the absolute value is Lebesgue integrable when p < ∞ (resp. essentially bounded when p = ∞). When the context is clear, we will write g p instead of g L p (Ω) . Given α ∈ (0, 1] and p ∈ [1, ∞], B α p,∞ (R N ) stands for the Nikol'skii space consisting in all measurable functions g ∈

L p (R N ) such that [g] B α p,∞ (R N ) := sup h =0 g(• + h) -g L p (R N ) |h| α < +∞.
We note that, when p = ∞, the space B α ∞,∞ (R N ) coincides with the classical Hölder space C 0,α (R N ). For a set E ⊂ R N and g : E → R, we set

[g] C 0,α (E) = sup x∈E, y∈E, x =y |g(x) -g(y)| |x -y| α .
Let us finally recall some useful notions of regularity of a compact set K.

Definition 1.1. Let α ∈ (0, 1]. We say that a compact set K ⊂ R N has C 0,α boundary if there exist r > 0, p ∈ N, p rotations (R i ) 1 i p of R N , p points (z i ) 1 i p of ∂K and p functions (ψ i ) 1 i p defined in the (N -1)-dimensional ball B N -1 r = x ′ ∈ R N -1 ; |x ′ | < r of class C 0,α (B N -1 r
) and such that (1.12) ∂K =

1 i p R i x N = ψ i (x ′ ); x ′ ∈ B N -1 r and
(1.13)

• K ∩ B r (z i ) = R i x N > ψ i (x ′ ); x ′ ∈ B N -1 r ∩ B r (z i )
for every 1 i p.

Definition 1.2. Let α ∈ (0, 1], let K ⊂ R N be a compact convex set with non-empty interior (∂K is then automatically of class C 0,α ) and let (K ε ) 0<ε 1 ⊂ R N be a family of compact, simply connected sets having C 0,α boundary. We say that (K ε ) 0<ε 1 is a family of C 0,α deformations of K if the following conditions are fulfilled:

(i) K ⊂ K ε 1 ⊂ K ε 2 for all 0 < ε 1 ε 2 1; (ii) K ε → K as ε ↓ 0 in C 0,α , in the sense that there exist r > 0, p ∈ N, p rotations (R i ) 1 i p of R N , p points (z i ) 1 i p of ∂K, p functions (ψ i ) 1 i p and p families of func- tions (ψ i,ε ) 1 i p, 0<ε 1 of class C 0,α (B N -1 r
) describing ∂K and ∂K ε as in (1.12) and (1.13) above, and such that

ψ i -ψ i,ε C 0,α (B N-1 r
) → 0 as ε ↓ 0, for every 1 i p.

Main results

The Liouville property for the local problem (1.5) says that u = 1 in R N \ K under some geometric conditions on K, in particular when K is convex, see [START_REF] Berestycki | Bistable travelling waves around an obstacle[END_REF]. When the obstacle K is convex, we prove that this Liouville property still holds for (1.7) with the nonlocal operator L. We will actually prove several results, which correspond to various assumptions on the solutions u and the data f and J. We will also show the robustness of the Liouville type property with respect to small deformations of the obstacle K. The assumptions (1.8), (1.9) and (1.10) will be common assumptions of almost all results. In some statements, assumption (1.10) is sometimes replaced by the stronger assumption (1.11).

2.1.

A first rough Liouville type result. Under rather mild additional assumptions on K, we first state a "rough" Liouville type property for the solutions of (1.7), if f is assumed to be non-negative on the range of u.

Proposition 2.1. Let K ⊂ R N be a compact set such that R N \ K is connected. Assume that f ∈ C 1 ([0, 1]) and J satisfies (1.9). Let θ ∈ [0, 1) and assume that f 0 in [θ, 1]. Let u : R N \ K → [θ, 1] be a continuous solution of Lu + f (u) = 0 in R N \ K, u(x) → 1 as |x| → +∞. (2.1)
Then, u = 1 in R N \ K.
One of the main goals of the paper is to understand under which conditions on K this Liouville type property still holds or does not hold when u ranges in the whole interval [0, 1].

2.2.

Liouville type properties for convex obstacles. Our first main theorem is the following result dealing with continuous super-solutions to L(u) + f (u) = 0 ranging in [0, 1]. Theorem 2.2. Let K ⊂ R N be a compact convex set. Assume (1.8), (1.9), (1.10) and let

u ∈ C(R N \ K, [0, 1]) (2.2)
be a function satisfying

Lu + f (u) 0 in R N \ K, u(x) → 1 as |x| → +∞. (2.3) Then, u = 1 in R N \ K.
If we ask for a solution of (1.7) instead of a super-solution, it turns out that the regularity or limiting conditions required on u to obtain a Liouville type result can be considerably weakened, by strengthening the assumptions made on f and/or J.

Firstly, the continuity assumption (2.2) can be relaxed provided the nonlinearity does not vary too much. More precisely, we will prove the following result.

Theorem 2.3. Let K ⊂ R N be a compact convex set. Assume (1.8), (1.9), (1.10) and

max [0,1] f ′ < 1 2 . (2.4) Let u : R N \ K → [0, 1] be a measurable function satisfying Lu + f (u) = 0 a.e. in R N \ K, u(x) → 1 as |x| → +∞.
Then, u = 1 a.e. in R N \ K.

Secondly, assuming that f and J satisfy (1.11) instead of (1.10), that J ∈ L 2 (R N ) and is compactly supported, and that f does not vary too much or u is a priori uniformly continuous, then the assumptions on the asymptotic behaviour of u at infinity can be noticeably weakened. More precisely, the following result holds. Theorem 2.4. Let K ⊂ R N be a compact convex set and assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that J is compactly supported and

J ∈ L 2 (R N ). If u : R N \ K → [0, 1] is uniformly continuous in R N \ K and obeys (2.5)    Lu + f (u) = 0 in R N \ K, sup R N \K u = 1, then u = 1 in R N \ K. Similarly, if (2.4) holds and if u : R N \ K → [0, 1] is a measurable function satisfying (2.6)    Lu + f (u) = 0 a.e. in R N \ K, ess sup R N \K u = 1, then u = 1 a.e. in R N \ K.
Remark 2.5. Condition (2.4) ensures that u actually has a uniformly continuous representative in R N \ K (see Lemma 3.2 and Remark 3.3). However, if u is already known to be uniformly continuous, then Theorem 2.4 provides the same conclusion without assumption (2.4) (see Lemma 7.2 for further details).

2.3. Robustness of the Liouville property for nearly convex obstacles K. Under some flatness assumptions on f , and following a line of ideas in [START_REF] Bouhours | Robustness for a Liouville type theorem in exterior domains[END_REF], it turns out that the Liouville property is still available under small Hölder perturbations of a given convex obstacle K.

Namely, the following result holds.

Theorem 2.6. Let α ∈ (0, 1], let K ⊂ R N be a compact convex set with non-empty interior and let (K ε ) 0<ε 1 be a family of C 0,α deformations of K. Assume (1.8), (1.9), (1.11) and suppose that J ∈ B α 1,∞ (R N ) and max

[0,1] f ′ < inf 0<ε 1 inf x∈R N \Kε J(x -•) L 1 (R N \Kε) .
For 0 < ε 1, let L ε be the operator given by, for every

v ∈ L ∞ (R N \ K ε ), L ε v(x) := ˆRN \Kε J(x -y) v(y) -v(x) dy.
Then there exists ε 0 ∈ (0, 1] such that for all ε ∈ (0, ε 0 ] the unique measurable solution u ε of (2.7)

     L ε u ε + f (u ε ) = 0 a.e. in R N \ K ε , 0 u ε 1 a.e. in R N \ K ε , u ε (x) → 1 as |x| → +∞, is u ε = 1 a.e. in R N \ K ε .
Remark 2.7. It should be noted that the monotonicity assumption (i) in Definition 1.2 has been made for simplicity and is not necessary for our purposes. Moreover, the conclusion of Theorem 2.6 remains true whenever (K ε ) 0<ε 1 is a family of C 0,α deformations of any compact set K for which the conclusion of Theorem 2.3 is valid. Since there exist some smooth, compact, non-convex and simply connected sets which are C 0,α close to a smooth, compact and convex set, Theorem 2.6 implies that the Liouville property holds for some smooth, compact and non-convex obstacles, and then also for their C 0,α perturbations. Finally, we conjecture that the Liouville property of Theorem 2.3 holds for any starshaped compact obstacle as well. However, as in the local case (see [5, Theorem 6.5]), the above Liouville type properties cannot be expected for general obstacles. For example, one can easily find counterexamples if K is no longer simply connected. Take for instance K = A(1, 2) = B 2 \ B 1 and suppose that J is supported in B 1/2 . Then, the function u defined by

u(x) = 1 if x ∈ R N \ B 2 , 0 if x ∈ B 1 ,
is a continuous solution of (2.1). Yet, u is not identically 1 in the whole set R N \ K.

Outline of the paper. The following first sections are concerned with general results on the solutions to problems (1.1) or (1.7). Namely, in Section 3, we show that the solutions are uniformly continuous, more precisely they have a uniformly continuous representative, if rather mild assumptions are made on f . In Section 4, we give several comparison principles that fit our purposes. We then use these comparison principles in Section 5 to construct a radially symmetric lower bound for the solutions. In Section 6, we study an auxiliary problem which will enable us to pave the way towards the proof of Theorem 2.4. The remaining part of the paper is devoted to the proofs of our main results. In Section 7, we prove, at a stroke, Theorems 2.2 and 2.3, and with more work we show how to relax the assumptions on u when the kernel J is compactly supported, that is we prove Theorem 2.4. In Section 8, as a preliminary result we prove the rough Liouville-type result Proposition 2.1 and then we establish our robustness result Theorem 2.6.

Some auxiliary regularity results

Throughout this section, K is any compact subset of R N , f is any C 1 (R) function, and J is any L 1 (R N ) non-negative and radially symmetric kernel with unit mass. For x ∈ R N , we write

J (x) := ˆRN \K J(x -y) dy.
Notice that J is a uniformly continuous function in R N . In the sequel, for any δ > 0, we will denote K δ the closed thickening of K with width δ, defined by

K δ := K + B δ .
We now prove that, when J is compactly supported and f ′ is not too large in [0, 1], then the measurable solutions u to (1.7) are continuous far away from the obstacle. Lemma 3.1. Suppose that K ⊂ R N is a compact set and that J is supported in the ball B δ for some δ > 0. Suppose that

max [0,1] f ′ < 1. (3.1) Let u ∈ L ∞ (R N \ K, [0, 1]) be a solution of Lu + f (u) = 0 a.e. in R N \ K. Then u is uniformly continuous in R N \ K δ , in the sense that u has a representative in its class of equivalence that is uniformly continuous in R N \ K δ . If, in addition, J ∈ B α 1,∞ (R N ) for some α ∈ (0, 1], then u ∈ C 0,α (R N \ K δ ) and 1 -max [0,1] f ′ [u] C 0,α (R N \K δ ) [J] B α 1,∞ (R N ) . Proof. For every x and y in R N \ K δ , we have Lu(x) -Lu(y) = ˆRN \K u(z) J(x -z) -J(y -z) dz -u(x) ˆRN \K J(x -z) dz + u(y) ˆRN \K J(y -z) dz = -J (x) u(x) + J (y) u(y) + ˆRN \K u(z) J(x -z) -J(y -z) dz.
Since J has unit mass and is supported in B δ , we get that J (x) = J (y) = 1. Therefore,

Lu(x) -Lu(y) + u(x) -u(y) = ˆRN \K u(z) J(x -z) -J(y -z) dz.
Now, remember that u is a solution to Lu + f (u) = 0 a.e. in R N \ K. In particular, there exists a measurable negligible set E such that Lu(z) + f (u(z)) = 0 (and u(z) ∈ [0, 1]) for all z ∈ R N \ (K ∪ E). Hence, letting g(t) := tf (t) for t ∈ [0, 1], we obtain that

(3.2) ∀ x, y ∈ R N \ (K δ ∪ E), g(u(x)) -g(u(y)) = ˆRN \K u(z) J(x-z)-J(y-z) dz =: h(x, y).
Notice that, since J ∈ L 1 (R N ) and u ∈ L ∞ (R N \ K), the function h defined by the right-hand side of the previous equation can actually be defined in R N ×R N and it is uniformly continuous in R N × R N . Furthermore, by (3.1), the function

g ∈ C 1 ([0, 1]) is such that g ′ > 0 in [0, 1]. It is then a C 1 diffeomorphism from [0, 1] to [g(0), g(1)] = [-f (0), 1 -f (1)]. Let us denote g -1 : [g(0), g(1)] → [0, 1] its reciprocal. Fix y 0 ∈ R N \ (K δ ∪ E). For every x ∈ R N \ (K δ ∪ E), (3.2) yields g(u(y 0 )) + h(x, y 0 ) = g(u(x)) ∈ [g(0), g (1) 
].

Since the function x → g(u(y 0 )) + h(x, y 0 ) is continuous (in the whole R N ) and since E is negligible, it follows that g(u(y

0 )) + h(x, y 0 ) ∈ [g(0), g(1)] for all x ∈ R N \ K δ (since any point of the open set R N \ K δ is the limit of a sequence of points in R N \ (K δ ∪ E)). Define now u(x) = g -1 g(u(y 0 )) + h(x, y 0 ) for x ∈ R N \ K δ . By (3.2), one has u = u in R N \ (K δ ∪ E). Furthermore, u is uniformly continuous in R N \ K δ owing to its definition, since h is uniformly continuous in R N ×R N and g -1 is C 1 hence Lipschitz continuous in [g(0), g (1) 
].

Even if it means redefining u by u in R N \ K δ , it follows that u is uniformly continuous in R N \ K δ and that (3.2) holds, by continuity, for all x, y ∈ R N \ K δ . In particular, since 0 u 1 in R N \ K, we get that

(3.3) ∀ x, y ∈ R N \ K δ , |g(u(x)) -g(u(y))| J(• + x -y) -J L 1 (R N ) . Finally, if J ∈ B α 1,∞ (R N ) with α ∈ (0, 1], then (3.3) yields g(u) ∈ C 0,α (R N \ K δ ) and [g(u)] C 0,α (R N \K δ ) sup h =0 J(• + h) -J L 1 (R N ) |h| α = [J] B α 1,∞ (R N ) . Since max [g(0),g(1)] |(g -1 ) ′ | (1 -max [0,1] f ′ ) -1 and 0 u 1, one concludes that u ∈ C 0,α (R N \ K δ ) and 1 -max [0,1] f ′ [u] C 0,α (R N \K δ ) [J] B α 1,∞ (R N )
. We now establish a regularity result for u in the whole set R N \ K for flatter nonlinearities.

Lemma 3.2. Suppose that K ⊂ R N is a compact set and that max [0,1] f ′ < inf R N \K J . (3.4) Let u ∈ L ∞ (R N \ K, [0, 1]) be a solution of Lu + f (u) = 0 a.e. in R N \ K.
Then, u can be redefined up to a negligible set and extended as a uniformly continuous function in

R N \ K. If, in addition, J ∈ B α 1,∞ (R N ) for some α ∈ (0, 1], then u ∈ C 0,α (R N \ K) and inf R N \K J -max [0,1] f ′ [u] C 0,α (R N \K) 2 [J] B α 1,∞ (R N ) .
Remark 3.3. In the case of a compact convex obstacle K, then the conclusion of Lemma 3.2 still holds if (3.4) is replaced by max

[0,1] f ′ < 1 2 .
Indeed, J 1/2 in R N \ K when K is convex (remember also that J is always assumed to be a non-negative radially symmetric kernel with unit mass). The bound 1/2 is somehow optimal, since K can be as large as desired, still in the class of compact convex sets. However, this bound deteriorates considerably if K is only starshaped, as the infimum of J in R N \ K can become arbitrarily small. Roughly speaking, the less convex the obstacle K, the flatter the nonlinearity f needs to be to insure (3.4) and the interior continuity of the solution u.

Proof of Lemma 3.2. Reasoning exactly as in the proof of Lemma 3.1, there exists a measurable negligible set E such that

(3.5) ∀ x, y ∈ R N \ (K ∪ E), G(x, u(x)) -G(y, u(y)) = h(x, y), where h(x, y) is defined in (3.2) (remember also that h is uniformly continuous in R N × R N ) and G(x, s) = J (x) s -f (s) for (x, s) ∈ R N × [0, 1]. By (3.4) and the continuity of J , the function G is such that ∂ s G(x, s) > 0 for all (x, s) ∈ R N \ K × [0, 1]. For every x ∈ R N \ K, the function G(x, •) is then a C 1 diffeomorphism from [0, 1] to [G(x, 0), G(x, 1)]. Let us denote H x : [G(x, 0), G(x, 1)] → [0, 1] its reciprocal, that is, H x (G(x, t)) = t for all x ∈ R N \ K and t ∈ [0, 1]. Fix y 0 ∈ R N \ (K ∪ E). For every x ∈ R N \ (K ∪ E), (3.5) yields 
G(y 0 , u(y 0 )) + h(x, y 0 ) = G(x, u(x)) ∈ [G(x, 0), G(x, 1)]. Since the function x → G(y 0 , u(y 0 )) + h(x, y 0 ) is continuous (in the whole space R N ), since G is itself continuous in R N × [0, 1] and since E is negligible, it follows that G(y 0 , u(y 0 )) + h(x, y 0 ) ∈ [G(x, 0), G(x, 1)] for all x in the open set R N \ K. Define now u(x) = H x G(y 0 , u(y 0 )) + h(x, y 0 ) for x ∈ R N \ K. By (3.5), one has u = u in R N \ (K ∪ E). Furthermore, u is continuous in R N \ K owing to its definition, since h is continuous in R N × R N and (x, s) → H x (s) is continuous in the set (x, s) ∈ R N \ K × R; s ∈ [G(x, 0), G(x, 1)] . Even if it means redefining u by u in R N \ K and extending it by u in R N \ K, it follows that u is continuous in R N \ K and that (3.5) holds, by continuity, for all x, y in the open set R N \ K and then in R N \ K. In particular, since 0 u 1 in R N \ K, we get that (3.6) ∀ x, y ∈ R N \ K, |G(x, u(x))) -G(y, u(y))| J(• + x -y) -J L 1 (R N ) .
Finally, define

β := inf R N \K J -max [0,1] f ′ > 0,
the positivity of β resulting from (3.4). From (3.6) together with the definition of G and the inequalities 0 u 1 in R N \ K, one infers that, for all x, y ∈ R N \ K,

J (x) (u(x)-u(y)) -(f (u(x))-f (u(y))) J(•+x-y) -J L 1 (R N ) + u(y) (J (x)-J (y)) 2 J(• + x -y) -J L 1 (R N ) .
It follows from the mean value theorem and the above definition of β that

β |u(x) -u(y)| 2 J(• + x -y) -J L 1 (R N ) for all x, y ∈ R N \ K. In particular, the function u is uniformly continuous in R N \ K. Fur- thermore, if J ∈ B α 1,∞ (R N ) for some α ∈ (0, 1], then u ∈ C 0,α (R N \ K) and β [u] C 0,α (R N \K) 2 [J] B α 1,∞ (R N )
. The proof of Lemma 3.2 is thereby complete.

Comparison principles

In this section, we collect some comparison principles that fit for our purposes. Throughout this section, K is any compact subset of R N , f is any C 1 (R) function, and J is any L 1 (R N ) non-negative and radially symmetric kernel with unit mass.

We start with a weak maximum principle.

Lemma 4.1 (Weak maximum principle). Assume that

(4.1) f ′ -c 1 in [1 -c 0 , +∞), for some c 0 > 0, c 1 > 0. Let H ⊂ R N be an open affine half-space such that K ⊂ H c = R N \ H. Let u, v ∈ L ∞ (R N \ K) be such that (4.2) u, v ∈ C H and (4.3) Lu + f (u) 0 in H, Lv + f (v) 0 in H.
Assume also that

(4.4) u 1 -c 0 in H, that (4.5) lim sup |x|→+∞ v(x) -u(x) 0 
and that

(4.6) v u a.e. in H c \ K.
Then, v u a.e. in R N \ K.

Proof. We let w := vu. We want to prove that w 0 a.e. in R N \ K. From (4.6), we only have to show that w 0 in H (remember that from (4.2) both functions u and v are assumed to be continuous in H). We argue by contradiction and we suppose that sup H w > 0. Then, thanks to (4.6), one has sup R N \K w = sup H w > 0 and there exists a sequence (x j ) j∈N in H such that lim

j→+∞ w(x j ) = sup R N \K w > 0.
It follows then from (4.5) that the sequence (x j ) j∈N is bounded. Thus, up to extraction of a subsequence, there exists a point x ∈ H such that x j → x as j → +∞, hence w(x) = lim j→+∞ w(x j ) > 0 by (4.2). As a consequence, (4.3) yields

(4.7) Lw(x) = Lv(x) -Lu(x) -f v(x) + f u(x) = -w(x) ˆ1 0 f ′ tv(x) + (1 -t)u(x) dt.
Moreover, combining (4.4) and w(x) > 0, we obtain that v(x) = w(x) + u(x) > u(x) 1c 0 , and so tv(x) + (1t)u(x) 1c 0 for all t ∈ [0, 1]. From this and (4.1), we conclude that

f ′ tv(x) + (1 -t)u(x) -c 1 < 0 for all t ∈ [0, 1]
. This inequality, together with w(x) > 0, yields

-w(x) ˆ1 0 f ′ tv(x) + (1 -t)u(x) dt > 0.
By inserting this information into (4.7), we get Lw(x) > 0. That is, recalling (1.2) and the nonnegativity of J,

0 < Lw(x) = ˆRN \K J(x -y) w(y) -w(x) dy = ˆRN \K J(x -y) w(y) -sup R N \K w dy 0.
This is a contradiction, and so the desired result is established.

The next lemma is concerned with a strong maximum principle.

Lemma 4.2 (Strong maximum principle). Assume that J satisfies (1.9), with 0

r 1 < r 2 . Let H ⊂ R N be an open affine half-space such that K ⊂ H c . Let u, v ∈ L ∞ (R N \ K) satisfy (4.2)
and (4.3). Assume also that

(4.8) v u a.e. in R N \ K and that there exists x ∈ H such that v(x) = u(x). Then, v = u a.e. in (H + B r 2 ) \ K.
Proof. We let w := vu. Notice that w(x) = 0. As a consequence, using (4.3), we can write

Lw(x) = Lv(x) -Lu(x) -f (v(x)) + f (u(x)) = 0.
On the other hand, w(y) 0 = w(x) for a.e. y ∈ R N \ K, thanks to (4.8), and therefore

Lw(x) = ˆRN \K J(x -y) w(y) -w(x) dy 0.
Hence, Lw(x) = 0 and 0 = ˆRN \K J(xy) w(y)w(x) dy = ˆRN \K J(xy) w(y) dy.

From our assumptions, we have w 0 a.e. in R N \ K. Accordingly, since J is such that J > 0 a.e. in the annulus A(r 1 , r 2 ) from the general assumption (1.9), it follows that

w(x) = 0, i.e. v(x) = u(x), for a.e. x ∈ A(x, r 1 , r 2 ) ∩ R N \ K.
In particular, since u and v are continuous in H and H ⊂ R N \ K, we get that

v(x) = u(x) for all x ∈ A(x, r 1 , r 2 ) ∩ H =: Ω 1 (x).
Applying the same arguments as above to the new set of contact points Ω 1 (x) we obtain that v(x) = u(x) for all x ∈ A(x 1 , r 1 , r 2 ) ∩ H and for all x 1 ∈ Ω 1 (x). As a consequence, v(x) = u(x) for all x ∈ B µ (x) ∩ H with µ := r 2r 1 . Iterating this procedure over again implies that v(x) = u(x) for each x in B 2µ (x) ∩ H and so on in

B kµ (x) ∩ H for any k ∈ N. Hence, v = u in H.
Therefore, as in the beginning of the proof, it follows that Lw(x) = 0 for all x ∈ H and

v = u a.e. in H + A(r 1 , r 2 ) ∩ R N \ K = (H + B r 2 ) \ K.
The proof of Lemma 4.2 is thereby complete.

Finally, we derive a sweeping-type result in the spirit of Serrin's sweeping theorem [START_REF] Serrin | A symmetry problem in potential theory[END_REF] (see also [START_REF] Mcnabb | Strong comparison theorems for elliptic equations of second order[END_REF], and page 29 in [START_REF] Pucci | The maximum principle[END_REF] for a very clear explanation of the method). Lemma 4.3 (Sweeping principle). Assume that J satisfies (1.9), with 0 r 1 < r 2 . Let g : R → R be a continuous function, let a, b, s 1 , s 2 , s 3 , s 4 be some real numbers such that a b and r 2 s

1 s 2 < s 3 s 4 . Let u ∈ C(A(s 1 , s 4 )) satisfy (4.9) ˆA(s 1 ,s 4 ) J(x -y) u(y) dy -u(x) + g u(x) 0 for all x ∈ A(s 1 , s 4 ), and 
(4.10) ˆA(s 1 ,s 4 ) J(x -y) u(y) dy -u(x) + g u(x) < 0 for all x ∈ A(s 2 , s 3 ). Let (w τ ) τ ∈[a,b] be a continuous family in C(A(s 1 , s 4 )) such that (4.11) ˆA(s 1 ,s 4 ) J(x -y) w τ (y) dy -w τ (x) + g w τ (x) 0 for all x ∈ A(s 1 , s 4 ).
Assume further that there exists

τ 0 ∈ [a, b] such that w τ 0 u in A(s 1 , s 4 ). Then w τ u in A(s 1 , s 4 ) for every τ ∈ [a, b].
Proof. Let us define Σ ⊂ [a, b] to be the following set:

Σ := τ ∈ [a, b]; w τ u in A(s 1 , s 4 ) .
To prove the theorem, we will show that Σ is a non-empty open and closed set relatively to [a, b]. It will then follow that Σ = [a, b] and the theorem will be proved. First of all, by definition, Σ is a closed subset of [a, b] and τ 0 ∈ Σ. To finish our proof, it remains to show that Σ is an open set relatively to [a, b]. So let us pick τ ∈ Σ. We have w τ u in A(s 1 , s 4 ). By continuity of u and w τ in the compact set A(s 1 , s 4 ), either max A(s 1 ,s 4 ) (w τu) < 0 or there exists z ∈ A(s 1 , s 4 ) such that w τ (z) = u(z). In the latter case, using w τ u in A(s 1 , s 4 ) together with (4.9) and (4.11) at the point z, we get that 0 ˆA(s 1 ,s 4 ) J(zy) u(y)w τ (y) dy 0.

Using the continuity of both u and w τ and the fact that J > 0 a.e. in A(r 1 , r 2 ) for some 0 r 1 < r 2 by (1.9), it follows that w τ = u in A(z, r 1 , r 2 ) ∩ A(s 1 , s 4 ) (which is nonempty since r 2 s 1 ) and then w τ = u in A(z ′ , r 1 , r 2 ) ∩ A(s 1 , s 4 ) for all z ′ ∈ A(z, r 1 , r 2 ) ∩ A(s 1 , s 4 ). In particular, it is easy to see that there exists r > 0 such that w τ = u in B r (z) ∩ A(s 1 , s 4 ). As a consequence, the non-empty set x ∈ A(s 1 , s 4 ); w τ (x) = u(x) is both (obviously) closed and open relatively to the (connected) set A(s 1 , s 4 ) and it is thus equal to A(s 1 , s 4 ). In other words, w τ = u in A(s 1 , s 4 ), hence ˆA(s 1 ,s 4 )

J(xy) u(y) dyu(x) + g u(x) = 0 for all x ∈ A(s 1 , s 4 ), contradicting (4.10) in A(s 2 , s 3 ). Therefore, we must have max A(s 1 ,s 4 ) (w τu) < 0. Since w τ is continuous with respect to τ in the uniform norm, there exists δ > 0 such that

w τ ′ u in A(s 1 , s 4 ) for all τ ′ ∈ (τ -δ, τ + δ) ∩ [a, b]. Hence, (τ -δ, τ + δ) ∩ [a, b] ⊂ Σ, which shows that Σ is open relatively to [a, b].
Remark 4.4. The previous arguments immediately show that, when r 1 = 0 in (1.9), the sweeping principle holds in any compact connected set F . Namely, if J satisfies (1.9) with r 1 = 0, if u ∈ C(F ) satisfies (4.9) with F instead of A(s 1 , s 4 ) and the strict inequality somewhere in

F , if (w τ ) τ ∈[a,b] is a continuous family in C(F ) satisfying (4.11) with F instead of A(s 1 , s 4 ) and if w τ 0 u in F for some τ 0 ∈ [a, b], then w τ u in F for every τ ∈ [a, b].

Construction of radially symmetric lower bounds

In this section, we derive a first lower bound on continuous non-negative super-solutions u of (2.3) that we constantly use along this paper. Throughout this section, K is any compact subset of R N , f is any C 1 (R) function, and J is any L 1 (R N ) non-negative and radially symmetric kernel with unit mass. We recall that J 1 is the non-negative even L 1 (R) kernel with unit mass defined for a.e. y 1 ∈ R by

J 1 (y 1 ) := ˆRN-1 J(y 1 , y 2 , • • • , y N ) dy 2 • • • dy N ,
and that assumption (1.10) means the existence of a continuous increasing function φ : R → (0, 1) such that (5.1)

   ˆR J 1 (τ -σ) φ(σ) -φ(τ ) dσ + f φ(τ ) 0 for all τ ∈ R, φ(-∞) = 0, φ(+∞) = 1.
Then, for such φ, we establish the following lemma:

Lemma 5.1. Assume that f and J satisfy (4.1) and (1.10), let γ ∈ (0, 1] and let u ∈ C R N \ K, [γ, 1] be a function satisfying (2.3). Then, there exists r 0 > 0 such that

φ(|x| -r 0 ) u(x) for all x ∈ R N \ K.
Proof. Since u(x) → 1 as |x| → +∞, there exists R 0 > 0 so large that K ⊂ B R 0 and u 1c 0 in R N \ B R 0 , where c 0 > 0 is given in (4.1). By (5.1), there exists

A > 0 such that φ γ in (-∞, -A]. Define r 0 = R 0 + A > 0
and let us check that the conclusion of Lemma 5.1 holds with this real number r 0 . Let e be any unit vector of R N , that is, e ∈ ∂B 1 = S N -1 . For r ∈ R, let φ r,e be the function defined by φ r,e (x) := φ(e

• x -r) for x ∈ R N ,
where e•x stands for the standard inner product in R N . Let (e 1 , • • • , e N ) be the canonical basis of R N and let R be a rotation such that e = Re 1 . Set now e i := Re i for all i ∈ {2, • • • , N} and, for x, y ∈ R N and r ∈ R, let us define x * = xre, y * = yre and

X = (X 1 , • • • , X N ) = (x * • e, x * • e 2 , • • • , x * • e N ) = R -1 y * , Y = (Y 1 , • • • , Y N ) = (y * • e, y * • e 2 , • • • , y * • e N ) = R -1 y * .
Since J is rotationally invariant, we deduce from (5.1) that, for all x ∈ R N and r ∈ R,

(5.2) L R N φ r,e (x) := ˆRN J(x-y) φ r,e (y)-φ r,e (x) dy = ˆRJ 1 (X 1 -Y 1 ) φ(Y 1 )-φ(X 1 ) dY 1 -f φ(X 1 ) = -f φ(x • e -r) = -f φ r,e (x) . Set H e := {x ∈ R N ; x • e > R 0 } (notice that H e ∩ K = ∅). We remark that, if r r 0 and x ∈ H c e \ K, then φ r,e (x) = φ(x • e -r) φ(R 0 -r 0 ) = φ(-A) γ u(x).
Furthermore, if r r 0 , y ∈ K and x ∈ H e , then y • er |y|r R 0r and

φ r,e (x) = φ(x • e -r) φ(R 0 -r) φ(y • e -r) = φ r,e (y). 
Accordingly, by (5.2) and the definition of H e , for any r r 0 and x ∈ H e , (

) Lφ r,e (x) = L R N φ r,e (x) -ˆK J(x -y) φ r,e (y) -φ r,e (x) dy -f φ r,e 5.3 
.

Consequently, we can exploit the weak comparison principle of Lemma 4.1 (used here with H = H e ⊂ R N \ K and v = φ r 0 ,e ) and deduce that φ(x • er 0 ) = φ r 0 ,e (x) u(x)

for every x ∈ R N \ K and also for every x ∈ R N \ K by continuity. This inequality holds for every e ∈ ∂B 1 , while r 0 > 0 does not depend on e. In particular, taking into account the possible choice of e = x/|x| if x = 0 (and any e ∈ ∂B 1 if x = 0), we conclude that

φ(|x| -r 0 ) u(x) for all x ∈ R N \ K.
This proves Lemma 5.1.

Remark 5.2. If R N \ K is connected, if f (0)
0 and if J satisfies (1.9) with r 1 = 0 (for instance, if J is continuous at the origin with J(0) > 0), then Lemma 5.1 holds with γ = 0. Indeed, these additional assumptions imply that inf R N \K u > 0. If not, then by continuity of u and the limiting conditions in (2.3), there exists x 0 ∈ R N \ K such that u(x 0 ) = 0. Thus, by (2.3) and f (0) 0, 0 Lu(x 0 ) = ˆRN \K J(x 0y) u(y)u(x 0 ) dy and u(y) = u(x 0 ) = 0 for all y ∈ B r 2 (x 0 ) ∩ R N \ K. Therefore, u(y) = 0 for all y ∈ R N \ K by repeating this argument and by connectedness of R N \ K. This contradicts the limit u(y) → 1 as |y| → +∞. Finally, inf R N \K u > 0 and the conclusion of Lemma 5.1 holds.

Construction of solutions in large balls

We recall that B R (x) denotes the open Euclidean ball of R N centered at x ∈ R N and of radius R > 0, and that B R = B R (0). Throughout this section we suppose that f and J satisfy (1.8), (1.9) and (1.11). Here, for any R > 0 large enough and any x 0 ∈ R N , we will construct and study the properties of positive continuous solutions of the following auxiliary problem (6.1)

L B R (x 0 ) [v](x) -v(x) + f (v(x)) = 0 for x ∈ B R (x 0 ), where (6.2) L B R (x 0 ) [v](x) := ˆBR (x 0 ) J(x -y) v(y) dy.
Besides the own interest of (6.1), the properties of some particular solutions v of (6.1) are essential in the proof of Theorem 2.4, as they will provide key estimates ensuring to derive the asymptotic behaviour of the solutions u of (2.5) or (2.6). So in Sections 6.1 and 6.2, our main concern will be to establish, for any x 0 ∈ R N and R > 0 large enough, the existence of a positive maximal solution v x 0 ,R to (6.1), such that v x 0 ,R → 1 locally uniformly in R N as R → +∞. Based on the construction of these solutions in closed balls B R (x 0 ), we will next show in Section 6.3 the existence of continuous and compactly supported sub-solutions in R N .

6.1. Existence of a positive solution in B R (x 0 ). This section is devoted to the proof of the existence of a positive continuous solution of (6.1) in B R (x 0 ), for any R > 0 large enough and any x 0 ∈ R N .

Lemma 6.1. Assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that J is compactly supported and J ∈ L 2 (R N ). Then there exists d 0 = d 0 (f, J) > 0 such that for every x 0 ∈ R N and R d 0 , problem (6.1) admits a positive continuous solution v : B R (x 0 ) → (0, 1) such that max B R (x 0 ) v > θ, where θ ∈ (0, 1) is defined in (1.11).

Proof. Let x 0 ∈ R N be fixed, let also R J > 0 be fixed (independently of x 0 ) such that supp(J) ⊂ B R J , and pick any R > R J . To construct a solution, we adapt the strategy used in [START_REF] Clément | Existence and multiplicity results for a semilinear elliptic eigenvalue problem[END_REF] for the construction of a solution of a local reaction-diffusion equation. The proof is divided into three main steps.

Step 1: definition and elementary properties of an energy functional E

In the proof of Lemma 6.1, let us extend f by f ′ (1)(s -1) for s 1 and by -f (-s) for s 0 and denote f this extension. Now, define

F (t) := ˆt 0 f (s) ds for t ∈ R, c(x) := 1 - ˆBR (x 0 ) J(x -y) dy ∈ [0, 1] for x ∈ R N ,
and consider the following energy functional

(6.3) E(u) := 1 4 ˆBR (x 0 ) ˆBR (x 0 ) J(x-y) u(y)-u(x) 2 dxdy+ 1 2 ˆBR (x 0 ) c(x)u 2 (x)dx- ˆBR (x 0 ) F (u(x)) dx defined for u ∈ L 2 (B R (x 0 )). Since J ∈ L 1 (R N ), E is well defined in L 2 (B R (x 0 )
). Moreover, using the definition of F and the oddness of f , we have (6.4)

ˆBR (x 0 ) F (u(x)) dx = ˆBR (x 0 ) F (|u(x)|) dx
for any u ∈ L 2 (B R (x 0 )), while elementary computations yield

(6.5) E(u) = - 1 2 ˆBR (x 0 ) ˆBR (x 0 ) J(x-y)u(x)u(y) dxdy + 1 2 ˆBR (x 0 ) u 2 (x) dx - ˆBR (x 0 ) F (u(x)) dx.
From the last two formulas, one infers that, for any u ∈ L 2 (B R (x 0 )),

E(|u|) = - 1 2 ˆBR (x 0 ) ˆBR (x 0 ) J(x-y)|u(y)||u(x)| dxdy + 1 2 ˆBR (x 0 ) |u(x)| 2 dx - ˆBR (x 0 ) F (|u(x)|) dx E(u).
To complete Step 1, let us check that the functional E is bounded from below in L 2 (B R (x 0 )). From (1.11) and (6.4), the definition of F and f , and since f (s) 0 for s 1, we see that, for any u ∈ L 2 (B R (x 0 )),

ˆBR (x 0 ) F (u(x)) dx = ˆBR (x 0 ) F (|u(x)|) dx ˆBR (x 0 ) ˆmin{1,|u(x)|} 0 f (s) ds R N |B 1 | ˆ1 0 f (s) ds,
where |B 1 | denotes the Lebesgue measure of the unit ball. Setting C 0 := |B 1 | ´1 0 f (s) ds > 0, we thus get that (6.6) E(u)

1 4 ˆBR (x 0 ) ˆBR (x 0 ) J(x-y)(u(y)-u(x)) 2 dxdy+ 1 2 ˆBR (x 0 ) c(x)u 2 (x)dx-C 0 R N -C 0 R N
for any u ∈ L 2 (B R (x 0 )). Hence, the quantity (6.7) γ := inf

u∈L 2 (B R (x 0 )) E(u)
is a well defined real number.

Step 2: the infimum of E in L 2 (B R (x 0 )) is achieved

We shall now see that γ is achieved for some v ∈ L 2 (B R (x 0 )). So let (u n ) n∈N be a minimising sequence. From the inequality E(|u|) E(u), we may assume without loss of generality that the functions u n are all non-negative. Let us first check that the sequence (u

n ) n∈N is bounded in L 2 (B R (x 0 )).
To do so, we recall the definition (6.2) of L B R (x 0 ) and we notice that the principal eigenvalue λ p of the operator L B R (x 0 ) -Id is negative (see for example [START_REF] Andreu-Vaillo | Nonlocal Diffusion Problems[END_REF][START_REF] Berestycki | On the definition and the properties of the principal eigenvalue of some nonlocal operators[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] García-Melián | On the principal eigenvalue of some nonlocal diffusions problem[END_REF] for a precise definition of λ p and some of its properties) and satisfies

-λ p = inf ϕ L 2 (B R (x 0 )) =1 1 2 ˆBR (x 0 ) ˆBR (x 0 ) J(x -y) ϕ(y) -ϕ(x) 2 dxdy + ˆBR (x 0 ) c(x)ϕ 2 (x) dx .
As a consequence, from (6.6), we get

E(u n ) - λ p 2 ˆBR (x 0 ) u 2 n (x) dx -C 0 R N for all n ∈ N. Therefore the sequence (u n ) n∈N is bounded in L 2 (B R (x 0
)) since it is a minimising sequence and since λ p < 0. Up to extraction of a subsequence, the sequence (u n ) n∈N converges weakly in L 2 (B R (x 0 )) to a non-negative function v ∈ L 2 (B R (x 0 )). We actually claim that (6.8)

E(v) = γ.
Due to the lack of compactness in this non-local minimisation problem, we cannot expect to get a strong convergence in L 2 (B R (x 0 )) for the minimising subsequence and therefore passing to the limit in the energy (6.3) is not immediate. To overcome this difficulty, let us observe that by introducing the function

G(t) := ˆt 0 s -f (s) ds = t 2 2 -F (t),
we get from (6.5) that, for any n ∈ N,

E(u n ) = - 1 2 ˆBR (x 0 ) ˆBR (x 0 ) J(x -y) u n (x) u n (y) dxdy + ˆBR (x 0 ) G(u n (x)) dx
and therefore (6.9)

E(u n ) -E(v) = - 1 2 ˆBR (x 0 ) ˆBR (x 0 ) J(x -y) u n (x)u n (y) -v(x)v(y) dxdy + ˆBR (x 0 ) G(u n (x)) -G(v(x)) dx.
We observe that the double integral ´BR (x 0 ) ´BR (x 0 ) J(xy)u n (x)u n (y) dxdy can be rewritten as

ˆBR (x 0 ) ˆBR (x 0 ) J(x-y) u n (x)u n (y)dxdy = ˆBR (x 0 ) u n (x) ˆBR (x 0 ) J(x-y) u n (y)-v(y) dy dx + ˆBR (x 0 ) v(y) ˆBR (x 0 ) J(x -y)u n (x) dx dy.
Using Lebesgue's dominated convergence theorem, together with the assumption J ∈ L 2 (R N ) and the L 2 (B R (x 0 )) weak convergence of the sequence (u n ) n∈N , it is easy to see that

lim n→+∞ ˆBR (x 0 ) ˆBR (x 0 ) J(x -y) u n (x) u n (y) dxdy = ˆBR (x 0 ) ˆBR (x 0 ) J(x -y) v(x) v(y) dxdy and therefore (6.10) lim n→+∞ - 1 2 ˆBR (x 0 ) ˆBR (x 0 ) J(x -y) u n (x)u n (y) -v(x)v(y) dxdy = 0.
On the other hand, since by assumption f ′ (s) < 1 for all s ∈ R, the function G is convex and, for all n ∈ N, we get

ˆBR (x 0 ) G(u n (x)) -G(v)(x) dx ˆBR (x 0 ) G ′ (v(x)) u n (x) -v(x) dx.
From the definition of G and f , together with the fact that v ∈ L 2 (B R (x 0 )), we infer that G ′ (v) ∈ L 2 (B R (x 0 )). Using the L 2 (B R (x 0 )) weak convergence of (u n ) n∈N to v, it follows that (6.11) lim inf n→+∞ ˆBR (x 0 ) G(u n (x)) -G(v(x)) dx 0.

Thus passing to the limit in (6.9), and using (6.10) and (6.11), we obtain γ -E(v) 0. Together with the definition (6.7) of γ, this shows that v is a minimiser of the energy E, that is, (6.8) holds.

Step 3: v is a continuous positive solution u of (6.1)

We first show in this step that v is a solution to (6.1) with f instead of f . From (6.8), v is a critical point of E and in particular, it follows from the formulation (6.5) of E that v is a nonnegative weak solution of

L B R (x 0 ) [v] -v + f (v) = 0 in B R (x 0 ). Since all functions L B R (x 0 ) [v], v and f (v) belong to L 2 (B R (x 0 )), the function v satisfies L B R (x 0 ) [v](x) -v(x) + f (v(x)) = 0 for a.e. x ∈ B R (x 0 ). Furthermore, since J ∈ L 2 (R N ), the Cauchy-Schwarz inequality implies that L B R (x 0 ) [v] ∈ L ∞ (B R (x 0 )). Therefore, since by (1.11) the function s → s -f (s) is a C 1 diffeomorphism from R + onto R + and since v is non-negative, it follows from the equation L B R (x 0 ) [v] -v + f (v) = 0 a.e. in B R (x 0 ) that v ∈ L ∞ (B R (x 0 )).
Thus by reproducing the arguments of the proof of Lemma 3.1 we deduce that v has a representative, still denoted v, which is continuous in B R (x 0 ) and satisfies (6.12)

L B R (x 0 ) [v](x) -v(x) + f (v(x)) = 0 for all x ∈ B R (x 0 ).
Remember now that, from (1.9), J > 0 a.e. in A(r 1 , r 2 ) with 0 r 1 < r 2 , and that R R J r 2 > r 1 , with supp(J) ⊂ B R J . As a consequence, if there exists a point x ∈ B R (x 0 ) such that v(x) = 0, then, arguing as in the proof of the strong maximum principle (Lemma 4.2) or as in the proof of the sweeping principle (Lemma 4.3), it follows that v = 0 in A(x, r 1 , r 2 ) ∩ B R (x 0 ), hence v = 0 in A(y, r 1 , r 2 ) ∩ B R (x 0 ) for all y ∈ A(x, r 1 , r 2 ) ∩ B R (x 0 ) and finally v = 0 in B r (x) ∩ B R (x 0 ) for some r > 0. Therefore, the non-empty set x ∈ B R (x 0 ); v(x) = 0 is both (obviously) closed and open relatively to B R (x 0 ) and is thus equal to B R (x 0 ). As a consequence, either v ≡ 0 in B R (x 0 ) or v > 0 in B R (x 0 ).

In this paragraph, we prove that the solution v constructed is a solution of (6.1), namely we just need to show that v 1 in B R (x 0 ). To do so, define M = max B R (x 0 ) v 0 and let

x ∈ B R (x 0 ) be such that v(x) = M. Assume by contradiction that M > 1. By evaluating (6.12) at x and using the definition of f , we get that

ˆBR (x 0 ) J(x -y) v(y) dy = L B R (x 0 ) [v](x) = M -f (M) > M.
Since v M in B R (x 0 ), this leads to a contradiction. Hence M 1 and thus v is a non-negative continuous solution of (6.1) in B R (x 0 ). Furthermore, as for the positivity of v, one gets that

either v ≡ 1 in B R (x 0 ) or v < 1 in B R (x 0 ). The former case is impossible since L B R (x 0 ) [v] ≡ 1 in B R (x 0 ) (indeed, ´BR (x 0 ) J(x -y) dy < 1 for all x ∈ ∂B R (x 0 )). Thus, 0 v < 1 in B R (x 0 ).
Finally, let us verify that the solution v constructed is not the trivial solution. To do so, it is enough to show that E(v) = E(0) = 0. We claim that, for R > R J large enough, E(v) < 0.

Indeed, let us consider the test function

ϕ := 1 B R (x 0 ) ∈ L 2 (B R (x 0 )). We have E(ϕ) = 1 4 ˆBR (x 0 ) ˆBR (x 0 ) J(x-y) ϕ(y)-ϕ(x) 2 dxdy + 1 2 ˆBR (x 0 ) c(x)ϕ 2 (x) dx - ˆBR (x 0 ) F (ϕ(x)) dx = 1 2 ˆBR (x 0 ) c(x) dx -R N |B 1 | ˆ1 0 f (s) ds = 1 2 ˆBR (x 0 ) ˆRN \B R (x 0 ) J(x -y) dy dx -R N |B 1 | ˆ1 0 f (s) ds.
Since supp(J) ⊂ B R J , the above equality yields

E(ϕ) = 1 2 ˆBR (x 0 )\B R-R J (x 0 ) ˆRN \B R (x 0 ) J(x -y) dy dx -R N |B 1 | ˆ1 0 f (s) ds, 1 2 |B 1 | R N -(R -R J ) N -R N |B 1 | ˆ1 0 f (s) ds.
Thus, since ´1 0 f (s) ds > 0, there exists d 0 = d 0 (J, f ) ∈ (R J , +∞), independent of x 0 , such that, for every R d 0 , the right-hand side of the above inequality is negative and thus E(v) E(ϕ) < 0, which proves our claim. Furthermore, since 0 v < 1 in B R (x 0 ) and F 0 in [0, θ], one infers that max B R (x 0 ) v > θ, hence v > 0 in B R (x 0 ) (remember that v was either positive or identically equal to 0 in B R (x 0 )).

As a conclusion, for every R such that R d 0 , there exists a solution v ∈ C(B R (x 0 ), (0, 1)) to (6.1) with max B R (x 0 ) v > θ. The point x 0 ∈ R N being arbitrary and the constant d 0 being independent of x 0 , the proof of Lemma 6.1 is thereby complete. 6.2. Existence and properties of the maximal solution in B R (x 0 ). Let us now look more closely at the properties of positive solutions of (6.1) and in particular at the maximal solution, if any. To this end, let us in this subsection extend continuously f by f ′ (1)(s -1) for s 1 and by 0 for s 0. To simplify our presentation let us still denote f this extension.

Let us first recall the notion of maximal solution for problem (6.1).

Definition 6.2. Let x 0 ∈ R N and R > 0. A function v ∈ C(B R (x 0 ), [0, 1]) is called a maximal solution to (6.1) in B R (x 0 ) if any solution w ∈ C(B R (x 0 ), [0, 1]) satisfies w v in B R (x 0 ).
The following lemma provides the existence and uniqueness of a maximal solution to the problem (6.1) when R > 0 is large enough. Lemma 6.3. Assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that J is compactly supported and J ∈ L 2 (R N ). Then there exists d 0 = d 0 (f, J) > 0, given as in Lemma 6.1, such that for every x 0 ∈ R N and R d 0 , problem (6.1) admits a unique maximal solution

v x 0 ,R in B R (x 0 ) and v x 0 ,R satisfies 0 < v x 0 ,R < 1 in B R (x 0 ).
Proof. Let x 0 ∈ R N be fixed and let R be fixed such that R d 0 , where d 0 = d 0 (f, J) > 0 is given in Lemma 6.1. We will check that the conclusion holds with this quantity d 0 . First of all, the uniqueness of the maximal solution in B R (x 0 ), if any, is a trivial consequence of its definition.

Let us then focus on the construction of a maximal solution. From Lemma 6.1, there exists a solution v ∈ C(B R (x 0 ), (0, 1)) to (6.1). Now, remember that 1 is a strict super-solution to (6.1). Therefore, since f is Lipschitz continuous, it follows that we can construct a maximal solution v x 0 ,R ∈ C(B R (x 0 ), (0, 1)) to (6.1) such that 0 < v v x 0 ,R < 1 in B R (x 0 ) by using standard monotone iterative scheme as in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]Theorem A.1]. For the sake of completeness, let us describe this scheme in the next paragraph.

First, let us observe that, from the assumptions on J, the linear operator L B R (x 0 ) is a continuous operator in C(B R (x 0 )). Next let us choose a real number k > 0 large enough such that the function s → -ksf (s) is decreasing in R. We can increase further k if necessary to ensure that k + 1 ∈ ρ(L B R (x 0 ) ), where ρ(L B R (x 0 ) ) denotes the resolvent of the operator L B R (x 0 ) . We note that, by this choice of k, the operator [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Coville | On eigenvalue problems arising from nonlocal diffusion models[END_REF]). Now, set v 0 = 1 and let v 1 ∈ C(B R (x 0 )) be the solution of the following linear problem (6.13)

L B R (x 0 ) -(k +1) satisfies a comparison principle, in the sense that if w ∈ C(B R (x 0 )) satisfies L B R (x 0 ) [w] -(k + 1)w 0 in B R (x 0 ) then w 0 in B R (x 0 ) (see
L B R (x 0 ) [v 1 ](x) -(k + 1)v 1 (x) = -kv 0 (x) -f (v 0 (x)) for x ∈ B R (x 0 ).
The function v 1 is well defined, since by construction the continuous operator

L B R (x 0 ) -(k + 1) is invertible. We claim that v v 1 v 0 in B R (x 0 )
. Indeed, since v ( 1) and v 0 = 1 are respectively a solution and a super-solution of (6.1), we have, for x ∈ B R (x 0 ),

L B R (x 0 ) [v 1 -v 0 ](x) -(k + 1)(v 1 (x) -v 0 (x)) = -L B R (x 0 ) [1](x) + 1 0, L B R (x 0 ) [v 1 -v](x) -(k + 1)(v 1 (x) -v(x)) = -kv 0 (x) -f (v 0 (x)) + kv(x) + f (v(x)) 0.
So, the inequality v v 1 v 0 in B R (x 0 ) follows from the comparison principle satisfied by the operator L B R (x 0 ) -(k + 1). In particular, 0 < v 1 1 in B R (x 0 ). Now let v 2 ∈ C(B R (x 0 )) be the solution of (6.13) with v 2 instead of v 1 in the left-hand side and v 1 instead of v 0 in the right-hand side. From the monotonicity of s → -ksf (s) and from the comparison principle, we have v v 2 v 1 v 0 in B R (x 0 ). By induction, we can construct a non-increasing sequence of functions

(v n ) n∈N in C(B R (x 0 )) satisfying v v n+1 v n v 0 in B R (x 0 ) and (6.14) L B R (x 0 ) [v n+1 ](x) -(k + 1)v n+1 (x) = -kv n (x) -f (v n (x)) for x ∈ B R (x 0 ).
Since the sequence is non-increasing and bounded from below, the quantity

v x 0 ,R (x) := inf n∈N v n (x) = lim n→+∞ v n (x) ∈ [v(x), 1] (⊂ (0, 1])
is well defined for every x ∈ B R (x 0 ). Moreover, by passing to the limit in the equation (6.14) and using Lebesgue's dominated convergence theorem, it follows that v x 0 ,R is a solution of (6.1). As in the proof of Lemma 3.1, we infer that v x 0 ,R is continuous in B R (x 0 ) and, as in the proof of Lemma 6.1, we get that v x 0 ,R < 1 in B R (x 0 ). To sum up, v x 0 ,R is a solution of (6.1) belonging to C(B R (x 0 ), (0, 1)). We finally claim that v x 0 ,R is a maximal solution to (6.1). Indeed, let w ∈ C(B R (x 0 ), [0, 1]) be any solution to (6.1). By replacing v with w in the arguments of the previous paragraph and using the fact that the sequence (v n ) n∈N is defined with the same initial value v 0 = 1, we get that w v n in B R (x 0 ) for every n ∈ N, hence w v x 0 ,R in B R (x 0 ). The proof of Lemma 6.3 is thereby complete.

The maximal solutions v x 0 ,R possess some important properties, in particular they are monotone non-decreasing with respect to the domains. Lemma 6.4. Let us assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that J is compactly supported and J ∈ L 2 (R N ). Let d 0 = d 0 (f, J) > 0 be given as in Lemmas 6.1 and 6.3. The following properties hold:

(i) for every

x 1 , x 2 ∈ R N and d 0 R 1 R 2 such that B R 1 (x 1 ) ⊂ B R 2 (x 2 ), then v x 1 ,R 1 (x) v x 2 ,R 2 (x) for all x ∈ B R 1 (x 1 ); (ii) for every x 0 ∈ R N and R d 0 , the function v 0,R (• -x 0 ) defined in B R (x 0 ) satisfies v 0,R (• -x 0 ) = v x 0 ,R in B R (x 0 ); (iii) for every x 0 ∈ R N and R d 0 , min B R (x 0 ) v x 0 ,4R max B R (x 0 ) v x 0 ,2R .
Proof. The proof of (i) is straightforward. Indeed, let

x 1 , x 2 ∈ R N and d 0 R 1 R 2 be such that B R 1 (x 1 ) ⊂ B R 2 (x 2 ). Recall from the proof of Lemma 6.3 that v x 2 ,R 2 ∈ C(B R 2 (x 2 ), (0, 1)) can be defined as v x 2 ,R 2 = lim n→+∞ v n , where (v n ) n∈N is the sequence of positive functions in C(B R 2 (x 2 ), (0, 1]) defined by induction by v 0 = 1 in B R 2 (x 2 ) and, for n ∈ N, L B R 2 (x 2 ) [v n+1 ](x) -(k + 1)v n+1 (x) = -kv n (x) -f (v n (x)) for x ∈ B R 2 (x 2 ).
Here

k > 0 is such that k + 1 ∈ ρ(L B R 2 (x 2 )
) and the function s → -ksf (s) is decreasing. By increasing k if necessary we may assume that k

+ 1 ∈ ρ(L B R 2 (x 2 ) ) ∩ ρ(L B R 1 (x 1 )
). Now observe that, for any n ∈ N, v n satisfies (6.15)

L B R 1 (x 1 ) [v n+1 ](x) -(k + 1)v n+1 (x) -kv n (x) -f (v n (x)) for x ∈ B R 1 (x 1 ),
that is, the function v n+1 is a super-solution to problem (6.14) in B R 1 (x 1 ). We claim that, for every n ∈ N,

v x 1 ,R 1 (x) v n (x) for all x ∈ B R 1 (x 1
). To do so, we proceed by induction. By construction of v x 1 ,R 1 and the definition of v 0 , we know that v

x 1 ,R 1 (x) v 0 (x) for all x ∈ B R 1 (x 1 ). For n ∈ N, assume that v x 1 ,R 1 (x) v n (x) for all x ∈ B R 1 (x 1 ), and let us prove that v x 1 ,R 1 (x) v n+1 (x) for all x ∈ B R 1 (x 1 ). Let w := v x 1 ,R 1 -v n+1 in B R 1 (x 1 ). From (6.15), since the function s → -ks -f (s) is decreasing and v x 1 ,R 1 (x) v n (x) for all x ∈ B R 1 (x 1 ), we see that w satisfies L B R 1 (x 1 ) [w](x)-(k+1)w(x) -kv x 1 ,R 1 (x)-f (v x 1 ,R 1 (x))+kv n (x)+f (v n (x)) 0 for x ∈ B R 1 (x 1 ).
Since the operator L B R 1 (x 1 ) -(k+1) satisfies the maximum principle we then deduce that w 0

in B R 1 (x 1 ), that is, v x 1 ,R 1 (x) v n+1 (x) for all x ∈ B R 1 (x 1 ). Therefore, for every x ∈ B R 1 (x 1 ), we have v x 1 ,R 1 (x) lim n→+∞ v n (x) = v x 2 ,R 2 (x).
Part (ii) follows from the following observations. For any

x 0 ∈ R N , the function v 0,R (•-x 0 ) ∈ C(B R (x 0 ), (0, 1)) satisfies L B R (x 0 ) [v 0,R (• -x 0 )](x) -v 0,R (x -x 0 ) + f (v 0,R (x -x 0 )) = 0 for all x ∈ B R (x 0 ). Therefore, by the maximality of v x 0 ,R , it follows that v 0,R (• -x 0 ) v x 0 ,R in B R (x 0 ). Similarly, one can show that v x 0 ,R (• + x 0 ) v 0,R in B R . Finally, v 0,R (• -x 0 ) = v x 0 ,R in B R (x 0 ).
To prove (iii), we simply observe that, for any x 1 ∈ B 2R (x 0 ), one has B 2R (x 1 ) ⊂ B 4R (x 0 ) and, by (i),

v x 0 ,4R v x 1 ,2R in B 2R (x 1 ). Property (ii) yields v x 0 ,2R (• -(x 1 -x 0 )) = v x 1 ,2R in B 2R (x 1 ), hence v x 0 ,4R (x) v x 0 ,2R (x -(x 1 -x 0 )) for all x 1 ∈ B 2R (x 0 ) and x ∈ B 2R (x 1 ).
Now, since for every x, y ∈ B R (x 0 ) there exists (a unique) x 1 ∈ B 2R (x 0 ) such that y = x -(x 1x 0 ) and x ∈ B R (x 1 ) ⊂ B 2R (x 1 ), the latter inequality implies that

v x 0 ,4R (x) v x 0 ,2R (x -(x 1 -x 0 )) = v x 0 ,2R (y)
for all x, y ∈ B R (x 0 ), which completes the proof.

We can now state our last property about the maximal solution. Lemma 6.5. Let us assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that J is compactly supported and J ∈ L 2 (R N ). Then, for every

x 0 ∈ R N , v x 0 ,R → 1 as R → +∞ locally uniformly in R N .
Proof. Let x 0 ∈ R N be fixed. Consider any non-decreasing sequence (R n ) n∈N in [d 0 , +∞) and converging to +∞, where d 0 = d 0 (f, J) > 0 is given in Lemmas 6.1 and 6.3 (we recall that d 0 > R J , where supp(J) ⊂ B R J ). Thanks to part (i) of Lemma 6.4, the sequence (v x 0 ,Rn ) n∈N is non-decreasing, in the sense that v x 0 ,Rn v x 0 ,Rp in B Rn (x 0 ) for all n p. Moreover, 0 < v x 0 ,Rn < 1 in B Rn (x 0 ) for each n ∈ N. As a consequence, the sequence (v x 0 ,Rn ) n∈N converges pointwise in R N to a function 0 < v 1 which, thanks to Lebesgue's dominated convergence theorem, satisfies (6.16)

J * v(x) -v(x) + f (v(x)) = 0 for all x ∈ R N .
As in the proof of Lemma 3.1, the function v can be viewed as a uniformly continuous function and therefore the limit v x 0 ,Rn → v holds locally uniformly in R N . Consider now any x 1 ∈ R N and any δ ∈ [d 0 , +∞). We can then extract a subsequence of (R n ) n∈N that we still denote (R n ) n∈N such that, for all n ∈ N, B δ (x 1 ) ⊂ B Rn (x 0 ) and R n+1 4R n . By Lemma 6.1 and parts (i) and (iii) of Lemma 6.4, we get that (6.17)

1 > min B δ (x 1 ) v x 0 ,R n+1 min B Rn (x 0 ) v x 0 ,R n+1 min B Rn (x 0 ) v x 0 ,4Rn max B Rn (x 0 ) v x 0 ,2Rn • • • • • • max B Rn (x 0 ) v x 0 ,Rn max B δ (x 1 ) v x 0 ,Rn max B δ (x 1 ) v x 1 ,δ > θ.
Taking the limit as n → +∞ in the inequality min

B δ (x 1 ) v x 0 ,R n+1 max B δ (x 1 ) v x 0 ,Rn ,
we obtain that min

B δ (x 1 )
v max

B δ (x 1 ) v.
Hence, v is equal to a constant C x 1 ,δ in B δ (x 1 ) and, thanks to (6.17), there holds

θ < C x 1 ,δ 1. Furthermore, since x 1 ∈ R N is arbitrary, it follows that v is equal to a constant C ∈ (θ, 1] in R N .
Lastly, (6.16) yields f (C) = 0. Since f satisfies (1.11) and θ < C 1, we infer that C = 1. Therefore, v = 1 in R N and thus the sequence (v x 0 ,Rn ) n∈N converges to 1 locally uniformly in R N as n → +∞. Since the non-decreasing sequence (R n ) n∈N converging to +∞ is arbitrary, and so is δ ∈ [d 0 , +∞), it follows that v x 0 ,R converges to 1 locally uniformly in R N as R → +∞. The proof of Lemma 6.5 is thereby complete. 6.3. Compactly supported continuous sub-solutions in R N . In this section, we construct compactly supported continuous sub-solutions from R N to [0, 1] of problems of the type (6.1). Such continuous sub-solutions will then serve as a building block of some lower bounds in the proof of Theorem 2.4.

Let us first introduce some useful notations. For x 0 ∈ R N , R > 0 and x ∈ R N , let P x 0 ,R (x) be the projection of x on the closed convex set B R (x 0 ), that is,

P x 0 ,R (x) ∈ B R (x 0 ) and |x -P x 0 ,R (x)| = dist(x, B R (x 0 )) = min y∈B R (x 0 )
|x -y|. Lemma 6.6. Assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that J is compactly supported and J ∈ L 2 (R N ). Let d 0 = d 0 (f, J) > 0 be given as in Lemmas 6.1 and 6.3 and, for any x 0 ∈ R N and R d 0 , let v x 0 ,R ∈ C(B R (x 0 ), (0, 1)) be the maximal solution of (6.1). Then there exists δ 0 > 0 such that, for any x 0 ∈ R N , R d 0 and δ ∈ (0, δ 0 ], the continuous function w x 0 ,R,δ : R N → [0, 1) defined by (6.18)

w x 0 ,R,δ (x) = max v x 0 ,R (P x 0 ,R (x)) -δ -1 |x -P x 0 ,R (x)|, 0 satisfies (6.19) 
ˆBR ′ (x 0 ) J(x -y) w x 0 ,R,δ (y) dy 
=L B R ′ (x 0 ) [w x 0 ,R,δ ](x) -w x 0 ,R,δ (x) + f (w x 0 ,R,δ (x)) 0 for all x ∈ R N
and for all R ′ R + δ.

Proof. In view of (6.18), we see that, for every x 0 ∈ R N , R d 0 and δ > 0, the function

w x 0 ,R,δ is continuous R N , that 0 w x 0 ,R,δ < 1 in R N , that w x 0 ,R,δ = v x 0 ,R in B R (x 0 ) and that w x 0 ,R,δ = 0 in R N \ B R+δ (x 0 ).
We set g(s) := sf (s) for s ∈ [0, 1]. From (1.11), we see that (6.20)

γ := min [0,1] g ′ > 0.
We recall that, by (1.11), J is assumed to belong to W 1,1 (R N ), and set (6.21)

δ 0 := γ × ˆRN |∇J(z)| dz -1 > 0.
Let us now fix any x 0 ∈ R N , R d 0 , δ ∈ (0, δ 0 ] and let us check that (6.19) holds for any R ′ R + δ. Since both w x 0 ,R,δ and J are non-negative and since w x 0 ,R,δ = 0 in R N \ B R+δ (x 0 ), recalling also that f (0) = 0 due to (1.11), we see that it is sufficient to show (6.19) for x ∈ B R+δ (x 0 ). Furthermore, by monotonicity of the integral with respect to R ′ , it is enough to show (6.19) for R ′ = R + δ.

For any x ∈ B R+δ (x 0 ), there holds

ˆBR+δ (x 0 ) J(x-y) w x 0 ,R,δ (y) dy = ˆBR+δ (x 0 )\B R (x 0 ) J(x-y) w x 0 ,R,δ (y) dy+ ˆBR (x 0 ) J(x-y) v x 0 ,R (y) dy. 
Therefore, it follows from the above equality and the definitions of v x 0 ,R and w x 0 ,R,δ that, for x ∈ B R (x 0 ), ˆBR+δ (x 0 ) J(x-y) w x 0 ,R,δ (y) dy -w x 0 ,R,δ (x)+f (w x 0 ,R,δ (x)) = ˆBR+δ (x 0 )\B R (x 0 ) J(x-y) w x 0 ,R,δ (y) dy 0.

To complete our proof, we have to show that the above inequality holds also for x ∈ B R+δ (x 0 ) \ B R (x 0 ). To this end, let us consider x ∈ B R+δ (x 0 ) \ B R (x 0 ) and set

s(x) := v x 0 ,R (P x 0 ,R (x)) and τ (x) := dist(x, B R (x 0 )) = |x -P x 0 ,R (x)| > 0, that is, w x 0 ,R,δ (x) = max{s(x) -δ -1 τ (x), 0}.
From the nonnegativity of J and w x 0 ,R,δ and the fact that

w x 0 ,R,δ = v x 0 ,R in B R (x 0 ), we have (6.22) ˆBR+δ (x 0 ) J(x -y) w x 0 ,R,δ (y) dy -w δ,R,x 0 (x) + f (w δ,R,x 0 (x)) ˆBR (x 0 ) J(x-y) v x 0 ,R (y) dy-max{s(x)-δ -1 τ (x), 0}+f (max{s(x)-δ -1 τ (x), 0}).
Now, two situations may occur: either s(x) δ -1 τ (x) (that is, w x 0 ,R,δ (x) = 0), or s(x) > δ -1 τ (x) (that is, w x 0 ,R,δ (x) > 0). In the first situation, we easily conclude that

ˆBR+δ (x 0 ) J(x -y) w x 0 ,R,δ (y) dy -w x 0 ,R,δ (x) + f (w x 0 ,R,δ (x)) ˆBR (x 0 ) J(x -y) v x 0 ,R (y) dy 0. 
So let us now assume that s(x) > δ -1 τ (x), that is,

(6.23) 0 < w x 0 ,R,δ (x) = s(x) -δ -1 τ (x) s(x) = v x 0 ,R (P x 0 ,R (x)) < 1.
Let us rewrite the first integral in the right-hand side of (6.22) as

ˆBR (x 0 ) J(x -y) v x 0 ,R (y) dy = ˆBR (x 0 ) [J(x -y) -J(P x 0 ,R (x) -y)] v x 0 ,R (y) dy + ˆBR (x 0 ) J(P x 0 ,R (x) -y)v x 0 ,R (y) dy. 
Since v x 0 ,R solves (6.1) in B R (x 0 ), since P x 0 ,R (x) ∈ B R (x 0 ) and s(x) = v x 0 ,R (P x 0 ,R (x)), and since J ∈ W 1,1 (R N ), the above equality yields

ˆBR (x 0 ) J(x -y) v x 0 ,R (y) dy s(x) -f (s(x)) - ˆBR (x 0 ) |J(x -y) -J(P x 0 ,R (x) -y)| dy. s(x) -f (s(x)) - ˆRN |J(x -y) -J(P x 0 ,R (x) -y)| dy. s(x) -f (s(x)) -τ (x) × ˆRN |∇J(z)| dz.
Combining now the above inequality with (6.22) and s(x)δ -1 τ (x) > 0, and using (6.20), (6.21) and (6.23), we get

ˆBR+δ (x 0 ) J(x -y) w x 0 ,R,δ (y) dy -w x 0 ,R,δ (x) + f (w x 0 ,R,δ (x)) g(s(x)) -g(s(x) -δ -1 τ (x)) -γ δ -1 0 τ (x) (γ δ -1 -γ δ -1 0 )τ (x) 0.
This is the desired inequality and the proof of Lemma 6.6 is thereby complete.

The case of convex obstacles: proofs of the main Liouville type results

In this section, we prove our main results. We first consider in Section 7.1 the case where J is a general kernel satisfying (1.9), namely we prove Theorems 2.2 and 2.3. Once this is done, we consider in Section 7.2 kernels having compact support and we prove Theorem 2.4. Section 7.3 is devoted to the proof of a lemma used in the proof of Theorem 2.4. Throughout Section 7, we always assume that K is a compact convex set and that f and J satisfy the conditions (1.8), (1.9) and (1.10).

7.1. General kernels: proofs of Theorems 2.2 and 2.3. Let us start our proof of Theorem 2.2 with the following simple observation. Lemma 7.1. Let K ⊂ R N be a compact convex set and assume (1.8) and (1.9). Let u ∈ C(R N \ K, [0, 1]) satisfy (2.3), that is,

Lu + f (u) 0 in R N \ K, (7.1) u(x) → 1 as |x| → +∞. (7.2)
Then there exists γ ∈ (0, 1] such that γ u 1 in R N \ K.

Proof. We proceed by contradiction. Suppose that the conclusion does not hold. Then, by continuity of u and (7.2), there exists a point x 0 ∈ R N \ K, such that u(x 0 ) = 0. Arguing as in the proof of the strong maximum principle (Lemma 4.2) or in the proof of the sweeping principle (Lemma 4.3), we get that u = 0 in A(x 0 , r 1 , r 2 )∩R N \ K, where 0 r 1 < r 2 are given in (1.9), and then u = 0 in A(x 1 , r 1 , r 2 ) ∩ R N \ K for all x 1 ∈ A(x 0 , r 1 , r 2 ) ∩ R N \ K. Since K is convex, it follows in particular that u = 0 in B r (x 0 ) ∩ R N \ K for some r > 0. Finally, the non-empty set x ∈ R N \ K; u(x) = 0 is both (obviously) closed and open relatively to the connected set R N \ K. Hence u = 0 in R N \ K, contradicting (7.2).

We now turn to the proof of Theorem 2.2.

Proof of Theorem 2.2. Let K, f , J and u be as in Theorem 2.2. Firstly, without loss of generality, one can assume by (1.8) that f is extended to a C 1 (R) function satisfying (4.1). Secondly, by (2.3) and the boundedness of K, there exists R 0 > 0 large enough so that K ⊂ B R 0 and u 1c 0 in R N \ B R 0 , where c 0 > 0 is given in (4.1).

We proceed the proof by contradiction, and suppose that inf

R N \K u < 1. (7.3)
From (2.3) and (7.3), together with the continuity of u, there exists then

x 0 ∈ R N \ K such that u(x 0 ) = min R N \K u ∈ [0, 1).
We observe that, by Lemma 7.1, one has u(x 0 ) > 0. Now, since K is convex, there exists e ∈ ∂B 1 such that K ⊂ H c e , where H e is the open affine half-space defined by

H e := x 0 + x ∈ R N ; x • e > 0 .
In light of assumption (1.10), there exists an increasing function φ ∈ C(R) such that

J 1 * φ -φ + f (φ) 0 in R, φ(-∞) = 0, φ(+∞) = 1.
Let us also define the function

ϕ r (x) := φ r,e (x) = φ(x • e -r), x ∈ R N ,
and the following quantity

r * := inf r ∈ R ; ϕ r u in R N \ K .
From Lemmas 5.1 and 7.1, we know that r * ∈ [-∞, r 0 ], where r 0 > 0 is given in Lemma 5.1. We claim that in fact

(7.4) r * = -∞.
The proof of (7.4) is by contradiction. We assume that r * ∈ R. Then, there exists a sequence (ε j ) j∈N of positive real numbers such that ϕ r * +ε j (x) = φ(x • er *ε j ) u(x) for all x ∈ R N \ K and ε j → 0 as j → +∞. Thus passing to the limit as j → +∞, we obtain that ϕ r * (x) u(x) for all x ∈ R N \ K.

Let us denote H the open affine half-space

H = x ∈ R N ; x • e > R 0 .
Notice that H ∩ K = ∅ and that u is well defined and continuous in H. We also observe that, by construction, sup H c ϕ r * < 1. (7.5) Two cases may occur.

Case 1: inf H c \K (uϕ r * ) > 0. In this situation, thanks to the uniform continuity of φ, there exists ε > 0 such that inf

H c \K (u -ϕ r * -ε ) > 0.
Now, we observe that u and ϕ r * -ε satisfy

     Lu + f (u) 0 in H, Lϕ r * -ε + f (ϕ r * -ε ) 0 in H (by (5.3)), u ϕ r * -ε in H c \ K, together with u 1-c 0 in R N \B R 0 ⊃ H and lim |x|→+∞ u(x) = 1, while ϕ r * -ε 1 in R N .
Thus, by the weak maximum principle (Lemma 4.1) and the continuity of u and ϕ r * -ε in R N \ K, we get that u ϕ r * -ε in R N \ K. This contradicts the minimality of r * and therefore Case 1 is ruled out. Case 2: inf H c \K (uϕ r * ) = 0. In this situation, by (7.2) and (7.5), and by continuity of u and ϕ r * , there exists a point x ∈ H c \ K such that u(x) = ϕ r * (x). Note that x ∈ H e , since otherwise x ∈ R N \ H e , namely x • e < x 0 • e, and the chain of inequalities This contradiction rules out Case 2 too. Hence (7.4) holds true and as a consequence we have that ϕ r u in R N \ K for any r ∈ R. In particular, recalling that φ(+∞) = 1, we get that

u(x) = ϕ r * (x) < ϕ r * (x 0 ) u(x 0 ) = min
1 > u(x 0 ) lim r→-∞ ϕ r (x 0 ) = lim r→-∞ φ(x 0 • e -r) = 1,
a contradiction. Therefore, (7.3) can not hold. In other words, inf R N \K u = 1, i.e. u = 1 in R N \ K. The proof of Theorem 2.2 is thereby complete.

We observe that, by the same token, we obtain Theorem 2.3.

Proof of Theorem 2.3. By Lemma 3.2, Remark 3.3 and our assumptions on f , we know that u has a (uniformly) continuous representative u * ∈ C(R N \ K) in its class of equivalence and we can identify u with u * . The desired result now follows as a consequence of Theorem 2.2.

7.2.

Compactly supported kernels: proof of Theorem 2.4. In this subsection we prove Theorem 2.4. That is, provided some additional assumptions on f and J are satisfied, we show that the Liouville result obtained in Theorem 2.2 holds true when the uniform limit of u as |x| → +∞, namely condition (7.2), is replaced by the following weaker condition (7.6) ess sup

R N \K u = 1,
where u : R N \ K → [0, 1] is a measurable solution of Lu + f (u) = 0 a.e. in R N \ K. The condition (7.6) can be rewritten as (7.7) sup

R N \K u = 1,
if u is already assumed to be uniformly continuous in R N \ K. Note that the extra assumptions (2.4) made on f (namely f ′ < 1/2 in [0, 1]) actually guarantees that u has a uniformly continuous representative in its class of equivalence, as follows from Lemma 3.2 and Remark 3.3. As a consequence, in the proof of Theorem 2.4 we can assume without loss of generality that u : R N \ K → [0, 1] is uniformly continuous and satisfies (7.7). Notice immediately that the same arguments as in the proof of Lemma 7.1 imply that

(7.8) u > 0 in R N \ K.
Otherwise u would be identically equal to 0 in R N \ K, contradicting the assumption (7.7).

The key-point in the proof of Theorem 2.4 is the following lemma.

Lemma 7.2. Let K ⊂ R N be a compact set and assume that f and J satisfy (1.8), (1.9) and (1.11). Assume further that J is compactly supported and J ∈ L 2 (R N ). Let u : R N \ K → [0, 1] be a uniformly continuous solution of (2.5). Then, u(x) → 1 as |x| → +∞.

The proof of Lemma 7.2 is postponed in Section 7.3. In this section, we complete the proof of Theorem 2.4.

Proof of Theorem 2.4. From the previous paragraphs, the function u can be assumed to be uniformly continuous in R N \ K without loss of generality. Then, since the condition (1.11), together with (1.8) and (1.9), implies the condition (1.10), the assumptions of Theorem 2.2 are all fulfilled, thanks to Lemma 7.2. Therefore u = 1 in R N \ K, completing the proof of Theorem 2.4. 7.3. Proof of Lemma 7.2. This section is devoted to the proof of Lemma 7.2. It is divided into four main steps. To prove Lemma 7.2, it suffices to show that for any ε > 0 small enough there exists R(ε

) > 0 such that u 1 -ε in R N \ B R(ε)
. To obtain such a lower bound, our strategy relies on the existence of continuous families of continuous sub-solutions w τ which satisfy w τ 1-ε in B 1 (x τ ) for some x τ ∈ R N (these sub-solutions are drawn from Section 6.3). Then, we use the sweeping principle to propagate the lower bound satisfied by the w τ 's to a lower bound for u.

Step 1: the solution u is close to 1 in some large balls In this step, we show that, for any ε > 0, ℓ > 0, and R > 0, there exists a point x * ∈ R N \ K such that (7.9)

|x * | > ℓ, B R (x * ) ⊂ R N \ K, and u 1 -ε in B R (x * ).
To do so, notice first that, from (2.5) and the continuity of u in R N \ K, two situations may occur: namely, either there exists a sequence (x n ) n∈N ⊂ R N \ K such that (7.10) lim

n→+∞ |x n | = +∞ and lim n→+∞ u(x n ) = 1,
or there exists a point x ∈ R N \ K such that u(x) = 1. In the latter case, since f (u(x)) = f (1) = 0, we get, as in the proof of Lemma 7.1, that u = 1 in R N \ K: the claim (7.9) is therefore trivial in this case. Thus, it suffices to treat the former case (7.10) only. Consider the functions u n defined in

R N \ K -x n by u n (x) = u(x + x n ).
Since u is uniformly continuous in R N \ K and since K is compact and lim n→+∞ |x n | = +∞, it follows that, for every r > 0, the functions u n 's, ranging in [0, 1], are defined in B r for all n large enough and are uniformly equicontinuous in B r . From Arzela-Ascoli theorem and the diagonal extraction process, there exists a continuous function u ∞ : R N → [0, 1] such that, up to extraction of a subsequence, u n → u ∞ locally uniformly in R N as n → +∞. Furthermore, u ∞ (0) = 1 by (7.10). On the other hand, the functions u n 's satisfy

ˆ(R N \K)-xn J(x -y) u n (y) dy - ˆ(R N \K)-xn J(x -y) dy u n (x) + f (u n (x)) = 0 for all x ∈ R N \ K -x n . Lebesgue's dominated convergence theorem implies that J * u ∞ -u ∞ + f (u ∞ ) = 0 in R N .
Since f (u ∞ (0)) = f (1) = 0 and u ∞ 1 in R N , we get as in the proof of Lemma 7.1 that u ∞ = 1 in R N . In particular, for any fixed ε > 0, ℓ > 0, and R > 0, it follows that, for every n ∈ N large enough, there holds

|x n | > ℓ, B R (x n ) ⊂ R N \ K and u n 1 -ε in B R , that is, u 1 -ε in B R (x n ).
In other words, the claim (7.9) holds with x * = x n and n large enough.

Step 2: a sub-solution in a ball Fix ε > 0 small enough so that f ′ < 0 in [1ε, 1], and let us now establish a lower bound for u in a ball far away from K, by using a sub-solution drawn from Section 6.3. We recall here that R J > 0 is such that supp(J) ⊂ B R J .

We first claim that there exist

x * ∈ R N , 0 < R J R K R and a function w ∈ C(R N , [0, 1)) such that (7.11) B R+1 (x * ) ⊂ R N \B R K ⊂ R N \K, u 1 -ε in B R+1 (x * ), L B R+1 (x * ) [w]-w+f (w) 0 in R N , w 1-ε in B 1 (x * ), w = 0 in R N \B R+1 (x * ). To show this claim, let R K max{1, R J } be such that K ⊂ B R K . Then choose R max{R K , d 0 }
1 (d 0 > 0 is given as in Lemmas 6.1 and 6.3) such that the maximal solution v 0,R ∈ C(B R , (0, 1)) to problem (6.1) in B R satisfies

(7.12) v 0,R 1 -ε in B 1 .
Note that such a real number R exists according to Lemmas 6.3 and 6.5. On the one hand, as far as the first line in (7.11) is concerned, formula (7.9), applied here with ℓ = R + 1 + R K > 0 and R + 1 > 0 in place of R, yields the existence of x * ∈ R N such that (7.13)

|x * | > R + 1 + R K (hence, B R+1 (x * ) ⊂ R N \B R K ⊂ R N \K) and (7.14) u 1 -ε in B R+1 (x * ).
Thanks to (7.12) and part (ii) of Lemma 6.4, the maximal solution v x * ,R ∈ C(B R (x * ), (0, 1)) to problem (6.1) in B R (x * ) satisfies v x * ,R 1-ε in B 1 (x * ). On the other hand, as far as the second line in (7.11) is concerned, Lemma 6.6 provides the existence of a function w ∈ C(R N , [0, 1)) such that

L B R+1 (x * ) [w] -w + f (w) 0 in R N , w = v x * ,R in B R (x * ) ⊃ B 1 (x * )
and w = 0 in R N \ B R+1 (x * ). As a consequence, x * , R K , R and w fulfill (7.11).

We then claim that

(7.15) w u in R N \ K. Since w = 0 in R N \ B R+1 (x * ) and u 0 in R N \ K, we only need to show that w u in B R+1 (x * ) (⊂ R N \ K). Denote z := w -u in B R+1 (x *
) and assume that max

B R+1 (x * ) z = z(x) > 0
for some x ∈ B R+1 (x * ). Since B R+1 (x * ) ⊂ R N \ K and u and J are non-negative with J having a unit mass in L 1 (R N ), it follows from the equation Lu

+ f (u) = 0 satisfied by u in R N \ K that L B R+1 (x * ) [u](x) -u(x) + f (u(x)) 0.
Together with the first inequality of the second line of (7.11) applied at x, we get that (7.16)

L B R+1 (x * ) [z](x) -z(x) + f (w(x)) -f (u(x)) 0. Since z z(x) in B R+1 (x * ), one has L B R+1 (x * ) [z](x) -z(x)
0. Furthermore, remembering (7.14) and the choice of ε, there holds 1ε u(x) = w(x)z(x) < w(x) < 1 and f ′ < 0 in [1-ε, 1], hence f (w(x))-f (u(x)) < 0. This contradicts (7.16). Therefore, max B R+1 (x * ) z 0, that is, w u in B R+1 (x * ) and then in R N \ K.

Step 3: a lower bound in annuli with large inner radii Let us now construct some families of sub-solutions and exploit the sweeping principle (Lemma 4.3) to get a lower bound of u in some annuli. To do so, let

x * ∈ R N , 0 < R J R K R and w ∈ C(R N , [0, 1 
)) be as in (7.11). Consider any orthonormal basis (e 1 , • • • , e N ) of R N and, for τ ∈ [0, 2π], let R τ be the rotation of angle τ in the plane spanned by (e 1 , e 2 ) (that is, R τ e 1 = (cos τ )e 1 + (sin τ )e 2 and R τ e 2 = -(sin τ )e 1 + (cos τ )e 2 ) and leaving invariant the vectors e 3 , • • • , e N . We set

A := A(|x * | -R -1, |x * | + R + 1) = B |x * |+R+1 \ B |x * |-R-1 . From (7.11), note that A ⊂ R N \B R K ⊂ R N \K (hence, A ∩ K = ∅). Now for each τ ∈ [0, 2π] and x ∈ R N , we set w τ (x) := w(R τ x).
Thanks to the rotational invariance of J and A, and since B R+1 (x * ) ⊂ A and both J and w are non-negative, it follows from (7.11) that each function w τ satisfies

L A [w τ ] -w τ + f (w τ ) 0 in R N .
On the other hand, it follows from (2.5) that the function u obeys

L A [u](x)-u(x)+f (u(x)) = - ˆRN \(K∪A) J(x-y) u(y) dy -u(x) 1- ˆRN \K J(x-y) dy 0
for all x ∈ R N \ K and therefore for all x ∈ A. In addition, thanks to positivity of u in R N \ K (remember (7.8)) and the fact that J > 0 a.e. in A(r 1 , r 2 ) with 0 r 1 < r 2 R J R K R (remember (1.9) and supp(J) ⊂ B R J ), one infers that

ˆRN \(K∪A) J(x-y) u(y) dy > 0 for all x ∈ A ′ := A(|x * |+R+1-r 2 , |x * |+R+1) (⊂ A), hence L A [u](x) -u(x) + f (u(x)) < 0 for all x ∈ A ′ .
Since w u in A (⊂ R N \ K) by (7.15) and r 2 R K |x * | -R -1 by (7.13), it follows from the sweeping principle (Lemma 4.3) applied to u, to the family (w τ ) τ ∈[0,2π] and to

(s 1 , s 2 , s 3 , s 4 ) = (|x * | -R -1, |x * | + R + 1 -r 2 , |x * | + R + 1, |x * | + R + 1), that (7.17) w τ u in A for every τ ∈ [0, 2π].
Notice also (even if the following inequalities will not explicitly be used in the next step) that, since w 1ε in B 1 (x * ) by (7.11), the family of estimates in (7.17) implies in particular that u 1ε in τ ∈[0,2π] B 1 (R -1 τ x * ). Since the previous arguments are independent of the choice of the orthonormal basis (e 1 , . . . , e N ), we also get that u 1ε in A(|x * | -1, |x * | + 1).

Step 4: conclusion

Let us now finish our argument. To complete the proof of Lemma 7.2, we will again construct an adequate family of sub-solutions and use the sweeping principle to push further the estimates obtained in the previous step. To do so, pick some ρ > 0 and consider the domain

A ρ := A(|x * | -R -1, |x * | + R + 1 + ρ),
where R > 0 is defined in Steps 2 and 3. From (7.11), we note that A ρ ⊂ R N \B R K ⊂ R N \K (hence, A ρ ∩ K = ∅). Next, consider any rotation R of R N , let e := x * /|x * | ∈ ∂B 1 and, for each σ ∈ [0, ρ] and x ∈ R N , denote W σ (x) := w(R xσ e).

As in the previous step, from the rotational invariance of J and A ρ , and since B R+1 (x * + σe) ⊂ A ρ for every σ ∈ [0, ρ] and both J and w are non-negative, it follows from (7.11) that each function W σ satisfies L Aρ [W σ ] -W σ + f (W σ ) 0 in R N .

Similarly, it follows from (2.5) that the function u obeys L Aρ [u]u + f (u) 0 in R N \ K (and therefore in A ρ ), while

L Aρ [u] -u + f (u) < 0 in A(|x * | + R + 1 + ρ -r 2 , |x * | + R + 1 + ρ) (⊂ A ρ ).
From the inequality (7.17 B 1 (R -1 (x * + σe)).

The previous arguments being independent of the choice of ρ > 0 and the rotation R of R N , we conclude that u(x) 1ε for all |x| |x * | -1.

Since ε > 0 can be arbitrarily small, the proof of Lemma 7.2 is thereby complete.

Let us then continuously extend f by f ′ (0)s for s 0 and by f ′ (1)(s -1) for s 1 and still denote f this extension. We also observe that, since (K ε ) 0<ε 1 is a family of (at least) C 0,α deformations of K in the sense of Definition 1.2, there exists a real number R 0 > 0 such that (8.1) K ε ⊂ B R 0 for all 0 < ε 1.

Notice now that it is sufficient to show the conclusion of Lemma 8.1 for δ > 0 small enough. For any δ > 0 small enough, we are going to consider an auxiliary problem whose solutions will provide an appropriate lower bound for u ε , allowing us to prove the desired uniform convergence as |x| → +∞. To this end, for δ ∈ (0, 1), denote f δ (s) := f (s)f (1δ/2) for s ∈ R, and s δ := f (1δ/2) f ′ (0) .

It is immediate to check that there exists δ 1 ∈ (0, 1) such that, for every δ ∈ (0, δ 1 ), one has s δ < 0 < 1δ/2 < 1 and

         f δ f in R, f ′ δ = f ′ < 1/2 in R, f δ (s δ ) = 0, f ′ δ (s δ ) < 0, f δ (1 -δ/2) = 0, f ′ δ (1 -δ/2) < 0, ˆ1-δ/2 s δ f δ (r) dr > 0,
f δ vanishes only once in (s δ , 1δ/2).

Using the results obtained in [START_REF] Bates | Travelling waves in a convolution model for phase transitions[END_REF][START_REF] Chen | Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF][START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases[END_REF][START_REF] Yagisita | Existence of traveling wave solutions for a nonlocal bistable equation: an abstract approach[END_REF], we know that, for every δ ∈ (0, δ 1 ), there exists a continuous function φ δ : R → (s δ , 1δ/2) satisfying

     L R φ δ + f δ (φ δ ) = J 1 * φ δ -φ δ + f δ (φ δ ) 0 in R, φ δ is increasing in R, φ δ (-∞) = s δ , φ δ (0) = 0, φ δ (+∞) = 1 -δ/2.
Fix in the sequel any δ ∈ (0, δ 1 ), any ε ∈ (0, 1] and any (Hölder-continuous) function u ε : R N \ K ε → [0, 1] solving (2.7). For A > 0, we let Φ δ,A be the function defined in R N by Φ δ,A (x) := φ δ (|x| -A).

We observe that, by construction, we have (8.2) Φ δ,R 0 (x) 0 u ε for all x ∈ B R 0 \ K ε .

Our aim is to extend the above relation to all x ∈ R N \ B R 0 . Since u ε (x) → 1 as |x| → +∞, there exists R ε > R 0 such that u ε (x) max(1c 0 , 1δ/2) for all |x| R ε where c 0 > 0 is such that f ′ < 0 in [1c 0 , +∞). Then, reasoning as in Lemma 5.1 (or using directly that Φ δ,A → s δ < 0 as A → +∞ locally uniformly in R N and Φ δ,A < 1δ/2 < 1 in R N ), we obtain that, for some A ε > 0, Φ δ,Aε u ε in R N \ K ε .

Consequently, it makes sense to define

A * := inf A ∈ R ; Φ δ,A u ε in R N \ K ε A ε .
We claim that (8.3) A * R 0

Recalling that K ε → K as ε → 0 + in the C 0,α sense, there exists a sequence (ε j ) j∈N ∈ (0, 1] converging to 0 + and a function u 0 ∈ C 0,α (R N \ K) such that, for all R R 0 and β ∈ (0, α), (8.5) u ε ju 0 C 0,β (B R \Kε j ) → 0 as j → +∞.

Notice that 0 u 0 1 in R N \ K. By Lemma 8.1 we know that u ε (x) → 1 uniformly in ε > 0 as |x| → +∞. Consequently, u 0 (x) → 1 as |x| → +∞. (8.6) Now, we claim that Lu 0 (x) + f (u 0 (x)) = 0 in R N \ K, (8.7) where L is given by (1.2). This can be seen as follows. First, fix x in the open set R N \K and an integer j 0 large enough such that x ∈ R N \ K ε j for all j j 0 . Notice that f (u ε j (x)) → f (u 0 (x)) as j → +∞ since f is continuous. Next, for all j j 0 we have L ε j u ε j (x) -Lu 0 (x) = ˆRN \Kε j J(xy) (u ε ju 0 )(y) -(u ε ju 0 )(x) dy -ˆKε j \K J(xy) u 0 (y)u 0 (x) dy.

For every R R 0 and j j 0 , there holds |L ε j u ε j (x) -Lu 0 (x)| 2 ˆKε j \K J(xy) dy + 2 ˆRN \B R J(xy) dy + u ε ju 0 L ∞ (B R \Kε j ) + |u ε j (x)u 0 (x)|.

Since K ε j → K in the C 0,α sense and J ∈ L 1 (R N ), we have in particular that the first term in the right-hand side converges to 0 as j → +∞. Recalling (8.5) and letting first j → +∞ and then R → +∞, we find that L ε j u ε j (x) -Lu 0 (x) → 0 as j → +∞.

Therefore, (8.7) holds for all x ∈ R N \ K and finally for all x ∈ R N \ K by continuity and boundedness of u 0 in R N \ K. Remember now that u 0 ∈ C(R N \ K, [0, 1]). By (8.6), (8.7) and Theorem 2.2, we infer that u 0 = 1 in R N \ K. This also shows that the limit of the functions u ε j is unique and, hence, u ε → 1 as ε → 0 + in the sense of (8.5), not only along a subsequence.

We conclude by contradiction. Suppose then that there exists countably infinitely many numbers in (0, 1], which we label in decreasing order as (ε j ) j∈N , such that ε j → 0 + as j → +∞ and ∀ j ∈ N, ∃ x j ∈ R N \ K ε j , u ε j (x j ) = min R N \Kε j u ε j < 1. (8.8) Note that this makes sense since, without loss of generality, we have identified the functions u ε j with their continuous representatives in R N \ K ε j . We observe that (1.11), (8.8) and Proposition 2.1 yield that u ε j (x j ) < θ for all j ∈ N. Now, since the functions u ε j converge uniformly to 1 as |x| → +∞ (by Lemma 8.1), the sequence (x j ) j∈N is bounded. Hence, up to extraction of a subsequence, we may assume that x j → x as j → +∞, for some x ∈ R N \ K. Furthermore, since the functions u ε j converge to u 0 ≡ 1 as j → +∞ in the sense of (8.5), we obtain that 1 > θ > u ε j (x j ) -→ j→+∞ u 0 (x) = 1. This is a contradiction. Therefore, there exists an ε 0 ∈ (0, 1] such that u ε = 1 in R N \ K ε for every ε ∈ (0, ε 0 ) and for every measurable solution u ε : R N \ K ε → [0, 1] of (2.7) (after identification with its continuous representative). The proof of Theorem 2.6 is thereby complete.

  R N \K u leads to a contradiction. Therefore, we have ϕ r * u in R N \ K with equality at a point x ∈ R N \ K ∩ H e . Since K ⊂ H c e and ϕ r * and u satisfy respectively Lu + f (u) 0 in H e , Lϕ r * + f (ϕ r * ) 0 in H e (by (5.3)), , it follows in particular from the strong maximum principle (Lemma 4.2) that ϕ r * = u in H e . Thus, for any e ⊥ ∈ ∂B 1 such that e ⊥ • e = 0, one infers from (7.2) and the definition of ϕ r * that 1 = lim t→+∞ u(x 0 + t e ⊥ ) = lim t→+∞ ϕ r * (x 0 + t e ⊥ ) = ϕ r * (x 0 ) < 1.

  ) of the previous step (which holds for every τ ∈ [0, 2π] and for every orthonormal basis (e 1 , • • • , e N )), we have W 0 u in A and then inR N \ K (since W 0 = 0 in R N \ A and u > 0 in R N \ K. As a consequence, W 0 u in A ρ .Finally, it follows from the sweeping principle (Lemma 4.3) applied to u, to the family (W σ ) σ∈[0,ρ] and to(s 1 , s 2 , s 3 , s 4 ) = (|x * | -R -1, |x * | + R + 1 + ρr 2 , |x * | + R + 1 + ρ, |x * | + R + 1 + ρ), that W σ u in A ρ for every σ ∈ [0, ρ]. Since w 1ε in B 1 (x *) by(7.11), we obtain in particular that u 1ε in σ∈[0,ρ]
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The case of small perturbations of convex obstacles

In this section, we explore further the validity of the Liouville Theorem 2.2 and we prove Theorem 2.6, a kind of stability result for the Liouville property. In the spirit of the results of Bouhours [START_REF] Bouhours | Robustness for a Liouville type theorem in exterior domains[END_REF], we show that the Liouville property obtained in Theorem 2.2 still holds true for small perturbations of convex obstacles, provided some additional assumptions are made on f and J. To do so, we adapt to our problem the arguments developed in [START_REF] Bouhours | Robustness for a Liouville type theorem in exterior domains[END_REF] and, in particular, we will rely on the following Lemma 8.1. Assume all hypotheses of Theorem 2.6. Then, for every δ ∈ (0, 1), there exists a real number R δ > 0 such that, for any ε ∈ (0, 1] and any measurable solution

Before proving Lemma 8.1, let us first establish a preliminary "rough" Liouville-type result, namely Proposition 2.1.

Proof of Proposition 2.1. We recall that f ∈ C 1 ([0, 1]), that J is assumed to satisfy (1.9), that K is a compact set such that R N \ K is connected, and that u :

is bounded and, up to extraction of a subsequence, we may assume that it converges to some x ∈ R N \ K. Evaluating the equation satisfied by u at x n , we obtain

By assumption, f (u(x)) 0 for all x ∈ R N \ K and therefore

Since J ∈ L 1 (R N ) passing to the limit in the above inequality results in 0 ˆRN \K J(xy) u(y)m dy 0.

Thus, arguing as in Section 4 and using (1.9) and the connectedness of R N \ K, we obtain that u = m (< 1) in R N \ K. Since u(x) → 1 as |x| → +∞, we get a contradiction. The proof of Proposition 2.1 is thereby complete.

Let us now turn our attention to the proof of Lemma 8.1.

Proof of Lemma 8.1. First of all, in virtue of Lemma 3.2, we know that, for every ε ∈ (0, 1], every measurable solution u ε :

. Consequently, we are allowed to identify u ε with u * ε . For simplicity, we omit the superscript * and write simply u ε instead of u * ε .

We argue by contradiction and assume that A * > R 0 . From the definition of A * and the continuity of φ δ , we have

If min B Rε \Kε (u ε -Φ δ,A * ) > 0, then from the uniform continuity of φ δ , there exists τ > 0 small

a contradiction with the definition of A * . Therefore, min B Rε \Kε (u ε -Φ δ,A * ) = 0. Since u ε and Φ δ,A * are continuous, there exists

Since A * > R 0 by assumption, it follows from (8.2) and the strict monotonicity of Φ δ,A with respect to A that x 0 ∈ B Rε \ B R 0 . Let us set e 0 = x 0 /|x 0 | and define the open affine half-space

From (8.4) and the definition of Φ δ,A * , we have

Reasoning as in Lemma 5.1 and recalling the assumptions on f δ , we have that

Applying the strong maximum principle (Lemma 4.2) we obtain in particular that u ε = ϕ in H. This is impossible since u ε (x) → 1 as |x| → +∞, while ϕ < 1δ/2 < 1 in R N . As a consequence, the claim (8.3) holds true.

From (8.3) and the monotonicity of Φ δ,A with respect to A, we then deduce that

Since ε ∈ (0, 1] and u ε : R N \ K ε → [0, 1] solving (2.7) were arbitrary, since R 0 > 0 verifying (8.1) was independent of ε, and since φ δ (+∞) = 1δ/2 > 1δ, the desired conclusion follows.

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. First of all, as in the proof of Lemma 8.1, it follows from Lemma 3.2 that, for every ε ∈ (0, 1], every measurable solution u ε : R N \ K ε → [0, 1] of (2.7) can be identified with its Hölder continuous C 0,α (R N \ K ε ) representative. Furthermore, Lemma 3.2 yields

Note that A is independent of ε. In particular, for every ε * ∈ (0, 1] and every R R 0 , where R 0 > 0 is chosen as in (8.1), the family (u ε ) 0<ε ε * is uniformly bounded in C 0,α (B R \ K ε * ).