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Trait selection and rare mutations: the case of large diffusivities

TRAIT SELECTION AND RARE MUTATIONS: THE CASE OF LARGE1

DIFFUSIVITIES2

IDRISS MAZARI3

Abstract. We consider a system of N competing species, each of which can access a different

resources distribution and who can disperse at different speeds. We fully characterize the exis-

tence and stability of steady-states for large diffusivities. Indeed, we prove that the resources
distribution yielding the largest total population size at equilibrium is, broadly speaking, always

the winner when species disperse quickly. The criterion also uses the different dispersal rates.
The methods used rely on an expansion of the solutions of the Lotka-Volterra sytem for large

diffusivities, and is an extension of the ”slowest diffuser always wins” principle.

Using this method, we also study the case of an equation modelling a trait structured popula-
tion, with small mutations. We assume that each trait is characterized by its diffusivity and the

resources it can access. We similarly derive a criterion mixing these diffusivities and the total

population size functional for the single species model to show that for rare mutations and large
diffusivities, the population concentrates in a neighbourhood of a trait maximizing this criterion.
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1. Introduction1

1.1. Notations and comments. The notation IR∗+ stands for the set of positive real numbers, i.e2

IR∗+ = (0; +∞).3

For any integer k ∈ IN, the set INk is defined as INk = {1, . . . , k}.4

In this article, all the equations will be understood in a weak W 1,2 sense. Furthermore, when the5

equation is set on a smooth domain Ω, the notation ∂
∂ν denotes the derivative with respect to the6

unit outward normal vector.7

1.2. The diffusive Lotka-Volterra system and our prototypical result.8

1.2.1. Model and assumptions. We consider the diffusive Lotka-Volterra system modeling the inter-9

action between N species, where N ∈ IN∗. Let INN be the set {1, . . . , N}. Throughout this article,10

Ω stands for a bounded C 2 domain in IRn.11

In order to describe the interspecific interactions, we parameterize the model with the following12

quantities :13

(1) N positive diffusion rates µi > 0 where i ∈ INN ,14

(2) N functions mi ∈ L∞(Ω) where i ∈ INN . For a fixed i ∈ INN , mi stands for the resources15

distribution available to the i-th species. The spatial heterogeneity will be accounted16

for by the resources distributions mi’s.17

The diffusive Lotka-Volterra system reads as follows:18

(1.1)


∂ui
∂t

= µi∆ui + ui

mi −
N∑
j=1

uj

 in Ω,

∂ui
∂ν = 0 on ∂Ω,
ui(t = 0, ·) = ui,0,

, i ∈ INN ,

where, for every i ∈ INN , ui,0 denotes a non-negative initial condition in W 1,2(Ω).19

For further explanations about modeling issues we refer to [10–12, 29, 30] and to the references20

therein. Our main interest here is the investigation of the influence of spatial heterogeneity on21

the existence and stability of steady states (also called equilibria) of (1.1) in the setting of large22

diffusivities.23

24

Formal presentation of our main focus. We use a criterion related to single species models for large25

diffusivities, to derive results about existence and stability results for the system (1.1). This crite-26

rion was already studied in the case N = 2 by He and Ni (see [14–16]). We will further comment27

on their works in upcoming sections of the introduction.28

Let i ∈ INN . It will be convenient to introduce the positive solution θi = θmi,µi of the so-called29

logistic diffusive equation:30

(1.2)


µi∆θi + θi(mi − θi) = 0 in Ω,
∂θi
∂ν = 0 on ∂Ω.
θi > 0.

Existence and Uniqueness issues: Existence and uniqueness of a positive solution to equation (1.2)
is classical and has been answered in different frameworks. In [9], the existence and uniqueness of a
solution to (1.2) is investigated in bounded domains and, in [2], the same question is investigated in
a periodic setting. A study of the influence of spatial heterogeneity on species persistence is carried

3
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out. We also refer to [12, 16] and to the references therein for more information regarding the
influence of concentration and fragmentation of resources. We will come back to [2] later on, when
giving biological interpretations of our results. Here, in the case of Neumann boundary conditions,
we recall that the question of existence and uniqueness of a solution to (1.2) boils down to the study
of the principal eigenvalue λ1(µi,mi) of the elliptic operator µi∆ +mi. Recall that this eigenvalue
can be defined using Rayleigh quotients, that is:

λ1(µi,mi) := sup
f∈W 1,2(Ω) ,

ffl
Ω
f2=1

{
−µ

 
Ω

|∇f |2 +

 
Ω

mif
2

}
.

This eigenvalue is simple. Furthermore, any eigenfunction ϕi associated with λ1(µi,mi) has a
constant sign, and can hence be chosen to be positive. Any eigenfunction ϕi satisfies{

µi∆ϕi +miϕi = λ1(µi,mi)ϕi,
∂ϕi
∂ν = 0,

in a weak W 1,2(Ω) sense. Existence and uniqueness of a solution to (1.2) is equivalent to requiring
that

λ1(µi,mi) > 0.

Using f = 1

|Ω|
1
2

as a test function, existence and uniqueness is guaranteed if1

(1.3)

 
Ω

mi > 0.

Thus, we assume that, for every i ∈ INN , we have 
Ω

mi > 0.

Semi-trivial equilibria Coming back to system (1.1), note that, for any i, if θi solves (1.2), then2

the state3

(ST) ui := (0, . . . , θi, 0, . . . , 0)

is an equilibrium of (1.1). These equilibria can be referred to as semi-trivial. A question that has4

been intensely studied over the last decades is wether or not these equilibria are the only one and5

if they are linearly or globally asymptotically stable. We introduce the following definition:6

Definition 1.1. Any equilibrium of the form (ST) will be called a semi-trivial equilibrium of (1.1).7

Any equilibrium u := (u1, . . . , uN ) such that at least two components ui are non zero in Ω will be8

called a coexistence state of (1.1).9

Broadly speaking, the criterion for existence and stability of equilibria will be the total population10

size associated with the resources distribution mi, reading11

(1.4)

 
Ω

θi,

that is, the total population size of a single species, moving at rate µi with a resources distribution12

mi, in the case where all the diffusivities µi’s are large. Our prototypical result reads:13

If the mi’s are ordered with respect to criterion (1.4) and to the diffusivities, that is 
Ω

θ1 > · · · >
 

Ω

θN ,

and if the µi’s are ”large enough”, then the ui = (0, . . . , θi, 0, . . . , 0)’s are the only equilibria,14

4
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and u1 = (θ1, 0, . . . , 0) is the only stable one.1

1.2.2. Bibliographical remarks. A much more thorough analysis of the existence and/or stability of
coexistence and semi-trivial equilibria of (1.1) was carried out by He and Ni in the three parts of
their paper [14–16] in the case N = 2, with two different resources distributions m1 and m2. They
give, most notably in parts II and III of their paper, a global characterization of the sets

Σ1 :=
{

(µ1, µ2) ∈ (IR∗+)2 , (θµ1,m1
, 0) is stable

}
and

Σ2 :=
{

(µ1, µ2) ∈ (IR∗+)2 , (0, θµ2,m2
) is stable

}
as epigraphs: for instance, Σ1 can be described as

{µ2 > f(µ1)},
for a function f whose asymptotic behaviour, as, µ1 → ∞ is then analyzed using asymptotic2

expansions of θµ1,m1
as µ1 goes to ∞. Our criterion here is the same as theirs. Their paper is3

written under the assumption that m ∈ C 0,α(Ω) (although adapting these methods enables to4

derive the same asymptotic expansions for m ∈ L∞(Ω)). Our contribution in this article is to study5

the case of an arbitrary number N of competing species and to give new proofs of the asymptotic6

expansions in the case mi ∈ L∞(Ω). This enables us to encompass the case of patch models (see7

for instance [2, 10] for the relevance of such models).8

We also give interpretations in terms of concentrations of resources, and expand on the paradigm He9

and Ni introduce at the end of [16, Corollary 1.8]: for large diffusivities, the lesser spatial oscillation10

in resources the better for competition.11

Furthermore, in the second part of this article, we consider the case of a continuum of traits with12

a small mutation parameters.13

1.2.3. Assumptions and comments. In this section, we introduce and comment on the assumptions
we will be led to make later on.

Assumption on diffusivities: Another way to consider stability is to try to understand the influence
of the diffusivities on equilibria. In this paper, we work under the hypothesis that diffusivities
are large.
In [11], the diffusive Lotka-Volterra system is studied under the assumptions that mi = mj for
any i, j (all the species are considered with respect to the same resources distribution), and the
diffusivities are ordered (but not necessarily large), that is, µ1 > · · · > µN . It is proved that the
slowest diffuser always wins: the ui’s defined by (ST) are the only equilibria, u1 is stable, while the
other ui’s are unstable. Our work encompasses this result in the case of large diffusivities.

Assumption and comments on interactions: In this paper, we will work under the hypothesis that
all the interaction coefficients are equal to 1.
To understand the interactions between the different species, consider the general system:

∀i ∈ INN , µi∆ui + ui

mi −
N∑
j=1

bi,juj

 =
∂ui
∂t

in IR+ × Ω,

with Neumann boundary conditions in space and with a non-negative initial condition. Here,14

(bi,j)i,j∈INN is a matrix with non-negative coefficients and such that, for any i ∈ INN , bi,i > 0.15

5
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Many results are devoted to studying the existence of coexistence equilibria and the importance of1

the heterogeneity. See for instance [5–7,17,26]. We highlight in particular two of them. They hold2

in the case N = 2, b1,1 = b2,2 = 1 and m1 = m2 = m. It has been shown that3

(1) the map µ 7→
ffl

Ω
θm,µ has at least one maximum on IR∗+ and that, if b2,1 < inf

µ>0

ffl
Ω
mffl

Ω
θm,µ

= b∗2,1,4

then u1 is unstable. If b2,1 > b∗2,1, then u1 can change stability. This result is due to Lou,5

see [22].6

(2) if b2,1 = αb1,2 and if b1,2 is large enough, then u1 is stable, u2 is stable, and any coexistence7

state is unstable. This result is due to Girardin, see [13, Theorem 1.2].8

In other words, the magnitude of the interspecies interaction can influence in many ways the sta-9

bility of equilibria, so that we will not consider this influence in this paper. We believe that our10

method enables us to recover these results in the case of large diffusivities.11

12

Assumption on the resources distributions: In this paper, we will successively work under two hy-13

potheses: first, that all species can access the same amount of resources and, later, under14

the hypothesis that the species have access to different amounts of resources. Many efforts15

have been done in the last decade to understand the influence of the distribution of resources on16

the persistence of a species. For instance, in [2] it is proved that the concentration of resources in17

the logistic diffusive model (1.2) favors the persistence of the species. In [16, Corollary 1.8], the18

authors conclude that concentration of resources is better than fragmentation for competition. We19

will give further details on these interpretations at the end of this Introduction, see Section 2.20

1.3. The rare mutations model for trait selection. In the second part of this article, we
are interested in the trait selection process occurring for small mutations. This encompasses the
evolution phenomena occurring in population dynamics.
More precisely, we consider a set Ξ ⊂ IRd, assumed to be C 2 and compact, accounting for the
different traits (e.g length of the legs, age...), and a domain Ω ⊂ IRn, also C 2 and compact,
accounting for the spatial environment. We consider a population density in both trait and space,
denoted as u = u(ξ, x) where ξ ∈ Ξ and x ∈ Ω. For any ξ ∈ Ξ , x ∈ Ω, the quantity u(ξ, x)dx
represents the number of members of the species with trait ξ located at position x. Note that here,
we are primarily interested in the steady-state situation, where an equilibrium has already been
reached.
Our hypothesis regarding the spatial evolution of the density are standard: if we consider, for a trait
ξ, a diffusivity µ(ξ) > 0, the spatial evolution will be described by µ(ξ)∆xu. We also assume that
each trait can access some finite amount of resources m = m(ξ, ·). The hypothesis on the resources
distributions are the same as in the previous section: we assume that there exists a constant δ > 0
such that, for any ξ ∈ Ξ,  

Ω

m(ξ, x)dx ≥ δ > 0.

Finally, we account for the mutation (i.e the possibility for individuals to acquire a new trait) via21

some small mutation rate, ε2∆ξu. Here, ε > 0 is a small parameter.22

In other words, we consider the following trait mutation model:23

(1.5)

{
µ(ξ)∆xu(ξ, x) + ε2∆ξu(ξ, x) + u(ξ, x)

(
m(ξ, x)−

´
Ξ
u(ξ, x)dξ.

)
= 0 in Ω,

∂u
∂ν = 0 on ∂Ω× ∂Ξ,

6



Trait selection and rare mutations: the case of large diffusivities

in a weak sense. For notational convenience, we now define

Φ(x) =

ˆ
Ξ

u(ξ, x)dξ.

It is expected that, as ε → 0, the density u = uε concentrates at particular traits, accounting1

for a natural selection process: there exists a collection of traits (ξj)j∈J ∈ ΞJ and a collection of2

functions (ψj)j∈J ∈ W 1,2(Ω)I such that, for any sequence εk →
k→∞

0, there exists a subsequence3

and there exists some j ∈ J satisfying, in the sense of distributions and along this subsequence:4

(1.6) uεk(ξ, x) →
k→∞

δξj (ξ)ψj(x).

In other words, when mutations are rare, a trait selection process happens. This problem was5

introduced in [1]. This selection was proved rigorously in different settings; we refer to [27] for the6

case where Ω and Ξ are convex and where the resources distribution does not depend on the trait7

ξ ∈ Ξ. We note here that, provided m is C 2 in x ∈ Ω and ξ ∈ Ξ, up to minor modifications of the8

technical proof of [27], the same result holds.9

A lot of attention has been devoted to identifying the possible limit traits {ξj}j∈J . For instance,10

in [20,27] it is shown that, provided the distribution resources m do not depend on ξ and provided11

µ = µ(ξ) has a unique minimum ξ∗ in Ξ, then the only possible limit trait is ξ∗, extending the12

aforementioned result of [11] (i.e, the slowest diffuser always wins). In [20], the same result is13

proved under the condition that Ξ is a one-dimensional interval, and the convergence rates are made14

sharp. For further references regarding the study of selection processes in unbounded domains and15

time-dependant problems, most noticeably the traveling-waves solutions to this equation, we refer16

to [4, 31] and to the references therein.17

Our contribution in this article consists in a study of the case where the resources distributions18

depend on the trait ξ. We do so in the setting of large diffusivities.19

Just as in the first part of the article, for a particular trait ξ ∈ Ξ, the function θ = θ(ξ, x) will20

denote the solution of the following logistic diffusive equation:21

(1.7)

{
µ(ξ)∆xθ(ξ, x) + θ(ξ, x)(m(ξ, x)− θ(ξ, x)) = 0 in Ω,
∂θ(ξ,x)
∂ν = 0 on ∂Ω.

22

We will prove the same kind of results as in the first part of this article:23

Assume that the map ξ 7→
ffl

Ω
θ(ξ, x)dx has a finite number of maximizers in Ξ. If all the µ(ξ) are24

”large enough”, then any limit traits will be close to one of these maximizers.25

In other words, the total population size criterion is, in the case of large diffusivities, a selection26

criterion.27

1.4. Introducing the criterion for both models. We first assume that all the species can access28

the same amount of resources.29

30

The class of admissible distribution resources: Since we want to order the resources distributions31

with respect to the total population size, it is natural to assume the following on the distribution32

resources (that is, either mi or m(ξ, ·) depending on the model): in the case of the Lotka-Volterra33

system, for any i ∈ INN , mi ∈ M(Ω), and, in the case of the mutation diffusion model, for any34

ξ ∈ Ξ, m(ξ, ·) ∈M(Ω), where35

(1.8) M(Ω) =

{
m ∈ L∞(Ω) , 0 ≤ m ≤ κ a.e ,

 
Ω

m = m0

}
.

7
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The relevance of this admissible class is detailed in [23,25]. Broadly speaking, these are the minimal
assumptions we can make on resources distributions so that the optimization problem

sup
m∈M(Ω)

 
Ω

θm,µ

has a solution.1

Note that, if m ∈ M(Ω) and if µ > 0, then the unique positive solution of the logistic diffusive2

equation3

(1.9)

{
µ∆θm,µ + θm,µ(m− θm,µ) = 0, in Ω
∂θm,µ
∂ν = 0 on ∂Ω,

satisfies

0 < inf
Ω
θm,µ ≤ κ , θm,µ ∈W 2,p(Ω) , ∀p ∈ [1; +∞).

Ordering the resources distributions with respect to our criterion. We have mentioned that our
main criterion will be the total population size functional, and that our results hold for large
diffusivities. Consider the logistic diffusive equation with a resources distribution m satisfyingffl

Ω
m = m0 > 0. Introduce, for a positive diffusivity µ > 0, the functional Fµ :M(Ω)→ IR defined

by

Fµ : m 7→
 

Ω

θm,µ.

The question that arises is that of the behavour of Fµ as µ→ +∞. In order to adress this question,
we recall the classical result (see [22] and the references therein) that for any p ∈ [1; +∞),

θm,µ →
µ→∞

m0

in W 1,p(Ω). We now look for a second order term, that is for η1,m such that4

(1.10) θm,µ = m0 +
η1,m

µ
+ o
µ→∞

(
1

µ

)
in W 1,2(Ω),

and where o
µ→∞

(
1
µ

)
is uniform in m ∈M(Ω). This gives rise to the following equation on η1,m:5

(1.11)

{
∆η1,m +m0(m−m0) = 0 in Ω,
∂η1,m

∂ν = 0 on ∂Ω.

This is not enough to fully characterize η1,m. In order to do so, we introduce the solution η̂1,m to6

(1.12)


∆η̂1,m +m0(m−m0) = 0 in Ω,
∂η̂1,m

∂ν = 0 on ∂Ω,ffl
Ω
η̂1,m = 0 .

We therefore know that there exists a constant β1,m such that η1,m = η̂1,m + β1,m. To determine
this constant, we integrate the logistic diffusive equation (1.2): 

Ω

θm,µ(m− θm,µ) = 0,

so that, identifiying at order 1
µ , we get7

(1.13) β1,m =
1

m0

 
Ω

η̂1,m(m−m0) =
1

m2
0

 
Ω

|∇η̂1,m|2.

8
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We can prove (see [16, 25]) that Equation (1.10) holds strongly in W 1,2(Ω). This means that the
following first-order expansion of Fµ holds:

Fµ : m 7→ m0 +
1

µ

 
Ω

η1,m + o
µ→∞

(
1

µ

)
.

1.5. Bibliographical remarks. If we go back to [16], we recall that for instance the set

Σ1 :=
{

(µ1, µ2) ∈ (IR∗+)2 , (θµ1,m1
, 0) is stable

}
is described by the authors as

{µ2 > f(µ1)}.
The content of their Theorem 1.6 is a precise asymptotic expansion of f as µ→∞; if we truncate
their results at order µ1, it reads

f(µ1) ∼
µ1→∞

µ1

ffl
Ω
η1,m2ffl

Ω
η1,m1

and that, if (µ1, µ2) ∈ Σ1 then (θµ1,m1 , 0) is globally asymptotically stable. Our theorem reads the1

same for the existence part in the setting of large diffusivities, but is less precise, for these results by2

He and Ni encompass our own and are completed by a study of the precise zones of stability, both3

local and global of these semi-trivial equilibria. As mentioned earlier, our goal here is to provide4

a partial study for the case of an arbitrary number of competing species and for a rare mutations5

equation.6

1.6. Main results of the papers for the Lotka-Volterra system. For the sake of clarity, we7

will first state the results in the case of the Lotka-Volterra system.8

9

Same amount of resources and same scale of dispersal: Here and throughout we parameterize the10

diffusivities as functions of µ1, i.e we work with a collection of functions µ2, . . . , . . . µn of the vari-11

able µ1. For this first result, we assume that all species move at the same scale that is, for any12

i ∈ INN , there exists di > 0 such that13

(A1)
µi(µ1)

µ1
→

µ1→∞
di,

and that the resources distributions are ordered with respect to the criterion:14

(A2)
1

d1

 
Ω

η1,m1
> · · · > 1

dN

 
Ω

η1,mN .

We recall that, for any i ∈ INN ,
ffl

Ω
η1,mi = 1

m2
0

ffl
Ω
|∇η̂1,mi |2, and η̂1,mi is defined by equation (1.12).15

Theorem 1.1. Assume that, for any i ∈ INN ,mi ∈ M(Ω). Assume that (A1) and (A2) are16

satisfied.17

There exists µ∗ = µ∗(Ω,m0, κ,m1, . . . ,mN ) > 0 such that, for any µ1 > µ∗ and such that, for any18

i = 2, . . . , N , µi(µ1) > µ∗:19

(1) The ui’s are the only non-zero equilibria of the system (1.1). There are no coexistence20

states.21

(2) u1 is linearly stable, while the other ui’s are linearly unstable.22

Under the hypothesis of this theorem, we can rewrite the arguments of [11, Theorem 3.4] and23

we obtain the following result:24

9
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Theorem 1.2. Let M = (mi,j)i,j∈INN be a matrix such that, for any i ∈ INN we have mi,i < 01

and, for i6= j, mi,j ≥ 0.2

Consider the system with mutation:3

(1.14)


∂ui
∂t = µi∆ui + ui(mi −

∑N
j=1 uj) + ε

∑n
j=1mi,juj in Ω,

∂ui
∂ν = 0 on ∂Ω,
ui(t = 0, ·) = ui,0,

, i ∈ INN ,

where, for every i ∈ INN , ui,0 denotes a non-negative initial condition in W 1,2(Ω). Then, under4

the assumptions of Theorem 1.1: there exists ε0 > 0 such that, for any ε < ε0, there exists a5

non-negative equilibrium u1(ε), varying analytically in ε, such that u1(0) = u1 (i.e u1 perturbs an-6

alytically in the cone of non-negative n-tuples of functions). Furthermore, this equilibria is linearly7

stable.8

We will not prove this result, for it is a straightforward adaptation of the arguments of [11, The-
orem 3.4] .

Same amount of resources and different scales of dispersal: A bit of notation is required to give a
clear statement of the two next results. Henceforth, we will parameterize diffusivities as functions
of µ1, that is, µi = µi(µ1).
As we have mentioned, we have to understand the interplay between the scale of dispersal and the
total population size functional. To do so, the most convenient way is to introduce the notion of
size-scale order.
We recall that we assume

µi(µ1) →
µ1→∞

∞.

For a subset of indexes {i1, . . . , ik} of INN , we say it is size-scaled ordered if the two following9

conditions hold:10

(1) For any j ≥ 1, there exists dij ∈ (0;∞) such that11

(H1)
µij (µ1)

µi1(µ1)
→

µ1→∞
dij ,

and this hypothesis will be referred to as the same diffusivity scale hypothesis,12

(2) Furthermore,13

(H2) ∀j 6= j′ ∈ {i1, . . . , ik}
1

dij

 
Ω

η1,mij
6= 1

dij′

 
Ω

η1,mi
j′
.

Furthermore, if we are given a set of indexes Γ ⊂ {1, . . . , N}, it is always possible to split it into t
same diffusivity scale sets

Γ = Γ1 t · · · t Γt,

and we assume that the same diffusivity scale sets are maximal, that is, for any i ∈ {1, . . . , t− 1},
µmin{k,k∈Γi}(µ1)

µmin{k,k∈Γi+1}(µ1)
→

µ1→∞
0.

We call it a scale partition of the set.14

Remark 1.1. The hypothesis of Theorem 1.1 were in fact the hypothesis that the set INN itself was15

size-scale ordered.16

10
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Theorem 1.3. Assume that, for any i ∈ INN ,mi ∈M(Ω). Let us write the scale partition of INN :

INN = I1 t · · · t I`
and assume each of the Ij is size-scale ordered i.e satisfies (H1) and (H2). Then there exists µ∗ > 01

such that for any N -tuple (µ1, . . . , µN ) satisfying , for any i ∈ INn, µi > µ∗:2

(1) the ui’s are the only non-zero equilibria of the system (1.1). There are no coexistence states.3

(2) Furthermore, if i1 ∈ I1 satisfies

F1(mi1) = max
i∈I1

F1(mi) (i.e it is the optimal resources distribution among the slowest diffusers)

then ui1 is the only stable equilibria.4

Different amounts of resources and different scale of dispersal. Let us drop the assumption that
mi ∈M(Ω). We write INN as

INN = J1 t · · · t Jω
as follows: for any k ∈ INω, there exists m0,k such that, for any i ∈ Jk, 

Ω

mi = m0,k > 0.

Each of the set Ji is then split as before according to the scale of dispersal rates, that is,

Jk = Γk,1 t · · · t Γk,γk ,

with the same notations as in the previous paragraph. We now assume that each of the Γi,j is5

size-scale ordered.6

Theorem 1.4. Assume the Γi,j are size-scale ordered i.e satisfy both conditions (H1) and (H2).7

Then there exists µ∗ such that for any N -tuple (µ1, . . . , µN ) satisfying, for any i ∈ INN , µi > µ∗:8

(1) the ui’s are the only non-zero equilibria of the system (1.1). There are no coexistence states.9

(2) Furthermore, let k1 ∈ INω be such that

∀i ∈ Jk1 ,∀j /∈ Jk1 ,m :=

 
Ω

mi >

 
Ω

mj

and let i1 ∈ Γk1,1 (that is, among the slowest diffusers for the maximal amount of resources
m) be such that

F1(mi1) = max
i∈Γk1,1

F1(mi).

Then, ui1 is the only stable equilibria.10

1.7. Main result of the paper for the mutation diffusion system. We will make the following11

assumptions on the dispersal rate µ and on the resources distributions, strongly resembling the12

hypothesis of the first part. We introduce a reference scale µ > 0 and parameterize µ = µ(ξ) as a13

function µ = µ(ξ, µ) and assume that14

(H1) µ(ξ, µ) →
µ→∞

∞

uniformly in ξ ∈ Ξ. We also assume that all the species move at the same-scale: this means that15

there exists a trait ξ0 ∈ Ξ and a function d : Ξ→ IR∗+ bounded above such that, for any ξ ∈ Ξ,16

(H2)
µ(ξ, µ)

µ(ξ0, µ)
−→
µ→∞

d(ξ).

11
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Furthermore, we also assume that, for each ξ ∈ Ξ1

(H3) 0 ≤ m ≤ κ a.e in Ω× ξ ,
 

Ω

m(ξ, x)dx = m0 , i.e m(ξ, ·) ∈M(Ω).

Finally, for technical reasons, we will also assume the following regularity property on Ω and Ξ:2

(H4) Ω and Ξ are convex.

We could expect, as was the case in the first part of this article, to be able to handle different
amounts of resources. It is the case: as will be noted through the proof, if you assume that there is
an above bound on the amount of resources, then the limit traits will be in a neigbourhood of the
maximizers of the functional

ξ 7→
 

Ω

m(ξ, x)dx.

Thus, for the sake of simplicity, we will assume (H3) as of now.3

As was the case in the first part, we can consider, for a trait ξ, the solution θξ to the logistic diffusive4

equation with resources distribution m(ξ, ·).5

Finally, for each resources distribution m(·, ξ), denote by ηξ the solution of the equation6

(1.15)


∆ηξ +

ffl
Ω
m(ξ, x)dx

(
m(ξ, x)−

ffl
Ω
m(ξ, x)dx

)
= 0 in Ω,

∂ηξ
∂ν = 0 on ∂Ω,ffl
Ω
ηξ = 1

(
ffl
Ω
m(ξ,·))2

ffl
Ω
|∇ηξ|2.

As was recalled in the first part of the introduction, this accounts for the first-order term of the
total population size for the single - species logistic-diffusive model. We recall that for any ξ ∈ Ξ,
θ(ξ, ·) is the solution of (1.7). Our criterion is then, for a fixed trait ξ0,

F (ξ) =
1

d(ξ)

 
Ω

ηξ

Our hypothesis is then7

(H4)
F has a unique maximizer ξ∗ and there exists t > 0 , C ≥ 0 such that F (ξ∗)− F (ξ) ≥ C|ξ − ξ∗|t.

Our theorem reads as follows, and bears a strong resemblance to the theorems of the first part.8

Theorem 1.5. We work under assumption (H4). Asume m is C 2 in x ∈ Ω and ξ ∈ Ξ. Let r > 0
and B(ξ∗, r) be the euclidean ball centered at ξ∗ with radius r. Let {ξi}i∈I be the set of all limit
traits for u = uε(ξ, x) as ε→ 0 in the sense of distributions: up to a subsequence,

uε
D′(Ξ×Ω)−→
ε→0

δξiθ(ξ, ·) , θ(ξ, ·) solution of (1.7).

Then there exists µ∗ = µ∗(Ω,Ξ) such that, for any µ such that inf
ξ∈Ξ

µ(ξ, µ) ≥ µ∗,9

(1.16) ∀i ∈ I , ξi ∈ B(ξ∗, r).

Remark 1.2. In other words, for large diffusivities, the traits that are selected are close to the trait10

accessing the resources distribution maximizing the criterion involving the total population size and11

the diffusivity for the logistic diffusive model.12

12
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2. Regarding the criterion: What is known concerning the shape optimization1

problem2

The results of this paper thus indicates that a relevant criterion for studying local linear stability
of semi-trivial equilibria of the system (1.1) (or for the trait structured population) is the functional

F1(m) :=

 
Ω

|∇η̂1,m|2

where η̂1,m solves (1.12). Here, for notational simplicity, we have considered that, in the case of3

(1.1), all diffusivities are equal (i.e µi = µ1 for all i) and, in the case of the trait structured model,4

all diffusivities are equal (µ(ξ) = µ for all ξ). In this setting, the relevant optimization problem5

then is6

(PV1) max
m∈M(Ω)

 
Ω

|∇η̂1,m|2.

Here, the fact that the sup is in fact a max (i.e that the variational problem has a solution) is a7

straightforward consequence of the direct method in the calculus of variations.8

As was recalled earlier, F1 is the first order expansion of the total population size functional in
the sense that, uniformly in m ∈M(Ω), 

Ω

θm,µ1
= m0 +

1

µ1
F1(m) + o

µ1→∞

(
1

µ1

)
.

2.0.1. Pointwise properties of the resources distributions. The first thing that comes to mind when9

dealing with optimization problem such as (PV1) is the question of pointwise properties of maxi-10

mizers: are they bang-bang type functions, i.e, if m∗ is a solution of (PV1), do we have m∗ = 0 or11

κ almost everywhere? In [25], calculations are carried out to prove that the functional F1 is strictly12

convex, in the sense that its second Gâteaux-derivative is always positive. Since we are maximizing13

on a convex set M(Ω), the following result follows:14

Theorem 2.1 ( [25], Step 1 of the Proof of Theorem 1). The maximizers of F1 over the set M(Ω)15

are of bang-bang type.16

In other words: for competitions, it is better to split the domain into two zones Ω = {m =
0} t {m = κ} and oscillations between 0 and κ for large diffusivities are counterproductive. Thus,
the optimization problem (PV1) can be recast as a shape optimization problem, since it is equivalent
to

sup
E measurable subset of Ω ,|E|=m0

κ

F1(κχE).

It thus seems that patch models are relevant for such studies.17

2.0.2. Geometric properties: concentration and fragmentation. We have also recalled some results
from [16], most notably [16, Corollary 1.8] that, among other things, state that, for large diffusivities,
in the one dimensional case (on Ω = (0; 1)), if N = 2 and if

m1(x) = 1 + cos(2πk1x) ,m2(x) = 1 + cos(2πk2x) , ki ∈ IN , k1 < k2

then the semi-trivial equilibrium (θm1,µ1
, 0) is globally asymptotically stable, indicating that the18

lesser spatial oscillations, the better for competition.19

Here, we expand on results proved in [25] in the n-dimensional case: namely, should we expect20

concentration or fragmentation of resources for the total population size and/or stability?21

13
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To give a feeling of what concentration-fragmentation means, consider the two following resources1

distributions (here, Ω is a box):2

m = κ

m = 0

3

This first distribution is more ”concentrated” than the second one.4

5

6

The results we give are in the following setting: Ω is a n dimensional orthotope, namely

Ω =

n∏
i=1

[0; ai],∀i ∈ INn , ai > 0.

We also introduce the following notion of decreasing rearrangement due to Berestycki and7

Lachand-Robert (see [3]):8

Definition 2.1. (1) The one dimensional case: For a given function b ∈ L1(0, ai), one defines9

its monotone decreasing rearrangement bdr on (0, ai) by bdr(x) = sup{c ∈ IR | x ∈ Ω∗c},10

where Ω∗c = (ai − |Ωc|, ai) with Ωc = {b > c}.11

(2) The n-dimensional case: For a given function b ∈ L1(Ω), one defines its symmetric decreas-12

ing rearrangement bds on Ω as follows: first fix the n− 1 variables x2, . . . , xn. Define b1,sd13

as the monotone decreasing rearrangement of x 7→ b(x, x2, . . . , xn). Then fix x1, x3, . . . , xn14

and define b2,sd as the monotone decreasing rearrangement of x 7→ b1,sd(x1, x, . . . , xn). Per-15

form such monotone decreasing rearrangements successively. The resulting function is the16

symmetric decreasing rearrangement of b.17

In both cases, the decreasing rearrangement will be denoted by b#.18

This rearrangement was first put to use in the context of the study of spatial heterogeneity by
Berestycki, Hamel and Roques in [2], where they prove that concentration of resources favors the
survival of the species in the sense that, for any m ∈ L∞(Ω) and any diffusivity µ we have

λ1(m#, µ) ≥ λ1(m,µ).

This is an application of the Polya-Szego inequality for the decreasing rearrangement. For applica-19

tions of numerous rearrangements for spectral quantities in elliptic equations, we refer for instance20

to [2, 18]. For the specific case of optimal location of resources (with respect to the eigenvalues)21

and the study of different phenomena arising in it, we refer to [21]. In [25] we prove the following22

theorem:23

Theorem 2.2 ( [25],Theorem 2, Theorem 3). Any maximizer m∗ of F1 satisfies

m∗ = (m∗)#.
14
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In other words, any maximizer of F1 is decreasing in every direction.
Furthermore, in the one dimensional case (in Ω = (0; 1)), there are only two maximizers of F1,
namely,

m∗1 := κ1[0;`] and m∗2 := κ1[1−`;1], with κ` = m0.

Thus, in the one dimensional case and for large diffusivities, the following resources distributions1

are always better for competition with another species:2

•
1

κ

x

m = 0

m = κ

and
•
1

κ

x

m = 0

m = κ

3

Thus, this means that the single step is, in the case of large diffusivities, always a winner for4

competition.5

3. Proof of Theorem 1.16

A few facts about principal eigenvalues. Let us recall a few facts about principal eigenvalues,
which are of paramount importance in studying the stability and existence of equilibria of systems
(it is the main tool to prove the results we have recalled). In a general setting, for any h ∈ L∞(Ω),
the principal eigenvalue of µ∆ + h will be denoted by λ1(h, µ). We recall that λ1(h, µ) can be seen
as the solution of the following variational problem:

λ1(h, µ) = sup
f∈W 1,2(Ω) ,

ffl
Ω
f2=1

{
−µ

 
Ω

|∇f |2 +

 
Ω

f2h

}
.

The quantity
−µ

ffl
Ω
|∇f |2 +

ffl
Ω
f2h´

Ω
f2

is the associated Rayleigh quotient. It is also clear, since θi > 0 is a principal eigenfunction of the
operator µi∆ + (mi − θi) that

λ1(µi,mi − θi) = 0.

We finally recall the following results (see [11]): for any h ∈ L∞(Ω), the map µ 7→ λ1(h, µ) is7

non-increasing, and λ1(h, µ) −→
µ→+∞

ffl
Ω
h.8

3.1. Proof of statement 1: non-existence of coexistence equilibria. Let us first comment9

on notations.10

11

Regarding notations. Recall that we parameterized diffusivities as functions of µ1, that is, µi =12

µi(µ1). In the sequel, we consider a sequence {Uµ1}µ1>0 ∈ (W 1,2(Ω)N )IR∗+ of equilibria. Here, what13

15
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we mean is that, for each µ1 > 0, Uµ1 is a N -tuple of functions (uµ1,1, uµ2(µ1),2, . . . , uµN (µ1),N ) that1

is a steady-state of equation (1.1).We will write either uµ1,k or uk (when no confusion is possible)2

to denote the k-th component of this equilibrium. Since in the framework of this theorem INN is3

size-scale ordered, we know that we can fix µ1 as a reference diffusivity, and note that any4

function behaving as o
µ1→∞

(
1
µ1

)
behaves as o

µi→∞

(
1
µi

)
and conversely. We have already defined,5

for any i ∈ INN ,6

(3.1) di := lim
µ1→∞

µi(µ1)

µ1
∈]0;∞[.

Consider, for some N -tuple (µ1, . . . , µN ), a non-zero equilibrium Uµ1 = (u1, . . . , uN ) and define

Φµ1
= Φ :=

N∑
i=1

ui,

so that each ui solves the following equation:7

(3.2) µi∆ui + ui(mi − Φ) = 0 in Ω,

along with Neumann boundary conditions. Now, assume that there exists a sequence {Uµ1
=

(u1, . . . , uN )}µ>0 of coexistence state as µ1 → ∞. Up to an extraction, we can split the set INN

into two subsets:

I1 = {i , for all µ large enough ui = Uµ1,i 6= 0} , I2 = {i , for all µ large enough ui = Uµ1,i = 0} .

We will only focus on the set I1.
Assume that Uµ1

is not one of the uj ’s. This means that at least two components ui, uj of u do not
vanish, so that ui is an eigenvalue of the operator

µi∆ + (mi − Φ),

while uj is an eigenvalue of

µj∆ + (mj − Φ).

In particular,

0 = λ1(µi,mi − Φ) = λ1(µj ,mj − Φ) for a subsequence µ1 →∞.

We will show that, under the assumptions (A1)-(A2), the latter eigenvalues can never be equal for
large enough dispersal rates. This will be done in several steps, aimed at providing an asymptotic
expansion of λ1(µi,mi −Φ) and λ1(µj ,mj −Φ). Note that this kind of asymptotic expansions was
studied in the case N = 2 in [16].

Asymptotic behaviour of Φ. We first note that Φ satisfies the following partial differential equation:

∆Φ−

(
N∑
i=1

ui
µi

)
Φ +

N∑
i=1

uimi

µi
= 0,

with Neumann boundary conditions in a weak W 1,2(Ω) sense.8

Under assumption (A1), and since Φ satisfies Neumann boundary conditions, it is classical to see9

that Φ converges, in W 1,2(Ω), to m0 as µ1 →∞. We refine this result:10

16
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Lemma 3.1. There exists Φ1 = Φ1,m1,...,mN ∈W 1,2(Ω) such that there holds, strongly in W 1,2(Ω),:1

(3.3) Φ = m0 +
Φ1

µ1
+ o
µ1→∞

(
1

µ1

)
.

Proof of Lemma 3.1. We proceed in several distinct steps:2

3

First order expansion: We first prove the first order expansion, i.e that there holds, strongly in4

W 1,2(Ω), the following expansion:5

(3.4) Φ = m0 + O
µ1→∞

(
1

µ1

)
.

Proof of Claim (3.4). In order to do so, we are going to proceed as follows:6

(1) We first prove that Φ converges to m0 in L2(Ω) as µ1 goes to ∞.7

(2) We give an estimate on∇Φ in L2(Ω) to prove that this convergence in fact holds in W 1,2(Ω),8

and that this convergence has a rate 1
µ1

.9

Let’s proceed to the proofs:10

(1) First of all, it is standard that ui converges, strongly in L2(Ω),to some constant u
(0)
i ≥ 0 in

W 1,2(Ω). Thus, we know that

Φ →
µ→∞

N∑
j=1

u
(0)
i =: Φ(0) in W 1,2(Ω).

Furthermore, we assumed that we were working along a sequence µ1 going to ∞ such that11

there always exists an index i ∈ INN satisfying ui = uµi,i 6= 0. Fix such an index i. Dividing12

Equation (3.2) by ui and integrating it by parts yields13

(3.5) µi

 
Ω

|∇ui|2

u2
i

+m0 =

 
Ω

Φ.

Thus, there always holds  
Ω

Φ ≥ m0 > 0.

Since Φ →
µ1→∞

Φ(0) in W 1,2 and since this convergence ensures the strong L1 convergence14

of Φ to Φ(0), this entails that15

(3.6) Φ(0) = lim
µ1→∞

 
Ω

Φ ≥ m0 > 0.

Finally, if we integrate Equation (3.2), we get 
Ω

ui (mi − Φ) = 0.

We now pass to the limit as µ1 →∞ in these equations, leading to

∀i ∈ INN , u
(0)
i m0 − u(0)

i Φ(0) = 0.

Summing these identities for i = 1, . . . , N leads to

Φ(0)m0 −
(

Φ(0)
)2

= 0.

17
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Since Φ(0) 6= 0 by (3.6), this readily gives

Φ(0) = m0.

(2) We now have to give an estimate on the decay rate; namely, we need to prove the following1

Claim: there exists a constant A1 depending on m0, κ and Ω such that2

(3.7) ||Φ−m0||W 1,2(Ω) ≤
A1

µ1
.

Proof of Claim (3.7). To prove this claim, we need to prove that there exist constants A03

and A′0 such that4

(3.8) ||Φ−m0||L2(Ω) ≤
A0

µ1

and

||∇(Φ−m0)||L2(Ω) ≤
A′0
µ1
.

Since m0 is a constant, it suffices to prove the existence of a constant A0 such that

||∇Φ||L2(Ω) ≤
A′0
µ1
.

To prove the existence of a constant A0 such that (3.8) holds, we proceed in two steps:
first, we prove that there exists a constant a0 such that∣∣∣∣∣∣∣∣Φ−  

Ω

Φ

∣∣∣∣∣∣∣∣
L2(Ω)

≤ a0

µ1

and then that there exists a constant a′0 such that∣∣∣∣ 
Ω

Φ−m0

∣∣∣∣ ≤ a′0
µ1
.

Setting A0 = a0+a′0 yields the desired estimate. For the first step (i.e to prove the existence
of a0), define

z0 := Φ−
 

Ω

Φ.

It is clear that z0 satisfies the elliptic equation ∆z0 +

N∑
i=1

uimi

µi
− Φ

N∑
i=1

ui
µi

= 0,

∂z0
∂ν = 0,

in a weak W 1,2(Ω) sense.
Multiplying this equation by z0, integrating by parts and using the Cauchy-Schwarz in-
equality gives

 
Ω

|∇z0|2 ≤
N∑
i=1

1

µi
||uimi||L2(Ω)||z0||L2(Ω) + ||z0||L2(Ω)

N∑
i=1

1

µi
||uiΦ||L2(Ω).

We now recall that each ui converges, as µ1 goes to ∞, to a constant u
(0)
i and that Φ

converges, as µ1 goes to ∞, to m0. Thus, each of these functions can be bounded from
above by a constant that does not depend on the index i. Furthermore, each mi can be

18
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bounded from above by κ, because m ∈ M(Ω) = {0 ≤ m ≤ κ ,
ffl

Ω
m = m0}. There thus

exists a universal constant α such that 
Ω

|∇z0|2 ≤ ||z0||L2(Ω)α

N∑
i=1

1

µ1
.

Using Hypothesis (A1), i.e the fact that, for each i ∈ INN , µi(µ1)
µ1

→
µ1→∞

di > 0, there exists

a constant α′ that does not depend on i ∈ INN such that

µi(µ1)

µ1
≤ α′.

This gives  
Ω

|∇z0|2 ≤ Nαα′
||z0||L2(Ω)

µ1
.

We now use the Poincaré-Wirtinger inequality: there exists a constant CPW (Ω) such that,
for any f ∈W 1,2(Ω), there holds∣∣∣∣∣∣∣∣f −  

Ω

f

∣∣∣∣∣∣∣∣
L2(Ω)

≤ CPW (Ω)||∇f ||L2(Ω).

Since
ffl

Ω
z0 = 0, this inequality entails

||∇z0||2L2(Ω) ≤
Nαα′CPW (Ω)

µ1
||∇z0||L2(Ω).

Setting

a0 := Nαα′CPW (Ω),

the conclusion immediately follows.
We now need to prove that there exists a′0 such that∣∣∣∣ 

Ω

Φ−m0

∣∣∣∣ ≤ a′0
µ1
.

We use the integral identity giving an expression of
ffl

Ω
Φ: if we choose an index i such that

ui →
µ1→∞

u
(0)
i 6= 0 (we know this is possible, since, from the proof of the Claim (3.4), Φ

converges to m0 6= 0, and Φ converges also to
∑N
i=1 u

(0)
i . Furthermore, u

(0)
i ≥ 0, so that at

least one of the u
(0)
i is positive), then there holds, by Equation (3.5),

0 <

 
Ω

Φ−m0 = µi

 
Ω

|∇ui|2

u2
i

.

From this we first note that

∣∣∣∣ 
Ω

Φ−m0

∣∣∣∣ =

 
Ω

Φ−m0. Now, set

ζi := µi

(
ui −

 
Ω

ui

)
.

The previous integral identity yields 
Ω

Φ−m0 =
1

µi

 
Ω

|∇ζi|2

u2
i

.
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Since ui converges to u
(0)
i > 0 in L2(Ω), we know that, almost everywhere and as µ1 goes to

∞, ui is bounded below by a constant β. Furthermore, Hypothesis (A1) gives the existence
of a universal constant α′ such that

µ1

µi
≤ α′.

Thus, there holds, for µ1 large enough, 
Ω

Φ−m0 ≤
α′

β

1

µ1

 
Ω

|∇ζi|2.

If we can bound ||∇ζi||2L2(Ω) from above by a constant β′ that only depends on m0, κ and

Ω, then setting A′0 := β′α′

β gives the desired inequality.

Let us then prove the existence of β′ depending only on m0, κ and Ω such that

||∇ζi||2L2(Ω) ≤ β
′.

The function ζi satisfies

∆ζi + ui(mi − Φ) = 0.

Since
ffl

Ω
ζi = 0, the Poincaré-Wirtinger inequality yields

||∇ζi||L2(Ω) ≤ CPW (Ω)||ζi||L2(Ω).

We also know that, as µ1 goes to∞, ui converges to u
(0)
i ≤ m0 and that Φ converges to m0.

Thus ui and Φ are bounded above, as µ1 →∞, by a constant β′′. Multiplying the equation
on ζi by ζi, integrating by parts and using the Cauchy-Schwarz and Poincaré-Wrtinger
inequalities, along with the definition of β′′, we get 
Ω

|∇ζi|2 =

 
Ω

ζiui(mi − Φ) by the Cauchy-Schwarz Inequality

≤ ||ζi||L2 ||ui(mi − Φ)||L2(Ω) by the Poincaré-Wirtinger Inequality

≤ CPW ||∇ζi||L2(Ω)||β′′(κ+ β′′).

This gives the conclusion. �1

This concludes the proof of Claim (3.4). �2

We now prove there exists Φ1 ∈W 1,2(Ω) such that (3.4) holds.
The Rellich-Kondrachov theorem gives the existence of a function Φ1 ∈W 1,2(Ω) such that

µ1(Φ−m0) ⇀
µ1→∞

Φ1 in W 1,2(Ω),

and

µ1(Φ−m0) →
µ1→∞

Φ1 in L2(Ω).

Thus we have, in a weak sense, established the expansion (4.2). We want to show that this expansion3

holds in a strong sense in W 1,2(Ω). To do so, we split our proof in several steps:4

(1) First of, we need to identify the equation satisfied by Φ1.5

(2) Using this equation, we give an L2(Ω) estimate on the gradient ∇ (µ1(Φ−m0)− Φ1) as6

µ1 →∞ to prove that it converges strongly in L2(Ω) to 0. Since we already know that the7

sequence {µ1(Φ − m0)}µ1>0 converges strongly in L2(Ω) to Φ1, this is enough to ensure8

that (4.2) holds in W 1,2(Ω) strong.9
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Trait selection and rare mutations: the case of large diffusivities

We need to know what equation Φ1 satisfies. Recall the weak formulation on the equation on Φ,
that, is, for any v ∈W 1,2(Ω),

−
ˆ

Ω

〈∇Φ,∇v〉+

ˆ
Ω

v

 N∑
j=1

uimi

µi
− Φ

ui
µi

 = 0.

Using hypothesis (A1) and passing to the limit, it follows that Φ1 solves

∆Φ1 +

N∑
i=1

u
(0)
i

di
(mi −m0) = 0

along with Neumann boundary conditions, in a weak sense.1

To ensure that the expansion (4.2) holds in W 1,2(Ω) strong, we only need to guarantee that2

(3.9) ||µ1∇ (Φ−m0)−∇Φ1||L2(Ω) = o
µ1→∞

(1) .

Consider

z := µ1 (Φ−m0)− Φ1

and

ζ := z −
 

Ω

z.

Given that ∇z = ∇ζ, it suffices to establish that

||∇ζ||L2(Ω) →
µ1→∞

0.

It is clear from the equation on Φ and on Φ1 that ζ satisfies, in a weak sense, the equation ∆ζ +

N∑
i=1

mi

(
ui
µ1

µi
− u(0)

i

1

di

)
−

N∑
i=1

(
u

(0)
i m0

1

di
− Φui

µ1

µi

)
= 0

∂ζ
∂ν = 0,

in a weak W 1,2(Ω) sense. For notational convenience, define ω as

ω = ωµ1
:=

N∑
i=1

mi

(
ui
µ1

µi
− u(0)

i

1

di

)
−

N∑
i=1

(
u

(0)
i m0

1

di
− Φui

µ1

µi

)
,

so that

∆ζ + ω = 0.

Furthermore, the convergences Φ →
µ1→∞

m0 strongly in L2(Ω) and ui →
µ1→∞

u
(0)
i strongly in L2(Ω)

entail

||ω||L2(Ω) →
µ1→∞

0.

Since
ffl

Ω
ζ = 0 we also know, thanks to the Poincaré-Wirtinger inequality, that

||ζ||L2(Ω) ≤ CPW (Ω)||∇ζ||L2(Ω).
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Multiplying the equation on ζ by ζ, integrating by part and using the Cauchy-Schwarz inequality
gives us  

Ω

|∇ζ|2 =

 
Ω

ζω

≤ ||ζ||L2(Ω)||ω||L2(Ω)

≤ CPW (Ω)||∇ζ||L2(Ω)||ω||L2(Ω),

so that

||∇ζ||L2(Ω) ≤ CPW (Ω)||ω||L2(Ω).

As was noted before,

||ω||L2(Ω) →
µ1→∞

0,

concluding the proof of Estimate (3.9), and thus ending the proof of Lemma (3.1). �1

Asymptotic behaviour of λ1(µi,mi − Φ). Now assume that there are two different indices i 6= j
in I1, i.e such that ui , uj 6= 0. As was mentioned before, this implies that

λ1(µi,mi − Φ) = λ1(µj ,mj − Φ) = 0.

For ` = i, j, we consider the associated eigenfunction ψ` normalized with respect to the L1(Ω)-norm,2

that is, the unique solution to3

(3.10)


µ`∆ψ` + ψ`(m` − Φ) = 0 in Ω,
∂ψ`
∂ν = 0 on ∂Ω,ffl
Ω
ψ` = 1.

We are going to use ψ` as a test function in the Rayleigh quotient of λ1(µ`,m` −Φ), so we need4

to have information about its behaviour, as µ1 →∞.5

Lemma 3.2. Define

ψ
(1)
` :=

1

d`m0
η̂1,m` .

There holds:6

(3.11) ψ` = 1 +
ψ

(1)
`

µ1
+ o
µ1→∞

(
1

µ1

)
strongly in W 1,2(Ω).

Proof of Lemma 3.2. As for the asymptotic expansion of Φ, we proceed in two steps: we first prove7

that there exists a constant A such that8

(3.12) ||ψ` − 1||W 1,2(Ω) ≤
A

µ1
.

We then prove that

µ1(ψ` − 1) ⇀
µ1→∞

ψ
(1)
` in W 1,2(Ω)

and

µ`(ψ` − 1) →
µ1→∞

ψ
(1)
` in L2(Ω).

We conclude by proving that9

(3.13)
∣∣∣∣∣∣µ`∇ψ` −∇ψ(1)

`

∣∣∣∣∣∣
L2(Ω)

→
µ1→∞

0.
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Proof of Estimate (3.12). Define ζ` := ψ` − 1. Given the normalization of the eigenfunction, it is
clear that  

Ω

ζ` = 0

so that, using the Poincaré-Wirtinger inequality, we get

||ζ`||L2(Ω) ≤ CPW (Ω)||∇ζ`||L2(Ω).

Furthermore, ζ` satisfies, in a weak sense,{
µ`∆ζ` + ζ`(m` − Φ) + (m` − Φ) = 0,
∂ζ`
∂ν = 0.

Recall that Φ →
µ1→∞

m0 in W 1,2(Ω), so that Φ is uniformly bounded, as µ1 → ∞, by 2m0. Multi-

plying the equation on ζ` by ζ`, integrating it by parts and successively using the Cauchy-Schwarz
and the Poincaré-Wirtinger inequalities, we are led to

µ`

 
Ω

|∇ζ`|2 =

 
Ω

ζ2
` (m` − Φ) +

 
Ω

ζ`(m` − Φ)

≤ (κ+ 2m0)

 
Ω

ζ2
` + ||m` − Φ||L2(Ω)||ζ`||L2(Ω)

≤ (κ+ 2m0)CPW (Ω)2

 
Ω

|∇ζ`|2 + (2m0 + κ)CPW (Ω)||∇ζ`||L2(Ω).

This leads to (
µ` − (κ+ 2m0)CPW (Ω)2

)  
Ω

|∇ζ`|2 ≤ (2m0 + κ)||∇ζ`||L2(Ω).

Since µ`(µ1)→∞ as µ1 →∞, it follows that

µ` − (κ+ 2m0)CPW (Ω)2 ∼
µ1→∞

µ`,

so there exists a constant A0 such that1

(3.14) ||∇ζ`||L2(Ω) ≤
A0

µ`
.

Thanks to Hypothesis (A1), this is equivalent to requiring that there exist a constant A such that

||∇ζ||L2(Ω) ≤
A

µ1
.

Using the Poincaré-Wirtinger inequality, it follows that

||ζ`||L2(Ω) ≤
CPW (Ω)A

µ1
→

µ1→∞
0.

This concludes the proof of (3.12). �2

In this first step, we have proved that

||µ1(ψ` − 1)||L2(Ω)

is bounded and that

||∇µ`ψ`||L2(Ω) = ||∇µ`(ψ` − 1)||L2(Ω)
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is bounded too (by Estimate (3.14)), as µ1 → ∞. The Rellich-Kondrachov theorem ensures that
there exists ψ1 such that

µ`(µ1)(ψ` − 1) →
µ1→∞

ψ1

weakly in W 1,2(Ω) and strongly in L2(Ω). Using the weak formulation of the eigenequation (3.10),
we are led to the conclusion that ψ1 satisfies, in the weak W 1,2(Ω) sense, the equation

∆ψ1 +
1

d`
(m` −m0) = 0,

along with Neumann boundary conditions.

The function ψ
(1)
` := 1

d`m0
η̂1,m` satisfies the same equation with Neumann boundary conditions

(because η̂1,m` solves (1.12)), thus there exists a constant α1 such that

ψ1 = ψ
(1)
` + α.

Note that  
Ω

ψ
(1)
` = 0.

But the condition
ffl

Ω
ψ` = 1 forces  

Ω

ψ1 = 0 =

 
Ω

ψ
(1)
` ,

so that α = 0 and, finally,

ψ1 = ψ
(1)
` .

So far, we have proved that

µ1(ψ` − 1) →
µ1→∞

ψ
(1)
`

weakly in W 1,2(Ω) and strongly in L2(Ω). It remains to prove that this convergence is strong in1

W 1,2(Ω); to do so, we only need to prove (3.13) i.e that ||µ`∇ψ` −∇ψ(1)
` ||L2(Ω) →

µ1→∞
0.2

Proof of Estimate (3.13). Define

z` := µ1(ψ` − 1)− ψ(1)
` .

We need to prove that

||∇z`||L2(Ω) →
µ1→∞

0.

It is easy to see that z` satisfies

∆z` +
µ1

µ`
ψ`(m` − Φ)− 1

d`
(m` −m0) = 0,

along with Neumann boundary conditions in a weak W 1,2(Ω) sense, and that 
Ω

z` = 0

so that the Poincaré-Wirtinger inequality ensures that

||z`||L2(Ω) ≤ CPW (Ω)||∇ζ`||L2(Ω).
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Multiplying the equation on z` by z`, integrating by parts and using the Poincaré-Wirtinger and
the Cauchy-Schwarz Inequalities once again lead to the estimate

||∇z`||L2(Ω) ≤ CPW (Ω)

∣∣∣∣∣∣∣∣µ1

µ`
ψ`(m` − Φ)− 1

d`
(m` −m0)

∣∣∣∣∣∣∣∣
L2(Ω)

.

We now just have to use the fact that

µ1

µ`
→

µ1→∞

1

d`

and that

Φ →
µ1→∞

m0

strongly in L2(Ω) to conclude that the right hand term goes to zero as µ1 goes to∞. This concludes1

the proof. �2

These two estimates combined end the proof of Lemma 3.1.3

�4

Let us now prove the first part of our theorem.5

6

Proof of statement 1. We want to show that, under assumption (A1)-(A2), it is impossible to have7

(3.15) λ1(µj ,mj − Φ) = λ1(µi,mi − Φ)

for µ1 large enough. Consider then the quantity µ1λ1(µ`,m` − Φ) for ` = 1, j. Using the Rayleigh
quotients formulation of pricipal eigenvalues, Lemmas 3.1,3.2 and the weak formulation of the

equation on ϕ
(1)
` , we know that

µ1λ1(µ`,m` − Φ) =
−µ1µ`

ffl
Ω
|∇ψ`|2 + µ1

ffl
Ω
ψ2
` (m` − Φ)ffl

Ω
ψ2
`

=
1

1 + o
µ1→∞

(1)

{
−µ`
µ1

 
Ω

|∇ψ`|2 + o
µ1→∞

(1)−
 

Ω

Φ1

+2

 
Ω

ψ`(m` −m0) + o
µ1→∞

(1)

}
=

{
d`

 
Ω

|∇ψ`|2 −
 

Ω

Φ1

}
+ o
µ1→∞

(1) .

Recall now that  
Ω

η1,mi =
1

m2
0

 
Ω

|∇η̂1,mi |2 =
1

d2
`

 
Ω

|∇ψ`|2.

Thus, if equality (3.15) were true for two indexes i 6= j and for a sequence of diffusivities going to
+∞, we would have

1

di

 
Ω

η1,mi =
1

dj

 
Ω

η1,mj + o
µ1→∞

(1) ,

leading to a contradiction.8
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3.2. Proof of statement 2: the stability of semi-trivial equilibria. We have established that
all the non zero equilibria are exactly the semi-trivial equilibria. It is then relevant to study the
stablity of these equilibria. Consider i ∈ INN , and the associated equilibrium ui.
As is well-known (see e.g. [11]), the stability of ui is determined by the sign of the eigenvalues
associated with the operators

µi∆ + (mi − 2θi) , µj∆ + (mj − θi) , j 6= i.

Thus, the linear stability of ui is determined by the signs of

λ1(µi,mi − 2θi) , sup
j∈INn ,j 6=i

λ1(µj ,mj − θi).

The first of these tho quantities is negative; this can be seen as a consequence of the monotony of1

the map h 7→ λ1(µ, h) (see [11]) and of the fact that λ1(µi,mi − θi) = 0.2

Now, consider any index j 6= i. We are going to show that3

(3.16) µ1λ1(µj ,mj − θi) =

(
1

dj

 
Ω

η1,mj −
1

di

 
Ω

η1,mi

)
+ o
µ1→∞

(1).

This, along with hypothesis (A2), leads to the desired result: u1 is linearly stable, while ui is linearly4

unstable for any i 6= 1.5

We will proceed as before, by studying the asymptotic behaviour of eigenfunctions: consider a L1
6

normalized eigenfunction ϕi,j associated with λ1(µj ,mj − θi), that is, the positive function such7

that8

(3.17)


µj∆ϕi,j + ϕi,j(mj − θi) = 0,
∂ϕi,j
∂ν = 0,ffl
Ω
ϕi,j = 1.

in a weak W 1,2(Ω) sense.
According to [16, Proposition 2.4], we know that the following first order expansion holds:

θi = m0 +
η1,mi

µi
+ o
µi→∞

(
1

µi

)
in W 1,2(Ω).

By adapting slightly the proof of (3.11) we get the following result:9

Lemma 3.3. Define10

(3.18) ϕ
(1)
i,j =

1

djm0
η̂1,mj .

There holds:11

(3.19) ϕi,j = 1 +
ϕ

(1)
i,j

µ1
+ o
µ1→∞

(
1

µ1

)
in W 1,2(Ω),
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This leads to the first order expansion of the eigenvalues, by using Lemma 3.3:

µ1λ1(µj ,mj − θi) =
1

|Ω|+ o
µ1→∞

(1)

{
−dj

 
Ω

|∇ϕ(1)
i,j |

2 + 2

 
Ω

ϕ
(1)
i,j (mj −m0)

− 1

di

 
Ω

η1,mi + o
µ1→∞

(1)

}
=

(
1

dj

 
Ω

η1,mj −
1

di

 
Ω

η1,mi

)
+ o
µi→∞

(1).

We have thus derived the desired identity, and the conclusion readily follows. This concludes the1

proof.2

4. Proof of Theorem 1.33

4.1. Proof of Statement 1: non-existence of coexistence equilibria. Using Theorem 1.1,4

we only have to prove that there cannot exists two indexes i and j in INN such that there exist5

k 6= k′ satisfying:6

(4.1) i ∈ Γk , j ∈ Γk′ , ui 6= 0 and uj 6= 0.

In other words, species with different scales of dispersal cannot coexist. If we can indeed prove this,
it will mean that, up to a subsequence, all the indexes i such that ui 6= 0 belong to the same set
Γ` for some index `. It will only remain to prove that there is no coexistence state in Γ` for large
enough diffusivities, but this is exactly the point of the first theorem.
To prove Claim (4.1), we argue by contradiction: let i1, . . . , ik be indexes such that, as µ1 → ∞,
along a subsequence, ui1 6= 0, . . . , uik 6= 0 and for any index j /∈ {i1, . . . , ik}, uj = 0. Up to
relabelling, we can assume that i1 is the slowest diffuser, that is:

∃D ,∀t ∈ {2, . . . , k} , µi1
µit

(µ1) ≤ D.

Once again, our method relies on asymptotic expansions.7

8

Asymptotic behaviour of Φ. Up to relabelling, we can assume that i1 ∈ Γ1, that is, we are working9

with the slowest disperser.10

A straightforward adaptation of Lemmas 3.1 and 3.2 yields the two following results:11

Lemma 4.1. There exists Φ1 ∈W 1,2(Ω) such that there holds:12

(4.2) Φ = m0 +
Φ1

µi1
+ o
µ1→∞

(
1

µi1

)
in W 1,2(Ω).

Using this lemma, assume there exists an index j ∈ {i1, . . . , ik} such that

µi1(µ1) →
µ1→∞

∞ , µj(µ1) →
µ1→∞

∞ ,
µi1
µj

(µ1) →
µ1→∞

0.

The existence of a coexistence state entails13

(4.3) λ1(µi1 ,mi1 − Φ) = λ1(µj ,mj − Φ) = 0.
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We introduce the two normalized eigenfunctions associated with λ1(µi1 ,mi1−Φ) and λ1(µj ,mj−Φ):1

for ` = i1, j,2

(4.4)


µ`∆ψ` + ψ`(m` − Φ) = 0 in Ω,
∂ψ`
∂ν = 0 on ∂Ω,ffl
Ω
ψ` = 1.

We then give the asymptotic expansion of ψ`:3

Lemma 4.2. Define

ψ
(1)
i1

:=
1

m0
η̂1,mi1

, ψ
(1)
j =

1

m0
η̂1,mj .

Then there holds:4

(4.5) ψi1 = 1 +
ψ

(1)
i1

µi
+ o
µi→∞

(
1

µi1

)
, ψj = 1 +

ψ
(1)
j

µj
+ o
µj→∞

(
1

µj

)
in W 1,2(Ω).

Coming back to the proof of the theorem, identity (4.3) is

µi1λ1(µi1 ,mi1 − Φ) = µi1λ1(µj ,mj − Φ) = 0.

Expand each of these two quantities separately by adapting the proof of (3.16):

µi1λ1(µi1 ,mi1 − Φ) =
1

1 + o
µi1→∞

(1)

{ 
Ω

|∇ψ(1)
i1
|2 −

 
Ω

Φ1 + o
µi1→∞

(1)

}
,

µi1λ1(µj ,mj − Φ) =
1

1 + o
µj→∞

(1)

{
µi1
µj

 
Ω

|∇ψ(1)
j |

2 −
 

Ω

Φ1 + o
µj→∞

(1) + o
µi→∞

(
µi1
µj

)

}
,

Lemma 4.3. Assume  
Ω

|∇ψ(1)
i1
|2 = 0.

Then mi is constant.5

This is a simple consequence of the fact that, if ψ
(1)
i1

is a constant, then so is η̂1,mi1
. Thus, since

∆η̂1,mi1
+m0(mi1 −m0) = 0

it follows that mi1 = m0. Note first that the asymptotic expansions of these eigenvalues, along
with the fact that

µi1
µj

(µ1) →
µ1→∞

0

lead to  
Ω

Φ1 = 0.

Using the asymptotic expansion of µi1λ1(µi1 ,mi1 − Φ), this in turn guarantees that 
Ω

|∇ψ(1)
i1
|2 = 0.

Since

µjλ1(µj ,mj − Φ) = 0
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we use the asymptotic expansion of this quantity to ensure that 
Ω

|∇ψ(1)
j |

2 = 0.

We now use Lemma 4.3: we have

mi1 = mj = m0.

But our assumption on diffusivity implies that, whenever µ1 is large enough, we have

µi = µi1(µ1) < µj = µj(µ1).

By monotonicity of the principal eigenvalue with respect to diffusivity, we should get, for µ1 large
enough

λ1(µi1 ,m0 − Φ) < λ1(µj ,m0 − Φ).

This is a contradiction, and thus concludes the proof of Statement 1 of Theorem 1.3.1

4.2. Proof of Statement 2: The stability of semi-trivial equilibria. We now fix an index
i ∈ {1, . . . , N} and linearize the system (1.1) at the equilibrium ui. As was recalled, the stability
of this equilibrium is determined by the sign of the eigenvalues

λ1(µj ,mj − θi) , j ∈ {1, . . . , N} , j 6= i.

If we can prove that:2

(4.6) If
µi
µj

(µ1) →
µ1→∞

+∞ , then µjλ1(µj ,mj − θi) →
µ1→∞

d > 0

then we are almost reduced to the setting of the first theorem, Theorem 1.1 provided we also prove3

(4.7) If
µi
µj

(µ1) →
µ1→∞

0 , then µjλ1(µj ,mj − θi) →
µ1→∞

d < 0

Proof of Claim (4.6). To prove this claim, we use once again asymptotic expansions of eigenval-
ues. Fix two indexes i and j satisfying the hypotheses of Claim (4.6). Introduce the associated
eigenfunction ϕi,j , that is, the solution in a weak W 1,2(Ω) sense of

µj∆ϕi,j + ϕi,j(mj − θi) = λ1(µj ,mj − θi)ϕi,j ,
∂ϕi,j
∂ν = 0,ffl
Ω
ϕi,j = 1.

�4

We then have the following Lemma, that directly ensures the validity of Claim (4.6).5

Lemma 4.4. Assume µi
µj

(µ1) →
µ1→∞

0. Let ϕ
(1)
i,j := 1

m0
η̂1,mj . There holds, in W 1,2(Ω):

ϕi,j = 1 +
ϕ

(1)
i,j

µj
+ o
µ1→∞

(
1

µj

)
.

There also holds

λ1(µj ,mj − θmi,µi) =
1

µj

 
Ω

|∇ϕ(1)
i,j |

2 + o
µ1→∞

(
1

µj

)
.
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The proof of this lemma is a straightforward adaptation of all the previous asymptotic expansions.
This concludes the proof of Claim (4.6).
In the very same way, we prove the Claim (4.7), by showing that, if

µj
µi

(µ1) →
µ1→∞

0, then

λ1(µj ,mj − θi) ∼
µ1→∞

− 1

µi

 
Ω

|∇ϕ(1)
i,j |

2.

Thus, we are reduced to the stting of Theorem 1.1. We have thus completed the proof of Theorem1

1.3.2

5. Proof of Theorem 1.43

To prove this Theorem, we simply prove that we can reduce ourselves to the setting of Theorem
1.3.
If we can prove that, if all the diffusivities are large enough, then all the indexes i1, . . . , ip of all
the positive components ui1 , . . . , uip of an equilibrium lie in one of the Ji (i.e, if we can prove that
all species can acces the same amount of resources), then the problem is reduced to the setting of
Theorem 1.3. We can thus conclude.
Let us argue by contradiction and assume that there exists two positive components ui, uj such
that  

Ω

mi 6=
 

Ω

mj .

In fact, if the non-zero components are ui1 , . . . , uiK , up to relabelling, you can assume that i1 is
the slowest diffuser: for any j ∈ {2, . . . ,K},

µi1
µij

(µ1)
µ1→∞

d ∈ [0; +∞).

Pick another j ∈ {2, . . . ,K}. Our hypothesis entails

λ1(µi,mi − Φ) = λ1(µj ,mj − Φ) = 0.

We know, using the same techniques, that there exist an index k and a function Φ1 ∈W 1,2(Ω) such
that there holds:

Φ =

 
Ω

mk +
Φ1

µi
+ o
µi→∞

(
1

µi

)
in W 1,2(Ω).

Fix such an index k. We first prove the claim4

Claim 5.1. If ui1 , ui,j 6= 0 along a subsquence µ1 →∞, then 
Ω

mi1 =

 
Ω

mij =

 
Ω

mk.

Proof of Claim (5.1). This follows by identifying the first order of the expansion with respect to µ1

in the identity

λ1(µi,mi − Φ) = λ1(µj ,mj − Φ) = 0.

Recall that one has

λ1(µi,mi − Φ) =
1

|Ω|+ o
µi→∞

(1)

{ 
Ω

mi −
 

Ω

mk + o
µi→∞

(1)

}
.

for every i such that ui 6= 0. This immediately concludes the proof of Claim (5.1). �5
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This means that, if ui and uj are non-zero, then
ffl

Ω
mi =

ffl
Ω
mj , bringing us back to Theorem1

1.3. The conclusions (on existence and stability of equilibria) of Theorem 1.4 then follow in the2

very same way.3

6. Proof of Theorem 1.54

6.1. Formal Hopf-Cole transform. In this section, we recall the heuristics underlying the se-
lection of traits for the sake of convenience for the reader and in order to fix some notations. We
assume that ε is going to zero.
We use the Hopf-Cole transform: we write uε as

uε(ξ, x) := e
ψε(ξ,x)

ε ,

which gives rise to the following equation:5

(6.1)

{
µ(ξ) |∇xψε|

2

ε2 + µ(ξ)∆xψε
ε + |∇ξψε|2 + ε∆ξψε + (m− Φ) = 0 in Ω,

∂ψε
∂ν = 0 on ∂Ω.

6

Standard elliptic regularity arguments yield that Φε converges, as ε→ 0, to some function Φ0,µ.7

In other words, we look for an asymoptotic development of ψε of the form8

(6.2) ψε(ξ, x) ≈ ψ0(ξ) + ε ln (ψ1(ξ, x)) , ψ1 > 0.

Plugging the previous expansion in the previous equation and identifying at the order 0 leads to

µ(ξ)∆xψ1(ξ, x) + ψ1(ξ, x) (m(ξ, x)− Φ0,µ(x)) = −|∇ξψ0|2ψ.

We will use the fact that |∇ξψ0|2 does not depend on x.
Since ψ1 > 0, we can conclude that ψ1 is a principal eigenfunction to a principal eigenvalue of the
operator

L : u 7→ µ(ξ)∆xu+ u(ξ, x)(m(ξ, x)− Φ0,µ).

For the sake of notational convenience, we will write, for a trait ξ, λ1(µ(ξ),m(ξ, ·) − Φε,µ) the9

principal eigenvalue associated with this operator. If we sum it all up, we get10

(6.3) |∇ξψ0|2 = −λ1(µ(ξ),m(ξ, ·)− Φ0,µ) ,max
ξ
ψ0(ξ) = 0,

and11

(6.4)

{
µ(ξ)∆xψ1 + ψ1(m(ξ, ·)− Φ0,µ) = λ1(µ(ξ),m(ξ, ·)− Φ0,µ)ψ1 in Ω,
∂ψ1

∂ν
= 0 on ∂Ω.

6.2. Analysis of the limit equations. For a fixed µ, it is known (see e.g [27]) that, as ε → 0,
we indeed have the uniform convergence of ε ln(uε,µ), up to a subsequece, to a solution of (6.3),
and that, in fact, (6.4) also holds. Now, the main difference with [27] is that we assume a trait
dependence on the resources distribution. Our regularity hypotheses on m enables us to mimick
their arguments in order to derive continuity estimates of Bernstein type. Thus, we get convergence
along subsequences, and it now remains to identify the possible limiting traits.
Let ξ ∈ Ξ be a maximum point for ϕ0. Then the equation (6.3) yields

−λ1(µ(ξ),m(ξ, ·)− Φ0,µ) = 0.
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We will show that, for large enough diffusivities, this can only happen in a neighbourhood of one1

of the maximizer ξ∗.2

We claim the following:3

Proposition 6.1. For any ξ ∈ Ξ,4

(6.5) λ1

(
µ(ξ),m(ξ, ·)− Φ0,µ

)
≤ 0.

Proof. Let µ be fixed. Then we know that, as ε→ 0, the function zε := ε ln(ψε) converges uniformly
in Ω× Ξ to a solution of (6.3), so that

λ1

(
µ(ξ),m(ξ, ·)− Φ0,µ

)
< 0.

�5

To conclude, we only need the following proposition:6

Proposition 6.2. Assume the set is size-scale ordered. Let ξ∗ be such that

∀ξ ∈ Ξ , ξ 6= ξ∗ , F (ξ∗) > F (ξ).

There holds

∀ξ ∈ Ξ

µ(ξ)
(
λ1(µ(ξ),m(ξ, ·)− Φ0,µ)− λ1(µ(ξ∗),m(ξ∗, ·)− Φ0,µ)

)
= F (ξ∗)− F (ξ) + O

µ→∞

(
1

µ

)
.

These two propositions combined immediately lead to the conclusion.7

Proof. The first thing to do is to control the behaviour of Φ0,µ. But we know that there exists a
trait ξ ∈ Ξ such that

Φ0,µ = θξ.

The asymptotic results recalled in the first part yield

Φ0,µ = m0 + O
µ→∞

(
1

µ

)
.

Furthermore, a straightforward adaptation of the proofs of [4,27] yields the existence of a constant
M uniform in ε ∈ (0; 1) and µ > 1 such that

||Φε,µ||L∞(Ω) , ||Φε,µ||W 2,p(Ω) ≤M.

The proposition is then an easy consequence of the asymptotic expansion recalled in the introduction
and of the use of the Rayleigh quotient. Indeed, consider, for ξ ∈ Ξ, an eigenfunction ζξ associated
with µ(ξ),m(ξ, ·) = mξ:

µ(ξ)∆ζξ + ζξ(mξ − Φ0,µ) = λ1(µ(ξ),m(ξ, ·)− Φε,µ)ζξ in Ω,
∂ζξ
∂ν = 0 on ∂Ω,ffl
Ω
ζξ = 1.

Standard elliptic estimates, along with the Poincaré-Wirtinger inequality, yield the following as-
ymptotic expansion for ζξ:

ζξ = 1 +
η̂ξ
µ(ξ)

+ o
µ(ξ)→∞

(
1

µ(ξ)

)
,
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where η̂ξ, as recalled in the introduction, solves
∆η̂ξ +m0

(
m(ξ, x)−

ffl
Ω
m(ξ, x)dx

)
= 0 in Ω,

∂η̂ξ
∂ν = 0 on ∂Ω,ffl
Ω
η̂ξ = 0.

We now conclude in the same fashion as was used in the proof of Proposition 1.
This leads to

λ1 (µ(ξ),m(ξ, ·)− Φε,µ) =
1

µ(ξ, µ)

 
Ω

|∇ηξ|2 + O
µ→∞

(
1

µ

)
.

The conclusion follows easily. �1
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