Hierarchical decomposition of LTL synthesis problem for mixed-monotone control systems

Pierre-Jean Meyer, Dimos V. Dimarogonas Abstract-This paper deals with the control synthesis problem for a continuous nonlinear dynamical system under a Linear Temporal Logic (LTL) formula. The proposed solution is a topdown hierarchical decomposition of the control problem involving three abstraction layers of the problem, iteratively solved from the coarsest to the finest. The LTL planning is first solved on a small transition system only describing the regions of interest involved in the LTL formula. For each pair of consecutive regions of interest in the resulting accepting path satisfying the LTL formula, a discrete plan is then constructed in the partitioned workspace to connect these two regions while avoiding unsafe regions. Finally, an abstraction refinement approach is applied to synthesize a controller for the dynamical system to follow each discrete plan. The first two steps let us find a discrete plan satisfying the LTL formula with reduced computation need, even for large workspaces. The second main contribution, used in the third abstraction layer, is the extension of finite-time reachability analysis based on the monotonicity property to any (non-monotone) continuously differentiable system, at the cost of an increased conservativeness. The proposed framework is demonstrated in simulation for a motion planning problem of a mobile robot modeled as a unicycle.

Index Terms-Hierarchical decomposition, LTL planning, abstraction-based synthesis, mixed-monotone systems, reachability analysis.

I. INTRODUCTION

Control synthesis and planning for continuous dynamical systems under high-level specifications, such as Linear Temporal Logic (LTL) formulas [START_REF] Baier | Principles of model checking[END_REF], usually cannot be solved directly on the continuous dynamics. The classical solutions to this problem thus rely on a two-step approach, where we first create a finite abstraction (the abstract or symbolic model) of the continuous dynamical system (the concrete model), and then leverage formal methods from the field of computer science to synthesize a controller for the abstraction to satisfy the high-level specifications. Provided that the abstraction was created to obtain some behavioral relationship (such as (approximate) alternating simulation [START_REF] Tabuada | Verification and control of hybrid systems: a symbolic approach[END_REF] or feedback refinement relation [START_REF] Reissig | Feedback refinement relations for the synthesis of symbolic controllers[END_REF]) between the concrete and abstract models, the controller obtained on the abstraction can then be concretized into a controller for the concrete model to satisfy the desired specifications.

This work was supported by the H2020 ERC Starting Grant BUCOPHSYS, the EU H2020 AEROWORKS project, the EU H2020 Co4Robots project, the Swedish Foundation for Strategic Research, the Swedish Research Council and the KAW Foundation.

P.-J. Meyer is with the Department of Electrical Engineering and Computer Sciences at University of California, Berkeley, CA 94720-1770, USA (email: pjmeyer@berkeley.edu). D. V. Dimarogonas is with the Department of Automatic Control at KTH Royal Institute of Technology, 10044 Stockholm, Sweden (email: dimos@kth.se).

This topic recently received significant interest resulting in various abstraction methods such as designing local feedback controllers between any two neighboring cells of a state space partition to guarantee the creation of a deterministic abstraction [START_REF] Gol | Time-constrained temporal logic control of multi-affine systems[END_REF], [START_REF] Boskos | Decentralized abstractions for multi-agent systems under coupled constraints[END_REF], considering infinite-time reachability analysis of neighboring cells [START_REF] Nilsson | Incremental synthesis of switching protocols via abstraction refinement[END_REF], [START_REF] Yang | Fuel cell thermal management: Modeling, specifications and correctbyconstruction control synthesis[END_REF], or fixed and finite-time reachability analysis [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF], [START_REF] Reissig | Feedback refinement relations for the synthesis of symbolic controllers[END_REF], which we consider in this paper. While the combined results of all these approaches cover a wide range of dynamical systems and control objectives, when taken separately most of these approaches (as well as others in the literature) are restricted to particular classes of systems (e.g. multi-affine [START_REF] Gol | Time-constrained temporal logic control of multi-affine systems[END_REF], mixed-monotone [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF]) and subsets of LTL formulas (e.g. reach-avoid-stay [START_REF] Nilsson | Incremental synthesis of switching protocols via abstraction refinement[END_REF], [START_REF] Yang | Fuel cell thermal management: Modeling, specifications and correctbyconstruction control synthesis[END_REF], co-safe LTL [START_REF] Gol | Time-constrained temporal logic control of multi-affine systems[END_REF]). However, providing a framework capable of solving the synthesis problem for any dynamical systems under general LTL formulas remains a challenging problem. This can particularly be observed when considering the main software toolboxes in the literature aimed at addressing such high-level control problems on dynamical systems, which can be split in two categories. On one side are tools such as TuLiP [START_REF] Wongpiromsarn | Tulip: a software toolbox for receding horizon temporal logic planning[END_REF], conPAS2 [START_REF] Tumova | A symbolic approach to controlling piecewise affine systems[END_REF] and LTLMoP [START_REF] Finucane | Ltlmop: Experimenting with language, temporal logic and robot control[END_REF] which can handle general LTL specifications (conPAS2) or the large subset of GR [START_REF] Angeli | Monotone control systems[END_REF] formulas (TuLiP, LTLMoP) but are restricted to simpler dynamical systems such as fully actuated (LTLMoP) and piecewise affine models (TuLiP, conPAS2). On the other side, more general switched or nonlinear dynamical systems can be considered by tools such as PESSOA [START_REF] Mazo | Pessoa: A tool for embedded controller synthesis[END_REF], CoSyMa [START_REF] Mouelhi | Cosyma: a tool for controller synthesis using multi-scale abstractions[END_REF] and SCOTS [START_REF] Rungger | Scots: A tool for the synthesis of symbolic controllers[END_REF], but only for limited specifications combining safety and reachability objectives.

To overcome these limitations, in this paper we propose a 3layer hierarchical decomposition of the control problem aimed at addressing general control synthesis for nonlinear dynamical systems under LTL specifications. As opposed to the 2-step bottom-up symbolic control approach presented above which starts by computing an abstraction of the dynamical system before synthesizing a controller on this abstraction, we rather take inspiration from top-down hierarchical decomposition in the field of artificial intelligence [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. In this approach, we have several granularities of abstraction of the control problem and we first solve the problem on the most abstract layer, then iteratively refine this result by going down to a more detailed layer where we solve a new problem consisting of realizing the solution of the above layer. Given an initial partition of the state space (possibly containing unsafe regions) and an LTL formula defined over a set of regions of interest, each corresponding to a single cell of this partition, the proposed hierarchical decomposition proceeds to the following three steps.

1) Solve the LTL planning problem on a finite transition system that only represents the regions of interest, and obtain a resulting (possibly infinite) sequence of regions to visit. 2) For each pair of consecutive regions in this sequence, find a discrete plan in the partitioned state space connecting both regions of interest in the considered pair while avoiding unsafe regions. 3) Compute an abstraction of the dynamical system using an abstraction refinement approach [START_REF] Meyer | Compositional abstraction refinement for control synthesis[END_REF] to synthesize a controller for the dynamical system to follow each of the above discrete plans in a sampled-time manner.

The first two layers can easily be solved by classical methods for LTL model checking on finite systems [START_REF] Baier | Principles of model checking[END_REF] and graph searches [START_REF] Cormen | Introduction to algorithms[END_REF], respectively. As mentioned above, the considered abstraction method in the third step relies on the finite-time reachability analysis of the dynamical system to compute the non-deterministic transitions of the abstraction. In this paper, we focus on the use of a generalized monotonicity property [START_REF] Smith | Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[END_REF] for the reachability analysis of dynamical systems which are not monotone. A first abstraction-based control approach relying on the monotonicity property was introduced in [START_REF] Moor | Abstraction based supervisory controller synthesis for high order monotone continuous systems[END_REF] for monotone systems. This approach was then extended in [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF] for the larger class of mixed-monotone systems, which do not satisfy the monotonicity property but can be decomposed into their increasing and decreasing components defining a monotone decomposition function. Based on the initial results in [START_REF] Yang | A note on some sufficient conditions for mixed monotone systems[END_REF] introduced for another type of abstraction [START_REF] Yang | Fuel cell thermal management: Modeling, specifications and correctbyconstruction control synthesis[END_REF], we further extend the use of monotone decomposition functions to the finite-time reachability analysis for any continuously differentiable nonlinear system, thus opening the use of monotonicity-based abstraction approaches to any such system.

To further compare the proposed approach with the previously mentioned works, we can first note that the introduction of the intermediate layer in our hierarchical decomposition allows the consideration of more general control objectives than PESSOA [START_REF] Mazo | Pessoa: A tool for embedded controller synthesis[END_REF], CoSyMa [START_REF] Mouelhi | Cosyma: a tool for controller synthesis using multi-scale abstractions[END_REF] or SCOTS [START_REF] Rungger | Scots: A tool for the synthesis of symbolic controllers[END_REF] by translating a general LTL specification into a sequence of reachability problems. In addition, the new contribution on monotonicity-based reachability analysis for any continuously differentiable nonlinear system opens this approach to a much wider class of systems than those considered in TuLiP [START_REF] Wongpiromsarn | Tulip: a software toolbox for receding horizon temporal logic planning[END_REF], conPAS2 [START_REF] Tumova | A symbolic approach to controlling piecewise affine systems[END_REF] and LTLMoP [START_REF] Finucane | Ltlmop: Experimenting with language, temporal logic and robot control[END_REF]. Regarding other tools also covering nonlinear systems, it should be noted that PES-SOA [START_REF] Mazo | Pessoa: A tool for embedded controller synthesis[END_REF] does not natively handle those systems and requires the user to manually provide a Matlab function computing an over-approximation of the reachable set, while an overapproximation method is included by default in our approach. The consideration of nonlinear systems in CoSyMa [START_REF] Mouelhi | Cosyma: a tool for controller synthesis using multi-scale abstractions[END_REF] is based on an incremental stability assumption, which is relaxed in this paper. Finally, SCOTS [START_REF] Rungger | Scots: A tool for the synthesis of symbolic controllers[END_REF] simply uses a different over-approximation method based on Lipschitz arguments to create a growth bound on the nonlinear system's reachable set. Although we compare our contributions to existing tools and software as they are good indicators of the generality of results that can be covered in the field of symbolic control, this paper mainly focuses on providing the initial theoretical results and structure for a possible future development of a general and fully reusable tool.

Among other relevant work, 2-layer top-down structures are proposed in [START_REF] Kress-Gazit | Temporal-logic-based reactive mission and motion planning[END_REF], [START_REF] Wongpiromsarn | Receding horizon temporal logic planning for dynamical systems[END_REF] for fully actuated and piecewise affine systems respectively, where the first layer of the present paper is skipped to look directly for a discrete plan satisfying the LTL formula in the partitioned environment, then a continuous controller is designed to realize this discrete plan. Similarly, the 3-layer top-down decomposition mentioned in [START_REF] Belta | Symbolic planning and control of robot motion [grand challenges of robotics[END_REF] also skips the first layer but splits the second one in two components: first finding all discrete plans satisfying the LTL formula in the partitioned environment without obstacle, then picking one of these plans based on optimization and obstacle avoidance criteria. The third layer in [START_REF] Belta | Symbolic planning and control of robot motion [grand challenges of robotics[END_REF] uses a deterministic abstraction approach similar to [START_REF] Gol | Time-constrained temporal logic control of multi-affine systems[END_REF] to implement this discrete plan on a robot modeled by an affine system. Another 3-step hierarchical decomposition of an LTL control problem is also presented in [START_REF] Fainekos | Hierarchical synthesis of hybrid controllers from temporal logic specifications[END_REF], but for a bottom-up decomposition whose steps are significantly different from our approach as they consist in first abstracting the dynamical system into a fully actuated model (similarly to our second step), then robustifying the specification to compensate for the mismatches with the initial system and finally solving the new LTL problem on the robust specification.

This paper is structured as follows. In Section II, we provide preliminary definitions and properties related to the monotonicity properties and we then present our first main contribution on the monotonicity-based over-approximation of the reachable set for any continuously differentiable nonlinear system. Section III formulates the control problem and gives an overview of our second main contribution: a 3-layer hierarchical decomposition to solve LTL control problems on nonlinear dynamical systems. A more detailed algorithmic description of the third step of this solution on abstraction refinement is then provided in Section IV. Finally, Section V presents a numerical implementation of the proposed approach to a motion planning problem for a unicycle robot.

II. REACHABILITY ANALYSIS OF NON-MONOTONE

SYSTEMS

Let N, R, R + 0 and R - 0 be the sets of positive integers, reals, non-negative reals and non-positive reals, respectively. For

a, b ∈ R n , the interval [a, b] ⊆ R n is defined as [a, b] = {z ∈ R n | a ≤ z ≤ b} using componentwise inequalities.

A. System description

We consider a class of continuous-time nonlinear control systems subject to disturbances and modeled by:

ż = f (z, u, d), (1)
where z ∈ Z ⊆ R n , u ∈ U ⊆ R p and d ∈ D ⊆ R q are the state, bounded control input and bounded disturbance input, respectively. Throughout this paper, the vector field f of (1) is assumed to be continuously differentiable. We denote as Φ f (t, z, u, d) the state (assumed to exist and be unique)

reached by (1) at time t ∈ R + 0 from initial state z ∈ Z, under the piecewise continuous control u : R + 0 → U and disturbance functions d : R + 0 → D. We use Φ f (t, z, u, d) with u ∈ U and d ∈ D in the case of constant input functions u : R + 0 → {u} and d : R + 0 → {d}. For a sampling period τ ∈ R + 0 whose value is discussed in Section III-C, a sampled version of system (1) can be described as a non-deterministic (due to the disturbance) infinite transition system S τ = (X τ , U τ , δ τ) where

• X τ = Z is the set of states, • U τ = U is the set of control inputs, • the transition relation δ τ : X τ × U τ → X τ is such that z ∈ δ τ (z, u) if there exists a disturbance d : [0, τ] → D such that z = Φ f (τ,

B. Monotonicity

Monotone systems are commonly described as systems whose trajectories preserve some partial orders as below. A formal definition of a partial order is omitted in this paper but can be found in [START_REF] Angeli | Monotone control systems[END_REF]. 1) is monotone with respect to partial orders z , u and d on the state, control and disturbance inputs respectively, if for all time t ∈ R + 0 , initial states z, z ∈ Z, control functions u, u : [0, t] → U and disturbance functions d, d : [0, t] → D we have

Definition 1. System (
z z z , u u u , d d d ⇒ Φ f (t, z, u, d) z Φ f (t, z , u , d).
For systems (1) with a continuously differentiable vector field f , a sufficient condition for a system to be monotone is as follows [START_REF] Angeli | Monotone control systems[END_REF].

Proposition 2. System (1) is monotone if there exists (ε z 1 , . . . , ε z n) ∈ {0, 1} n , (ε u 1 , . . . , ε u p) ∈ {0, 1} p and (ε d 1 , . . . , ε d q) ∈ {0, 1} q such that for all z ∈ Z ⊆ R n , u ∈ U ⊆ R p and d ∈ D ⊆ R q we have: (-1) ε z i +ε z j ∂f i ∂z j (z, u, d) ≥ 0, ∀i, j ∈ {1, . . . , n}, i = j, (-1) ε z i +ε u k ∂f i ∂u k (z, u, d) ≥ 0, ∀i ∈ {1, . . . , n}, k ∈ {1, . . . , p}, (-1) ε z i +ε d l ∂f i ∂d l (z, u, d) ≥ 0, ∀i ∈ {1, . . . , n}, l ∈ {1, . . . , q}.

C. Mixed-monotonicity

The larger class of mixed-monotone systems can be defined through the use of a monotone decomposition function, decomposing the dynamics of the system into its increasing and decreasing components. Definition 3. System (1) with vector field f : Z ×U ×D → R n is mixed-monotone if there exists a decomposition function

g : Z × U × D × Z × U × D → R n such that: • f is embedded on the diagonal of g: g(z, u, d, z, u, d) = f (z, u, d),
• g is increasing in its first 3 arguments: ∀z, z , z * ∈ Z, u, u , u * ∈ U and d, d , d * ∈ D,

z z z , u u u , d d d ⇒ g(z, u, d, z * , u * , d *) ≤ g(z , u , d , z * , u * , d *),
• g is decreasing in its last 3 arguments: ∀z, z , z * ∈ Z, u, u , u * ∈ U and d, d , d * ∈ D,

z * z z , u * u u , d * d d ⇒ g(z, u, d, z * , u * , d *) ≥ g(z, u, d, z , u , d),
where ≤ and ≥ are the componentwise inequalities.

Note that in [START_REF] Yang | A note on some sufficient conditions for mixed monotone systems[END_REF], a continuous-time system (1) is instead defined as mixed-monotone when its trajectory Φ f has a decomposition function. For the sake of brevity, we replace it by Definition 3 (where the vector field f has a decomposition function) by virtue of [START_REF] Yang | A note on some sufficient conditions for mixed monotone systems[END_REF]Theorem 1] stating that under mild conditions, having a decomposition function for f implies that we can construct one for Φ f (which will be provided in the proof of Theorem 6 below).

Similarly to monotone systems, mixed-monotone systems can be characterized by having a vector field whose partial derivatives have a constant sign, but without the constraint that these signs must be compatible with each other (in Proposition 2, ε z i , ε u k and ε d l are involved in several inequalities) [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF].

Proposition 4. System (1) is mixed monotone if there exists {ε z ij | i, j ∈ {1, . . . , n}} ∈ {0, 1} n 2 , {ε u ik | i ∈ {1, . . . , n}, k ∈ {1, . . . , p}} ∈ {0, 1} np and {ε d il | i ∈ {1, . . . , n}, l ∈ {1, . . . , q}} ∈ {0, 1} nq such that for all z ∈ Z ⊆ R n , u ∈ U ⊆ R p and d ∈ D ⊆ R q we have: (-1) ε z ij ∂f i ∂z j (z, u, d) ≥ 0, ∀i, j ∈ {1, . . . , n}, (-1) ε u ik ∂f i ∂u k (z, u, d) ≥ 0, ∀i ∈ {1, . . . , n}, k ∈ {1, . . . , p}, (-1) ε d il ∂f i ∂d l (z, u, d) ≥ 0, ∀i ∈ {1, . . . , n}, l ∈ {1, . . . , q}.
Note that unlike Proposition 2 for monotone systems, Proposition 4 also contains a condition on the sign of ∂fi ∂zi (i.e. with i = j) to obtain sufficient conditions adapted to Definition 3. Sufficient conditions closer to the ones in Proposition 2 (∀i, j, i = j) have been proposed in [START_REF] Coogan | Stability of traffic flow networks with a polytree topology[END_REF] for a different definition of mixed-monotonicity involving the partial derivatives of g.

Although, to the best of our knowledge, the conditions in Proposition 4 do not appear in the literature for continuoustime systems, its proof is omitted here since in the next section we provide a weaker sufficient condition for mixedmonotonicity encompassing the one in Proposition 4.

D. General monotonicity-based reachability analysis

A recent result described in [START_REF] Yang | A note on some sufficient conditions for mixed monotone systems[END_REF] extended the sufficient conditions for mixed-monotonicity of continuous-time systems by defining decomposition functions as in Definition 3 for systems which do not satisfy the conditions in Proposition 4, i.e. vector fields whose partial derivatives do not necessarily have constant signs. While this result was then used to create abstractions in [START_REF] Yang | Fuel cell thermal management: Modeling, specifications and correctbyconstruction control synthesis[END_REF], the considered abstraction approach involving infinite-time reachability analysis is different from the one in this paper, where transitions of our abstractions describe states that may be reached in a fixed and known finite time. Below, we thus describe how this extended characterization of mixed-monotonicity can be exploited to compute a finite-time over-approximation of reachable sets for any continuously differentiable continuous-time dynamical system.

In what follows, several steps need to be identically applied to all three variables z ∈ Z ⊆ R n , u ∈ U ⊆ R p and d ∈ D ⊆ R q . When this is the case, we will use generic notations with variable c ∈ {z, u, d} and dimension m ∈ {n, p, q} such that c ∈ R m . We first denote as a c ij and b c ij the bounds of the partial derivatives of the vector field f as follows: for all z ∈ Z, u ∈ U, d ∈ D, i ∈ {1, . . . , n} and j ∈ {1, . . . , m},

∂f i ∂c j (z, u, d) ∈ [a c ij , b c ij]. (2)
The values of these bounds lead us to consider the 4 cases below, covering all possibilities for the sign of each partial derivative, as in [START_REF] Yang | A note on some sufficient conditions for mixed monotone systems[END_REF]:

(C1) a c ij ≥ 0: positive, (C2) a c ij ≤ 0 ≤ b c ij and |a c ij | ≤ |b c ij |: mostly positive, (C3) a c ij ≤ 0 ≤ b c ij and |a c ij | ≥ |b c ij |: mostly negative, (C4) b c ij ≤ 0: negative. (C1
) and (C4) correspond to a partial derivative with a constant sign and their influence on the definition of the decomposition function can be handled as in [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF] for systems satisfying Proposition 4. On the other hand, the decomposition method needs to be adapted in the non-constant sign cases (C2) and (C3) in order to obtain a monotone decomposition function as in Definition 3.

We define the function g such that for all z, z * ∈ Z, u, u * ∈ U, d, d * ∈ D and i ∈ {1, . . . , n} we have

g i (z, u, d, z * , u * , d *) = f i (Z i , U i , D i) + α z i (z -z *) (3) + α u i (u -u *) + α d i (d -d *), where the components of Z i = (z i1 . . . z in) , U i = (u i1 . . . u ip) , D i = (d i1 . . . d iq) and α c i = (α c i1 .
. . α c im) are defined according to cases (C1)-(C4) for ∂fi ∂cj as follows with c ∈ {z, u, d} in all notations below:

c ij = c j if (C1) or (C2), c * j if (C3) or (C4), α c ij =      -a c ij if (C2), b c ij if (C3), 0 otherwise.
Proposition 5. The function g : Z ×U ×D ×Z ×U ×D → R n defined in (3) is a decomposition function for system (1) with vector field f :

Z × U × D → R n .
Proof. This proof is an immediate extension of the one provided in more details in [START_REF] Yang | A note on some sufficient conditions for mixed monotone systems[END_REF] for the case of autonomous systems. By taking c = c * in (3) for all c ∈ {z, u, d}, we first obtain the embedding g(z, u, d, z, u, d) = f (z, u, d). Then due to the terms α c i (c -c *) in (3), we can show that ∂g i ∂c j ≥ 0 and ∂g i ∂c * j ≤ 0 for all i and j, resulting in the increasing and decreasing components, respectively, as in Definition 3.

Up to this point, all considerations in Section II-D are reminders and extensions, to non-autonomous systems with control and disturbance inputs, of the results in [START_REF] Yang | A note on some sufficient conditions for mixed monotone systems[END_REF] leading to Proposition 5 stating that any continuously differentiable system is mixed-monotone as in Definition 3, i.e. a monotone decomposition function can be found for any such system. In what follows, we provide our main contribution on this topic which describes how to compute an interval over-approximation of the finite-time reachable set for any continuously differentiable system (1), without needing any additional assumption. This approach uses the monotonicity of the decomposition function [START_REF] Belta | Symbolic planning and control of robot motion [grand challenges of robotics[END_REF] to efficiently obtain this overapproximation from the computation of a single successor of the dynamical system defined below:

ż ż * = h(z, u, d, z * , u * , d *) = g(z, u, d, z * , u * , d *) g(z * , u * , d * , z, u, d)
.

(4) Similarly to Φ f , we denote the trajectories of (4) as

Φ h (•, z, u, d, z * , u * , d *) : R + 0 → Z 2
, where bold variables are piecewise continuous input functions. Let Φ 1 h and Φ 2 h denote the first n and last n components of Φ h , respectively. Then, system (4) can be used to compute over-approximations of the reachable sets of (1) as follows.

Theorem 6. For all bounds z, z ∈ R n , u, u ∈ R p , d, d ∈ R q and for all t ∈ R + 0 , z ∈ [z, z], u : [0, t] → [u, u] and d : [0, t] → [d, d] we have Φ 1 h (t, z, u, d, z, u, d) ≤ Φ f (t, z, u, d) ≤ Φ 2 h (t, z, u, d, z, u, d),
using componentwise inequalities.

Proof. We first prove that (4) is a monotone system as in Proposition 2. From Proposition 5 and Definition 3 we know that for all variables c ∈ {z, u, d} (with c ∈ R m , m ∈ {n, p, q}), i ∈ {1, . . . , 2n} and j ∈ {1, . . . , m} we have

∂h i ∂c j ≥ 0 if i ≤ n, ≤ 0 if i ≥ n, and
∂h i ∂c * j ≤ 0 if i ≤ n, ≥ 0 if i ≥ n.
It follows from Proposition 2 that (4) is monotone with

ε z i = ε u k = ε d l = 0 for i ∈ {1, . . . , n}, k ∈ {1, . . . , p}, l ∈ {1, . . . , q} and ε z i = ε u k = ε d l = 1 for i ∈ {n + 1, . . . , 2n}, k ∈ {p + 1, . . . , 2p}, l ∈ {q + 1, . . . , 2q}.
Then from [START_REF] Angeli | Monotone control systems[END_REF], the monotonicity of (4) can be described as in Definition 1 with the partial orders z , u and d on the spaces R 2n , R 2p and R 2q , respectively, as defined below. For all variables c ∈ {z, u, d} with c ∈ R m , the partial order c is characterized by the orthant (R + 0) m × (R - 0) m of space R 2m as follows:

∀c 1 , c 2 , c 3 , c 4 ∈ R m , c 1 c 2 c c 3 c 4 ⇔ c 1 ≤ c 3 , c 2 ≥ c 4 , (5)
where ≤ and ≥ are the componentwise inequalities on R m .

Noting that for all c ∈

[c, c] ⊆ R m we can write c c c c c c c c
, we can then use Definition 1 for system (4)

to obtain the following over-approximation:

for all t ∈ R + 0 , z ∈ [z, z], u : [0, t] → [u, u] and d : [0, t] → [d, d] we have Φ h (t, z, u, d, z, u, d) z Φ h (t, z, u, d, z, u, d), Φ h (t, z, u, d, z, u, d) z Φ h (t, z, u, d, z, u, d). Since Φ h (t, z, u, d, z, u, d) = Φ f (t, z, u, d) Φ f (t, z, u, d) from Defini- tion 3, Φ 1
h is thus the decomposition function for Φ f . By symmetry of the dynamics (4), we have

Φ 1 h (t, z, u, d, z, u, d) = Φ 2
h (t, z, u, d, z, u, d) finally giving the result in Theorem 6.

Theorem 6 thus provides a method to obtain overapproximations of the finite-time reachable sets for any continuously differentiable system (1) by computing a single successor state Φ h (t, z, u, d, z, u, d) of system (4). As will be shown in the next sections of this paper, these overapproximations can then be used to define the transition relation of a symbolic abstraction for the dynamical system (1), similarly to [START_REF] Moor | Abstraction based supervisory controller synthesis for high order monotone continuous systems[END_REF], [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF] but applicable to the much wider class of continuously differentiable systems. To simplify the notations in the remainder of this paper, we denote as Remark 7. Similar methods for monotone systems as in [START_REF] Moor | Abstraction based supervisory controller synthesis for high order monotone continuous systems[END_REF] or the subclass of mixed-monotone systems as in Proposition 4 and [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF] provide a tight over-approximation of the reachable set (i.e. the boundary of the over-approximation interval intersects the closure of the reachable set). Although the result in Theorem 6 relies on the monotonicity of (4), the tightness of the obtained over-approximation for system (1) cannot be guaranteed in the general case due to the new terms α c i (c-c *) in the decomposition function [START_REF] Belta | Symbolic planning and control of robot motion [grand challenges of robotics[END_REF]. Therefore and as expected intuitively, big deviations from the constant sign cases (i.e. large |a c ij | in (C2) or large |b c ij | in (C3)) will result in more conservative over-approximations.

RS(t, Z , u) = [Φ 1 h (t, z, u, d, z, u, d), Φ 2 h (t, z, u, d, z, u, d)], (6)
The conservativeness described in Remark 7 can be partially mitigated in the scope of abstraction creation. Remark 8. Since the computation of the over-approximation RS(t, Z , u) as in [START_REF] Coogan | Stability of traffic flow networks with a polytree topology[END_REF] only requires the knowledge of Φ h on the time period [0, t], the conditions "∀z 2) can be relaxed to any subset Z ⊆ Z, U ⊆ U and D ⊆ D containing all possible states and inputs during the time period [0, t]. In such case, the system (1) would not be described as mixed-monotone as in Definition 3 (although it could), but as piecewise mixedmonotone since a different decomposition function g would be used for each computation of a less conservative RS(t, Z , u). Apart from taking U = {u}, the choice of the other subsets is application dependent and a strict subset may not always be obtained. An example is provided in Section V-A for a unicycle model.

∈ Z, u ∈ U, d ∈ D" on the bounds ∂fi ∂cj (z, u, d) ∈ [a c ij , b c ij] in (

III. HIERARCHICAL DECOMPOSITION

We consider a high-level control problem on a continuous dynamical system (1) with continuously differentiable vector field f evolving in a given workspace Z ⊆ R n associated to a uniform partition P ⊆ 2 Z into intervals (for compatibility with the monotonicity-based over-approximation as in (5)). The description of this workspace also includes a set Obs ⊆ P of unsafe regions (referred to as obstacles in this section) and a set Π ⊆ P\Obs of regions of interest. The control specification is described by a Linear Temporal Logic (LTL) formula ϕ defined over the set of regions of interest Π. The reader is referred to [START_REF] Baier | Principles of model checking[END_REF] for an introduction on the LTL framework. Given a sampling period τ ∈ R + 0 , we thus aim at solving the following problem on the sampled version S τ = (X τ , U τ , δ τ) of (1) with X τ = Z, U τ = U and δ τ as defined in Section II-A.

Problem 9. Find a controller C : X τ → U τ such that the closed-loop sampled system S τ with transitions δ τ (z, C(z)) satisfies the LTL formula ϕ while avoiding the obstacles Obs ⊆ P.

To solve Problem 9, we propose a hierarchical control structure involving three different abstraction layers of the dynamical system and its environment, each of which successively addresses one aspect of the control problem as sketched in Figure 1. The evolution of the control objectives (highlighted in red in Figure 1) is obtained through the following three steps, each applied on a different abstraction layer (in blue).

• We first solve the LTL planning problem on a finite transition system representing only the regions of interest (RoI in Figure 1) of the workspace. The resulting accepting path is a (possibly infinite) sequence of regions of interest satisfying the LTL formula ϕ. • Based on the workspace partition P and its subset of obstacles Obs ⊆ P, a finite transition system describing possible motion in this workspace (disregarding the dynamics of (1)) taking into account obstacle avoidance is created and used to obtain a discrete plan in P connecting all pairs of consecutive regions of interest in the accepting path.

• A controller for the dynamical system to follow these discrete plans is finally synthesized through an abstraction refinement approach relying on the over-approximation operator [START_REF] Coogan | Stability of traffic flow networks with a polytree topology[END_REF]. The proposed structure with the first and second layers has the advantage of providing a solution to the LTL planning on P at a significantly lower computational cost than if this planning problem were to be solved in a single step, directly on the larger transition system describing all possible motions in the partitioned workspace. In addition, the use of a refinement approach in the third layer is to make sure that the dynamical system can deterministically follow the plans obtained in the second layer.

A. Solution of the LTL problem

Let S Π = (Π, δ Π) be a transition system whose states are the regions of interest in the finite set Π ⊆ P\Obs and its transition relation is δ Π : Π → 2 Π . The easiest choice is to define this relation such that δ Π (π) = Π for all π ∈ Π, thus implying that this first layer of abstraction considers that any region of interest can be reached from any other region, disregarding the workspace geometry, distance and time for such transition. Alternatively, the transition relation can be manually created with δ Π (π) Π to take into consideration specific constraints related to the considered workspace geometry or control problem. Such an example is presented in Section V-B2 for the simulation example of Section V.

While verification problems are usually solved by creating a Büchi Automaton representing the negation ¬ϕ of the LTL formula ϕ, computing the product of the transition system with this automaton and then searching this product for paths satisfying ¬ϕ (i.e. counter-examples of ϕ), LTL planning problems can similarly be solved but by using a Büchi Automaton representing ϕ (instead of its negation) in order to obtain an accepting path in S Π satisfying the LTL formula ϕ [START_REF] Baier | Principles of model checking[END_REF]. The problem of finding such an accepting path can thus be solved by using any existing LTL model checker (see e.g. [START_REF] Holzmann | The Spin model checker: primer and reference manual[END_REF]). Let π = π 0 π 1 π 2 . . . denote this accepting path (if it exists) represented as a (possibly infinite) sequence of regions of interest in Π.

B. Extraction of a discrete plan

For any cell ∈ P of the workspace partition P, let N (σ) ⊆ P be the set of its neighbor cells (i.e. the partition elements having a common facet with σ). We also consider that σ ∈ N (σ). The second abstraction layer thus describes the environment while disregarding the system dynamics and is represented by the transition system S P = (P, δ P) whose set of states (or cells) is P and its transition relation δ P : P → 2 P is such that δ P (σ) = N (σ)\Obs for all σ ∈ P\Obs. As a result, any behavior of S P induced by the above transition relation δ P is guaranteed to satisfy the obstacle avoidance.

Then for each pair (π i , π i+1) ∈ Π 2 of consecutive regions of interest in the accepting path π, we look for a plan Σ i = σ i 0 σ i 1 . . . σ i ri in P\Obs connecting the two cells σ i 0 = π i and σ i ri = π i+1 . Note that since Π is finite, there is necessarily a finite number of such pairs despite the accepting path π being infinite. The search for the plan Σ i = σ i 0 σ i 1 . . . σ i ri can be obtained through classical graph search algorithms on S P (see e.g. [START_REF] Cormen | Introduction to algorithms[END_REF]), such as a Breadth-First Search or by applying a Dijkstra algorithm if we want to add some weight on the transitions (e.g. to penalize transitions going to a cell neighboring an obstacle). Note that these searches are guaranteed to find such plans Σ i as long as π i and π i+1 can be connected by S P . If some Σ i cannot be found, it means that the accepting path π is not feasible in P\Obs and Problem 9 may not have a solution (at least not without revising the path π, which is not in the scope of this paper).

Remark 10. Our problem formulation with Π ⊆ P (i.e. each region of interest corresponds to a single cell of the workspace partition) ensures that each pair (π i , π i+1) in π only needs one plan Σ i as above. The more general case with Π ⊆ 2 P can still be handled but at a much greater computational cost, since a plan in P needs to be found for each pair in π i × π i+1 ⊆ P 2 .

C. Control synthesis

Considering both steps described in Sections III-A and III-B, Problem 9 can then be solved by obtaining a solution to the following problem for each plan Σ i . Problem 11. For a plan Σ i = σ i 0 σ i 1 . . . σ i ri in P as in Section III-B, find a controller C i : X τ → U τ such that the closed-loop sampled system S τ follows this plan, i.e. for any trajectory z 0 . . . z ri of S τ with z 0 ∈ σ i 0 and z k+1 ∈ δ τ (z k , C i (z k)) for all k ∈ {0, . . . , r i -1}, it holds that z k ∈ σ i k . In this paper, this last step is solved through the use of a third abstraction layer over-approximating the dynamics of the sampled system S τ . In what follows, the sampling period τ ∈ R + 0 used in both S τ and its abstraction is assumed to be given. While, to the best of our knowledge, there exists very few results involving the choice of this sampling period for abstraction-based approaches [START_REF] Boskos | Decentralized abstractions for multi-agent systems under coupled constraints[END_REF], some guidelines are provided in Section V-B4 for a unicycle model and in [START_REF] Meyer | Abstraction refinement and plan revision for control synthesis under high level specifications[END_REF] for a class of dynamical systems with additive control input (ż = f (z, d) + u with z, u ∈ R n). An abstraction S a of S τ can then be obtained from the over-approximation method of the reachable set in time τ as described in Theorem 6 and (6), and is defined as the transition system S a = (X a , U a , δ a), where

• the set of states (or symbols) X a is a partition of the workspace Z ⊆ R n into intervals, i.e. any symbol s ∈ X a is also an interval s ⊆ Z of the workspace, • the set of inputs U a is a finite subset of control values in U, • a transition s ∈ δ a (s, u) between symbols s ∈ X a and s ∈ X a with input u ∈ U a exists if s ∩ RS(τ, s, u) = ∅ as defined in (6). Since the above approach creates a non-deterministic abstraction, taking the partition X a = P would most likely result in being unable to synthesize a controller such that the abstraction S a deterministically follows a desired plan Σ i = σ i 0 σ i 1 . . . σ i ri in P. Instead of manually looking for a finer partition on which the control problem is feasible, we consider an abstraction refinement approach, detailed in Section IV, where an abstraction S a = (X a , U a , δ a) is created on the initial coarse partition X a = P and then iteratively refined by re-partitioning the elements of X a that are responsible for preventing the synthesis of a controller. Since this refinement procedure is guided by the plan to be followed, each plan Σ i will be associated with its own abstraction S i a = (X i a , U a , δ i a) (using the same control set U a for all plans).

Remark 12. This type of abstractions is chosen to combine the hierarchical decomposition with the results on reachability analysis in Section II-D, and the need for refinement then follows from the non-determinism of these abstractions. This third abstraction layer can however be replaced by any alternative method which could synthesize a controller for S τ to follow the plan Σ i . One possible candidate is the deterministic abstraction in [START_REF] Gol | Time-constrained temporal logic control of multi-affine systems[END_REF] which would not require any refinement.

IV. ABSTRACTION REFINEMENT

While the first two steps of the hierarchical solution in Section III can be solved with well established tools as mentioned in Sections III-A and III-B, the solution to the third step using abstraction refinement is a more recent result in the scope of control synthesis for continuous dynamical systems. For the sake of self containment of this paper, this section thus details the considered abstraction refinement approach initiated in [START_REF] Meyer | Compositional abstraction refinement for control synthesis[END_REF].

A. Valid sets

Given a plan Σ i = σ i 0 σ i 1 . . . σ i ri in the partition P, we first define the notion of valid sets with respect to the plan Σ i . For the abstraction S i a = (X i a , U a , δ i a) associated to Σ i , we define the function P i a : P → 2 X i a such that P i a (σ) = {s ∈ X i a | s ⊆ σ} corresponds to the projection of a cell σ ∈ P onto the given finer partition X i a . Definition 13. For the plan Σ i = σ i 0 . . . σ i ri , we define the function V i : P → 2 X i a such that V i (σ i ri) = {σ i ri } and for all k ∈ {0, . . . , r i -1}:

V i (σ i k) = s ∈ P i a (σ i k) | ∃u ∈ U a such that δ i a (s, u) ⊆ V i (σ i k+1) .
The set V i (σ i k) is called the valid set of cell σ i k . A cell σ ∈ P and a symbol s ∈ X i a such that s ∈ P i a (σ) are said to be

valid if V i (σ) = ∅ and s ∈ V i (σ), respectively. Conversely, a symbol s ∈ P i a (σ) is invalid if s / ∈ V i (σ).
Since σ i ri is the final cell of the plan Σ i to be reached, it is considered as valid and the function

V i : P → 2 X i a is initialized with V i (σ i ri) = {σ i ri }.
We then proceed backwards on the plan Σ i to iteratively define the other valid sets V i (σ i k) as the subset of symbols in σ i k which can be driven towards the valid set V i (σ i k+1) of the next cell for at least one control input in U a .

The function ValidSet(σ i k , V i (σ i k+1)) in Algorithm 1 first computes the valid set V i (σ i k) with respect to the plan Σ i as in Definition 13. Then, the controller C i a : X i a → U a associates to each valid symbol s ∈ V i (σ i k) the first control value ensuring that s is valid, therefore reducing the computational complexity by stopping the search of such inputs as soon as one is found. An alternative version of Algorithm 1 can be proposed by defining a non-deterministic controller C i a : X i a → 2 Ua containing more than one satisfying input, thus allowing for a future optimization on the choice of the control.

Data: P, X i a , U a , P i a : P → 2 X i a . Input: Considered cell σ i k ∈ P. Input: Targeted valid set V i (σ i k+1) ⊆ P i a (σ i k+1). 1 V i (σ i k) = s ∈ P i a (σ i k) ∃u ∈ U a such that δ i a (s, u) ⊆ V i (σ i k+1) 2 ∀s ∈ V i (σ i k), C i a (s) is taken as the first value in u ∈ U a δ i a (s, u) ⊆ V i (σ i k+1) 3 return {V i (σ i k), C i a : X i a → U a } Algorithm 1: ValidSet(σ i k , V i (σ i k+1)). Computes the valid set V i (σ i k) and associated controller C i a at step k ∈ {0, . . . , r i -1} of the plan Σ i = σ i 0 σ i 1 . . . σ i ri .

B. Refinement

The abstraction refinement approach then follows Algorithm 2 that we describe below. The abstraction S i a = (X i a , U a , δ i a) is initialized with respect to the initial coarse partition X i a = P and the valid set V i (σ i ri) of the last cell of the plan Σ i is initialized as in Definition 13 (line 1). Then, similarly to Definition 13, we proceed backwards on the plan

Σ i = σ i 0 σ i 1 .
. . σ i ri and compute the valid set V i (σ i k) and associated controller C i a as in Algorithm 1 from σ i ri-1 to σ i 0 (lines 2-3).

Data: P, Σ i = σ i 0 σ i 1 . . . σ i ri ∈ P ri+1 , P i a : P → 2 X i a . 1 Initialization: X i a = P, V i (σ i ri) = {σ i ri } 2 for k from r i -1 to 0 do 3 {V i (σ i k), C i a } = ValidSet (σ i k , V i (σ i k+1)) 4 while V i (σ i k) = ∅ or V i (σ i 0) = P i a (σ i 0) do 5 j = Pick(k, r i -1) 6 forall s ∈ P i a (σ i j)\V i (σ i j) do 7 X i a = (X i a \{s}) ∪ Split(s) 8 for l from j to k do 9 {V i (σ i l), C i a } = ValidSet (σ i l , V i (σ i l+1)) Output: {X i a , V i : P → 2 X i a , C i a : X i a → U a } Algorithm 2: Abstraction refinement algorithm.
If for some k the valid set V i (σ i k) is empty (line 4), the partition X i a needs to be refined to improve the valid sets. For this, we first pick a cell σ i j with j ∈ {k, . . . , r i -1} to be refined (line 5), split each of its invalid subsymbols s ∈ P i a (σ i j)\V i (σ i j) into a set of subsymbols Split(s) and update the partition X i a accordingly (lines 6-7), and finally update the valid sets and controller (using Algorithm 1) for all cells from σ i j to σ i k whose valid sets may include additional symbols after this refinement (lines 8-9). This refinement procedure is then repeated until all cells of the plan are valid (V i (σ i k) = ∅) and the valid set of the initial cell covers the whole cell (V i (σ i 0) = P a (σ i 0), line 4) to guarantee that any initial state in σ i 0 = π i can be controlled to follow the plan Σ i leading to the cell σ i ri = π i+1 . For each plan Σ i , Algorithm 2 then returns the refined partition X i a , the valid set function V i and the associated controller C i a . The definition of both functions Pick and Split can be arbitrary but we can provide some guidelines. It is usually advised to prioritize the refinement of the coarsest of the visited cells σ i k , . . . , σ i r-1 as they are more likely to be the reason for having V i (σ i k) = ∅. Possible choices of the function Pick are described in [START_REF] Meyer | Compositional abstraction refinement for control synthesis under lasso-shaped specifications[END_REF] using a priority queue and in [START_REF] Meyer | Abstraction refinement and plan revision for control synthesis under high level specifications[END_REF] using a cost function estimating the complexity of the remaining computations. For Split, one should aim at obtaining subsymbols which remain compatible with the over-approximation method used to obtain S i a (intervals of R n for the monotonicity-based approach of this paper). Classical examples include: splitting the symbol s along its longest dimension only; and uniformly splitting s ⊆ R n into 2 n subsymbols (2 per dimension).

C. Solution to Problem 11

To control the sampled system S τ along the plan Σ i = σ i 0 σ i 1 . . . σ i ri with the controller C i a obtained for the abstraction S i a in Algorithm 2, systems S τ = (X τ , U τ , δ τ) and S i a = (X i a , U a , δ i a) must satisfy a feedback refinement relation defined below, adapted from [START_REF] Reissig | Feedback refinement relations for the synthesis of symbolic controllers[END_REF].

Definition 14. A map H i : X τ → X i a is a feedback refinement relation from S τ to S i a if: ∀z ∈ X τ , s = H i (z), ∀u ∈ U a ⊆ U τ , ∀z ∈ δ τ (z, u) we have H i (z) ∈ δ i
a (s, u). Such a relation implies that for any pair (z, s) of matching state and symbol and any control u of the abstraction S i a , the behaviors of the original system S τ with the same control u can be matched by behaviors of S i a . As a consequence, if a controller is synthesized so that S i a satisfies some specification, then this controller can be composed with the feedback refinement relation H i for S τ to satisfy the same specification.

Theorem 15. If Algorithm 2 terminates for a plan

Σ i = σ i 0 σ i 1 . . . σ i ri , let H i : X τ → X i a such that H i (z) = s ⇔ z ∈ s. Then the controller C i : X τ → U τ defined by C i (z) = C i a (H i (z)
) for all z ∈ X τ solves Problem 11, i.e. for any trajectory z 0 . . . z ri of S τ with z 0 ∈ σ i 0 and

z k+1 ∈ δ τ (z k , C i (z k)) for all k ∈ {0, . . . , r i -1}, we have z k ∈ σ i k . Proof. We first prove that the map H i is a feedback refinement relation from S τ to S i a as in Definition 14. Let z ∈ X τ , s = H i (z) ∈ X i a , u ∈ U a ⊆ U τ , z ∈ δ τ (z, u) and s = H i (z).
From the definition of S τ and Theorem 6, we have z ∈ RS(τ, s, u), where RS is the over-approximation operator defined in [START_REF] Coogan | Stability of traffic flow networks with a polytree topology[END_REF]. Since we also have z ∈ s , then s ∩ RS(τ, s, u) = ∅ which implies that s ∈ δ i a (s, u) as in the definition of S i a in Section III-C. It is then sufficient to prove that the controller C i a : X i a → U a solves Problem 11 for the abstraction S i a , which is the case by construction of Algorithm 2. Indeed if Algorithm 2 terminates, then its line 4 guarantees that any symbol s 0 ∈ P i a (σ i 0) is valid with respect to Σ i : s 0 ∈ V i (σ i 0). Then by definition of the valid sets in Definition 13 and Algorithm 1, for all k ∈ {0, . . . , r i -1} we have δ i a (s k , C i a (s k)) ⊆ V i (σ i k+1), and thus for all s k+1 ∈ δ i a (s k , C i a (s k)) we have s k+1 ∈ σ i k+1 . A solution to the main LTL control problem immediately follows from Theorem 15.

Corollary 16. If Algorithm 2 terminates for all plans Σ i derived in Section III-B, then the controller C : N × X τ → U τ defined by C(i, z) = C i a (H i (z)) solves Problem 9. Although the proposed hierarchical decomposition as in Section III enables the consideration of a general high-level control problem (both in terms of specification and dynamics) with a reduced complexity, guarantees for the converse implication of Corollary 16 ("if Problem 9 can be solved on S τ , then the problem decomposition and Algorithm 2 will find a controller solving it") cannot be provided in general due to both the hierarchical decomposition of the problem and the use of over-approximations [START_REF] Coogan | Stability of traffic flow networks with a polytree topology[END_REF] in the definition of the abstractions S i a . Remark 17. Since this third step has the largest computational cost of the problem decomposition, a further reduction of the computational burden with higher chances of finding a controller could be obtained by combining the abstraction refinement with a plan revision approach as in [START_REF] Meyer | Abstraction refinement and plan revision for control synthesis under high level specifications[END_REF], allowing to look for alternative plans of Σ i connecting the same two regions of interest.

V. APPLICATION TO NON-HOLONOMIC MOTION PLANNING

In this section, we consider a high-level motion planning problem for a mobile robot evolving in an office environment. The robot is modeled by disturbed unicycle dynamics:

ż = f (z, u, d) =   v cos(θ) + d 1 v sin(θ) + d 2 ω + d 3   (7)
where z = (x, y, θ) ∈ Z ⊆ R 3 is the state (2D position and orientation), u = (v, ω) ∈ U ⊆ R 2 is the control input (linear and angular velocities) and d = (d 1 , d 2 , d 3) ∈ D ⊆ R 3 is the disturbance. We further assume that the disturbance take its values in an interval

D = [d, d] of R 3 .
In what follows, we first present in Section V-A how to apply the proposed reachability analysis results to the unicycle [START_REF] Cormen | Introduction to algorithms[END_REF]. Section V-B then describes the considered motion planning problem and the associated simulation results.

A. Reachability analysis

We first define the decomposition function g : 3) for the unicycle model [START_REF] Cormen | Introduction to algorithms[END_REF]. Since all partial derivatives of f 3 are non-negative (a c 3j ≥ 0 as in (C1) of Section II-D for all c ∈ {z, u, d}), we thus have

Z × U × D × Z × U × D → R 3 as in (
α z 3 = α d 3 = 0 0 0 , α u 3 = 0 0 , Z 3 = z, U 3 = u and D 3 = d, leading to: g 3 (z, u, d, z * , u * , d *) = f 3 (z, u, d) = ω + d 3 . (8)
As mentioned in Remark 8 (U = {u}), the overapproximation [START_REF] Coogan | Stability of traffic flow networks with a polytree topology[END_REF] of the reachable set computed to create abstractions as in Section III-C considers known and constant control values over the sampling period [0, τ] (i.e. u = u * in (3)). Although ∂fi ∂v do not have a constant sign for i ∈ {1, 2}, this will be disregarded in what follows since the corresponding term α u i (u -u *) in (3) is equal to 0 when u = u * (i.e.

these signs have no influence on the computation of the overapproximation as in (6)). In addition, taking u = u * results in U 1 = U 2 = u. Since for i, j ∈ {1, 2} and k ∈ {1, 2, 3} the partial derivatives ∂fi ∂zj and ∂fi ∂d k are non-negative, we have α z i1 = α z i2 = 0, α d i = 0 0 0 and D i = d, and we thus obtain for i ∈ {1, 2}: The bounds in [START_REF] Gol | Time-constrained temporal logic control of multi-affine systems[END_REF] can thus be computed by:

g i (z, u, d, z * , u, d *) = f i (Z i , u, d) + α z i3 (θ -θ *), (9)
v ≥ 0 ⇒           
and similar equations swapping the min and max operators when v < 0.

In addition, we note that the maxima and minima of the cos and sin functions can be expressed as follows:

min θ∈[θ,θ] (cos(θ)) = -1 if θ ≥ π or θ ≤ -π cos(max(|θ|, |θ|)) otherwise (13) max θ∈[θ,θ] (cos(θ)) =          1 if θ ≤ 0 ≤ θ or θ ≥ 2π or θ ≤ -2π cos min |mod(θ + π, 2π) -π|, |mod(θ + π, 2π) -π| otherwise (14
)
min θ∈[θ,θ] (sin(θ)) = -1 if θ ≥ 3π 2 or θ ≤ -π 2 cos(max(|θ -π 2 |, |θ -π 2 |)) otherwise (15) max θ∈[θ,θ] (sin(θ)) =            1 if θ ≤ π 2 ≤ θ or θ ≥ 5π 2 or θ ≤ -3π 2 cos   min   |mod(θ + π 2 , 2π) -π|, |mod(θ + π 2 , 2π) -π|     otherwise (16
)
where mod(•, 2π) : R → [0, 2π] is the modulo function and | • | the absolute value.

From the bounds a z 13 , b z 13 , a z 23 and b z 23 defined in (11)-(16) for each sampling period, the decomposition function g given in (8) and (9) leads to the definition of the duplicated dynamical system (4) with the vector field h and the trajectories Φ h as in Section II-D. Finally, Theorem 6 provides the desired over-approximation as in [START_REF] Coogan | Stability of traffic flow networks with a polytree topology[END_REF], for all state intervals [z, z] ⊆ Z and constant control inputs u ∈ U:

RS(τ, [z, z], u) = [Φ 1 h (τ, z, u, d, z, u, d), Φ 2 h (τ, z, u, d, z, u, d)].

B. Problem description and simulation results

While the reachability analysis of the unicycle in Section V-A is presented for a disturbed unicycle for the sake of generality, the following simulation results consider the undisturbed case (D = {0} 3). Although the general disturbed case could still be handled by the proposed framework, the addition of disturbances increases the conservativeness of the reachability analysis (see Remark 7), which thus requires more abstraction refinement steps before finding a controller, and in turn increases the required computation time and degrades the visualization of the obtained results.

1) Problem description: We consider a high-level motion planning problem for a mobile robot evolving in a 33 × 20 square meters office environment. This 2D workspace is formed by four rooms and a central hallway, as sketched in Figure 2 uniformly partitioned into 20×12 cells and where the black cells represent static obstacles (walls). The four regions of interest (in blue) denoted as π 1 to π 4 correspond to the cells in which the observation tasks of each room are to be carried out. The considered mobile robot is modeled as a unicycle as in [START_REF] Cormen | Introduction to algorithms[END_REF] where the state z = (x, y, θ) evolves in the set Z = [0, 33] × [0, 20] × (-π, π], the control input u = (v, ω) takes values in the set U = [-0.5, 0.5] × [-0.3, 0.3] and we assume that the system is not disturbed (D = {0} 3). To create finite abstractions as in Section IV, the control set U is uniformly discretized into the set U a = {-0.5, -0.25, 0, 0.25, 0.5} × {-0.3, -0.15, 0, 0.15, 0.3} with 5 discrete values per dimension. The initial state of (7) is taken in the cell π 1 .

The control objective is expressed by the LTL formula

ϕ = ♦π 2 ∧ ♦π 4 ∧ ♦π 3 ∧ ¬π 3 Uπ 4 . (17)
In English, the first two elements of this specification mean that we want to achieve a surveillance task in both π 2 and π 4 by visiting each region infinitely often. The last two elements mean that in addition to this surveillance, we want to eventually visit π 3 but not before π 4 has been visited at least once. Although we could include in [START_REF] Meyer | Compositional abstraction refinement for control synthesis[END_REF] the additional safety specification ¬obstacles of avoiding obstacles at all times, this obstacle avoidance will actually be handled in the second step of this approach when exploring the physical environment to find discrete plans.

The simulation results in this section are obtained on a laptop with a 2.6 GHz CPU and 8 GB of RAM. The computations for steps 2 and 3 are done on Matlab.

2) First layer -LTL problem on regions of interest: As in Section III-A, we first define the finite transition system S Π = (Π, δ Π), where Π = {π 1 , π 2 , π 3 , π 4 } is the set of regions of interest. Since the regions of interest are representative cells for each room, the particular structure of the environment in Figure 2 leads us to define the transition relation δ Π : Π → 2 Π as follows: δ Π (π 1) = {π 1 , π 2 } (leaving room 1 can only be done through room 2), δ Π (π 2) = Π (from room 2, the robot can reach any other room) and δ Π (π 3) = δ Π (π 4) = Π\{π 1 } (room 1 cannot be reached directly apart from room 2).

We then solve the LTL problem on S Π using the model checker P-MAS-TG described in [START_REF] Guo | Multi-agent plan reconfiguration under local ltl specifications[END_REF] and the obtained accepting path takes the form of a prefix-suffix sequence π = π 1 π 2 π 4 π 3 (π 2 π 4) ω describing an infinite behavior where the finite prefix π 1 π 2 π 4 π 3 is followed once and the finite suffix π 2 π 4 is repeated infinitely often. Due to the small size of S Π , this accepting path is obtained in less than 2 milliseconds.

The following two layers then needs to be repeated for each pair of regions of interest involved in this accepting path: π 1π 2 , π 2 -π 4 , π 4 -π 3 , π 3 -π 2 and π 4 -π 2 . Although the pair π 2 -π 4 appears in both the prefix and the suffix of π, the next two steps only need to be applied once for this pair.

3) Second layer -Discrete plan in the physical environment: Following Section III-B, we then define the finite transition system S P = (P, δ P) representing the evolution of the robot in the partition environment in Figure 2 but disregarding the system dynamics [START_REF] Cormen | Introduction to algorithms[END_REF]. The set P then contains the 20 × 12 cells obtained from the partition of the 2D workspace. If a cell σ ∈ P belongs to an obstacle, we take δ P (σ) = ∅. Otherwise, δ P (σ) ⊆ P contains the four neighboring cells (left, right, top, bottom) of σ, excluding those outside of the considered environment or belonging to an obstacle. Therefore, the safety specification ¬obstacles mentioned above is immediately satisfied as long as we only follow behaviors allowed in S P .

For each of the 5 pairs π i -π j of regions of interest to be considered, we then use a Breadth-First Search algorithm [START_REF] Cormen | Introduction to algorithms[END_REF] on S P to obtain one of the shortest discrete plan

Σ ij = σ ij 0 σ ij 1 . . . σ ij rij in P with σ ij 0 = π i , σ ij rij = π j and σ ij k+1 ∈ δ P (σ ij k) for all k ∈ {0, . . . , r ij -1}.
The average computation time of these search algorithms is 33 milliseconds per pair π i -π j .

4) Third layer -Abstraction refinement and control synthesis: We first choose the value of the sampling period τ (i.e. the time for [START_REF] Cormen | Introduction to algorithms[END_REF] to be controlled from each cell σ ij k to the next σ ij k+1 in some discrete plan Σ ij) by taking inspiration from the guidelines provided in [START_REF] Meyer | Abstraction refinement and plan revision for control synthesis under high level specifications[END_REF] for another class of systems. Considering the unicycle [START_REF] Cormen | Introduction to algorithms[END_REF] with vertical and horizontal orientations θ ∈ {-π/2, 0, π/2, π} and using the maximal linear velocity u = (v, 0) (with v = 0.5 m/s), the minimal time to control (7) from any initial state in a cell σ ∈ P to a state in one of its neighbor cells σ ∈ δ P (σ) is given by max(size(σ, 1), size(σ, 2))/v, where size(σ, i) is the dimension of any cell σ ∈ P along the i th axis. Given that (7) may not always start and keep orientations θ ∈ {-π/2, 0, π/2, π} or use the maximal linear velocity v, a longer time may be needed to reach a neighbor cell and we thus choose the sampling period as slightly larger (by a factor 1.2) than the computed value: τ = 1.2 * max(33/20, 20/12)/0.5 = 4 seconds.

To take advantage of having a control objective in the 2D workspace (discrete plan Σ ij to follow) while the system [START_REF] Cormen | Introduction to algorithms[END_REF] actually evolves in a 3D state-space, the abstraction refinement algorithm is applied with a modified version of Definition 13 for the valid sets: given a cell σ ∈ P of the 2D workspace, its valid set is

V i 2D (σ) = (18) {s ⊆ σ | ∃s θ ⊆ (-π, π], s × s θ ∈ X i a ∩ V i (σ × (-π, π])}, that is, V i 2D (
σ) contains any projection in the 2D workspace of a 3D symbol which belongs to the refined partition X i a and is valid according to the 3D cell σ × (-π, π] as in Definition 13. The abstraction refinement thus still needs to work on the partition X i a of the 3D state space since the orientation θ and the angular velocity ω influence the reachability analysis of (7) as in Section V-A, but with a reduced complexity since this new definition of a valid 2D symbol s only requires the existence of one valid 3D symbol s × s θ ∈ X i a (instead of the previous condition where all s × s θ ∈ X i a needed to be valid). This complexity reduction however comes with the drawback that we need to rotate the robot between each application of the symbolic controller using a constant rotation u = (0, ω) in order to go to an orientation θ ∈ s θ for one of the valid 3D symbols s × s θ corresponding to the current 2D position (x, y) ∈ s.

The function Pick from Algorithm 2 is chosen similarly to [START_REF] Meyer | Compositional abstraction refinement for control synthesis under lasso-shaped specifications[END_REF] as a queue which selects the oldest cell added to the queue among those in the plan Σ ij which have been refined the least. Before the first iteration of refinement, each 3D cell σ × (-π, π] with σ ∈ P is initially split by taking a uniform partition into 4 subsymbols only on its third dimension (i.e. partitioning (-π, π] in 4 intervals). The following refinement iterations (function Split(s) in Algorithm 2) are done by taking a uniform partition of the 3D symbol s into 2 subsymbols per dimension (i.e. resulting in 2 3 subsymbols).

For the 5 plans Σ 12 , Σ 24 , Σ 43 , Σ 32 and Σ 42 obtained above, the computation time varies between 33 and 186 seconds, with an average of 82 seconds per plan. The number of refinement iterations per plan ranges from 20 to 46, with an average of 32 iterations.

5) Simulation results: For each of the five plans Σ 12 , Σ 24 , Σ 43 , Σ 32 and Σ 42 obtained in the second step, the results of the abstraction refinement are displayed in Figures 34567. The 2D projection of the refined partition X i a corresponds to the finer black grid. The 2D valid sets V i 2D (σ) are displayed in red. Note that these valid sets are not represented for the four regions of interest (in blue), but by construction in Algorithm 2 (line 4), these sets necessarily cover the whole cell corresponding to the region of interest.

Finally, a simulation of the unicycle model (7) using the symbolic controller obtained as in Section IV is created. The initial state z 0 is taken randomly in the set π 1 × (-π, π]. At each step in a 3D cell σ 3D = σ 2D ×(-π, π] with σ 2D ∈ P, the robot measures its position z = (x, y, θ) ∈ σ 3D and finds the corresponding 3D symbol H i (z) ∈ X i a . If H i (z) ∈ V i (σ 3D) is a valid symbol for the current plan, we apply the constant control value C i a (H i (z)) for τ = 4 seconds. Otherwise, we know that by construction the 2D projection s 2D of the symbol H i (z) ∈ X i a belongs to the 2D valid set V i 2D (σ 2D), meaning that there exists another 3D symbol s ∈ X i a with the same projection s 2D and such that s ∈ V i (σ 3D). We thus apply a constant rotation u = (0, ω) until the system reaches a new state z = (x, y, θ) ∈ s and then apply the constant control value C i a (H i (z)) = C i a (s) for τ = 4 seconds. This is then repeated at the next measurement of the state.

The trajectory of (7) obtained after applying the above control strategy for the first occurrence of each plan Σ ij is then displayed in green in Figures 34567. The snaps in this trajectory correspond to the rotations before applying the next value of the symbolic controller, while smoother sections over several cells mean that no such rotation was needed. The trajectory of (7) following the whole accepting path π = π 1 π 2 π 4 π 3 (π 2 π 4) ω is displayed in Figure 8 (without the abstraction refinement results) for the whole prefix π 1 π 2 π 4 π 3 followed by a single iteration of the suffix π 2 π 4 . This trajectory is displayed with a color gradient going from blue to red while progressing through π.

VI. CONCLUSION

The first contribution of this paper is to define a method to compute an interval over-approximation of the finite-time reachable set for any continuously differentiable system. This method relies on the creation of an auxiliary monotone system obtained by compensating the non-monotone components of the initial system with the extremal values of the corresponding partial derivative over the considered time interval. The generality of this result naturally comes at the cost of an increased conservativeness due to this compensation of the dynamics to obtain a monotone system. The second contribution is a three-layer hierarchical decomposition of a high-level control problem under a Linear Temporal Logic formula by iteratively solving finer versions of the problem: first solve the problem only on the regions of interest involved in the LTL formula, then realize the obtained sequence of regions by finding discrete plans in the partitioned workspace, and finally synthesize a controller for the dynamical system to follow these plans using an abstraction refinement approach relying on the above over-approximation based reachability analysis.

Since the proposed three-layer approach already provides a very fast solution to the first 2 steps, the main goal for future work is to improve the efficiency of the third step using abstraction refinement which represents the main computation time. In particular, to further increase the generality of this solution to dynamical systems of large dimensions, a possible direction is to propose a compositional abstraction refinement approach similar to [START_REF] Meyer | Compositional abstraction refinement for control synthesis[END_REF] where the dynamical system is first decomposed into subsystems (each considering a subset of state and control variables) before applying the abstraction method to each subsystem at a lower computational cost. For a greater re-usability of this solution minimizing inputs from the user, this decomposition of the dynamics should ideally be automated.

 the over-approximation obtained as in Theorem 6 from an interval of initial states Z = [z, z], with a constant control input function u : [0, t] → {u} and assuming that the disturbance set of (1) is bounded within the interval D = [d, d].

Fig. 1 .

 1 Fig. 1. Hierarchical structure of the problem solution (RoI = Regions of Interest, FTS = Finite Transition System).

where Z 1 ,

 1 Z 2 , α z 13 and α z 23 are defined as in Section II-D according to the values of the four bounds a z 13 , b z 13 , a z 23 and b z 23 of the remaining two partial derivatives whose signs are not constant:∂f 1 ∂θ = -v sin(θ) ∈ [a z 13 , b z 13], ∂f 2 ∂θ = v cos(θ) ∈ [a z 23 , b z 23].(10) To avoid taking the too conservative bounds ∂f1 ∂θ , ∂f2 ∂θ ∈ [-v, v] resulting from all possible orientations θ ∈ (-π, π] as in (2), we rather follow Remark 8 to find a subset of possible orientations on each sampling period [0, τ] and thus obtain tighter bounds in[START_REF] Gol | Time-constrained temporal logic control of multi-affine systems[END_REF]. Given an interval of initial orientations [θ 0 , θ 0] ⊆ (-π, π] and a known angular velocity ω,[START_REF] Cormen | Introduction to algorithms[END_REF] gives θ ∈ [ω + d 3 , ω + d 3], and thus the orientation θ(τ) after the sampling period of τ > 0 is bounded as θ(τ) ∈ [θ 0 + τ (ω + d 3), θ 0 + τ (ω + d 3)]. Over the whole sampling period [0, τ], we obtain the following set [θ, θ] of possible orientations θ([0, τ]) ∈ [θ, θ]:[θ, θ] = [θ 0 +min(0, τ (ω+d 3)), θ 0 +max(0, τ (ω+d 3))].[START_REF] Guo | Multi-agent plan reconfiguration under local ltl specifications[END_REF]

a z 13 =

 13 -v max θ∈[θ,θ] (sin(θ)) b z 13 = -v min θ∈[θ,θ] (sin(θ)) a z 23 = v min θ∈[θ,θ] (cos(θ)) b z 23 = v max θ∈[θ,θ] (cos(θ))

Fig. 2 .

 2 Fig. 2. Office environment with obstacles (black) and four regions of interest (blue) as the center of each room.

Fig. 3 .

 3 Fig. 3. Plan Σ 12 between π 1 and π 2 .

Fig. 4 .Fig. 5 .

 45 Fig. 4. Plan Σ 24 between π 2 and π 4 .

Fig. 6 .

 6 Fig. 6. Plan Σ 32 between π 3 and π 2 .

Fig. 7 .

 7 Fig. 7. Plan Σ 42 between π 4 and π 2 .

Fig. 8 .

 8 Fig. 8. Trajectory of the mobile robot following the accepting path π = π 1 π 2 π 4 π 3 (π 2 π 4) ω for a single iteration of the suffix. Color gradient from blue to red while progressing through π.