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Age-based partitioning of individual 
genomic inbreeding levels in Belgian Blue cattle
Marina Solé1* , Ann‑Stephan Gori1,2, Pierre Faux1, Amandine Bertrand1, Frédéric Farnir3, Mathieu Gautier4,5 
and Tom Druet1

Abstract 

Background: Inbreeding coefficients can be estimated either from pedigree data or from genomic data, and with 
genomic data, they are either global or local (when the linkage map is used). Recently, we developed a new hid‑
den Markov model (HMM) that estimates probabilities of homozygosity‑by‑descent (HBD) at each marker position 
and automatically partitions autozygosity in multiple age‑related classes (based on the length of HBD segments). 
Our objectives were to: (1) characterize inbreeding with our model in an intensively selected population such as the 
Belgian Blue Beef (BBB) cattle breed; (2) compare the properties of the model at different marker densities; and (3) 
compare our model with other methods.

Results: When using 600 K single nucleotide polymorphisms (SNPs), the inbreeding coefficient (probability of 
sampling an HBD locus in an individual) was on average 0.303 (ranging from 0.258 to 0.375). HBD‑classes associated 
to historical ancestors (with small segments ≤ 200 kb) accounted for 21.6% of the genome length (71.4% of the total 
length of the genome in HBD segments), whereas classes associated to more recent ancestors accounted for only 
22.6% of the total length of the genome in HBD segments. However, these recent classes presented more individual 
variation than more ancient classes. Although inbreeding coefficients obtained with low SNP densities (7 and 32 K) 
were much lower (0.060 and 0.093), they were highly correlated with those obtained at higher density (r = 0.934 
and 0.975, respectively), indicating that they captured most of the individual variation. At higher SNP density, smaller 
HBD segments are identified and, thus, more past generations can be explored. We observed very high correla‑
tions between our estimates and those based on homozygosity (r = 0.95) or on runs‑of‑homozygosity (r = 0.95). As 
expected, pedigree‑based estimates were mainly correlated with recent HBD‑classes (r = 0.56).

Conclusions: Although we observed high levels of autozygosity associated with small HBD segments in BBB cattle, 
recent inbreeding accounted for most of the individual variation. Recent autozygosity can be captured efficiently with 
low‑density SNP arrays and relatively simple models (e.g., two HBD classes). The HMM framework provides local HBD 
probabilities that are still useful at lower SNP densities.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Two alleles are identical-by-descent (IBD) if they descend 
from a single allele in an ancestor. This measure is rela-
tive and depends on the definition of a reference (or base) 
population. Indeed, two alleles are declared IBD if the 
ancestor belongs to the reference population and iden-
tical-by-state (IBS) for more remote common ancestors. 

When two alleles are IBD within an individual, the terms 
“autozygous” or “homozygous-by-descent” (HBD) are 
used. The inbreeding coefficient F of an individual is 
related to these measures and is defined as the probability 
that two alleles at any locus in this individual are IBD [1]. 
Inbreeding is associated with negative effects on fitness 
(e.g., [2–4]) and the occurrence of monogenic disorders 
increases in populations with higher levels of inbreed-
ing [5]. Thus, the study and management of inbreeding 
are of high importance in such populations. Belgian Blue 
Beef cattle (BBB) represent a good example of an inten-
sively selected cattle population. A consequence of the 

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  msole@uliege.be 
1 Unit of Animal Genomics, GIGA‑R & Faculty of Veterinary Medicine, 
University of Liège, B34 (+1) Avenue de l’Hôpital 1, 4000 Liège, Belgium
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7884-1051
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-017-0370-x&domain=pdf


Page 2 of 18Solé et al. Genet Sel Evol  (2017) 49:92 

selection process in this breed is the increase in the level 
of inbreeding, as illustrated by several recent outbreaks 
of genetic recessive defects [5–11].

There are several methods to estimate the inbreed-
ing coefficient F. In the past, methods were based on the 
genealogy and estimated the expected inbreeding coef-
ficient (based on the relationship between the two par-
ents). With the development of genetic markers, several 
approaches allow the estimation of the realized inbreed-
ing coefficient (“observed” in an individual), even in the 
absence of genealogy. Global approaches, including 
moments estimators (e.g., [12]), simple homozygosity 
measures (e.g., [2]) or based on the genomic relation-
ship matrix [13], estimate the total amount of inbreeding 
in an individual and can work with sparse genetic maps. 
Methods that are based on runs of homozygosity (ROH) 
(e.g., [14]) are, most often, empirical rule-based methods, 
which assume that long stretches of identical alleles are 
HBD. For such rule-based methods, prior parameters 
have to be defined, i.e., the minimal number of homozy-
gous markers, the minimal length and the maximum 
number of allowed heterozygous markers to consider a 
set of successive markers as HBD, etc. Likelihood-based 
approaches (e.g., [15, 16]) rely on probabilistic models, 
which use allele frequencies and genotyping error rates 
to determine whether ROH are autozygous (i.e., HBD), 
and derive from earlier works by Broman and Weber 
[17]. Compared to global estimators, ROH-based meth-
ods require denser genetic maps and can provide estima-
tors of local autozygosity. ROH have been used to study 
inbreeding in diverse species including humans [14, 16, 
18], pigs [19], cattle [20, 21] and others, and to study 
genetic diversity and signatures of selection. In addi-
tion, ROH offer the possibility to distinguish between 
recent and more ancient inbreeding [16, 18, 22]. Indeed, 
segments that are inherited from recent ancestors are 
expected to be longer since the recombination process 
has fewer generations to split the fragment into smaller 
pieces. Finally, hidden Markov models (HMM) were 
developed to estimate the HBD probability of segments 
along chromosomes [23] and make use of all the avail-
able information about the sequences of homozygous/
heterozygous markers, allele frequencies of markers, the 
genetic map, and genotyping error rates. These models 
can handle whole-genome sequence data [24], includ-
ing low-fold experiments [25]. All these HMM assume 
that (1) all the autozygosity results from a single event, 
(2) all the HBD segments trace back to one or several 
ancestors in a single generation, and (3) they all have the 
same expected length. However, natural and domesti-
cated populations are complex. They result from a long 
demographic history with variable effective population 

size (Ne) and, sometimes, have undergone major demo-
graphic events such as bottlenecks.

To relax this strong assumption of the current HMM 
methods, we recently developed a new HMM with mul-
tiple age-based HBD-classes [26] in which the length of 
the HBD segments from different classes have distinct 
expected distributions (longer/shorter segments for more 
recent/ancient common ancestors). The model allows to 
fit genomic data better and to reveal the “recent” demo-
graphic history of populations. The aims of our study 
were to: (1) characterize inbreeding by using a model 
describing genomes as a mosaic of non-HBD and HBD 
segments and partitioning the latter in multiple age-
related classes in an intensively selected cattle population 
such as BBB cattle; (2) investigate the effect of marker 
density and setting of parameters on the estimates; and 
(3) compare our estimates with those obtained with 
other methods (pedigree-based inbreeding coefficients, 
estimates from the genomic relationship matrix or rule-
based ROH estimators).

Methods
Data
Single nucleotide polymorphism (SNP) genotypes for 
the 735,293 SNPs from the Illumina BovineHD Bead-
Chip (HD; Illumina, San Diego, CA) were available for 
634 BBB sires. Moreover, whole-genome sequencing 
(WGS) data were also available for 50 of these sires (the 
bioinformatic processing of the WGS data is described 
in [27]). The pedigree including all known ancestors of 
the 634 bulls contained 7676 individuals. In addition, 
we extracted from the Widde database (http://widde.
toulouse.inra.fr; [28]), Illumina BovineHD genotypes for 
animals belonging to 10 cattle breeds of European origin 
(originally provided by the BovineHD genotyping con-
sortium). This set contained samples from 42 Angus, 22 
Brown Swiss, 37 Charolais, 21 Guernsey, 35 Hereford, 60 
Holstein, 38 Jersey, 50 Limousin, 21 Piedmontese and 21 
Romagnola individuals.

All individuals had a call rate higher than 0.90. We 
selected SNPs that mapped to bovine autosomes (using 
the UMD3.1 build) and removed from the dataset those 
that had a call rate lower than 95% and minor allelic fre-
quency lower than 0.01, that significantly deviated from 
Hardy–Weinberg proportions (p  <  0.001) or that pre-
sented incompatible genotypes for more than one par-
ent–offspring pair, which resulted in a set of 601,226 
SNPs. Furthermore, SNPs located in segments that 
might be incorrectly mapped to the genome build were 
removed. Such putative errors were identified based on 
evidence from linkage information [29], linkage dis-
equilibrium [30] or an excess of breaks in ROH from 

http://widde.toulouse.inra.fr
http://widde.toulouse.inra.fr
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independent samples [31]. Consequently, an additional 
2.7% of the SNPs were filtered out, which resulted in a 
final BBB dataset of 585,159 SNPs. Removing potential 
map errors is essential for our applications since these 
might break long ROH into smaller fragments. For the 
other breeds, the number of conserved SNPs using the 
same rules ranged from 524,113 to 622,603 SNPs.

To study the effect of SNP density on the estima-
tion of inbreeding, we used two subsets of the 585,159 
SNPs selected for BBB cattle based on their presence on 
the bovine Illumina BovineSNP50 BeadChip v1 and v2 
(32,412 SNPs conserved for this 50 K panel) or on both 
the 50  K panel and the Illumina BovineLD BeadChip 
(6844 SNPs conserved for this low-density (LD) panel).

For the sequence data, first we applied stringent fil-
tering rules to select a high-quality subset of SNPs, as 
described in [31]. Briefly, SNPs, which passed the calibra-
tion score and were present in other cattle WGS data-
sets (1000 bull genomes project [32], Holstein and Jersey 
individuals from New-Zealand [27] and a Dutch Holstein 
pedigree of 415 individuals that was used as a reference 
population for imputation in [33]), were selected, result-
ing in a set of ancient variants. We conserved only the 
SNPs that presented correct Mendelian segregation in 
the WGS Dutch Holstein pedigree (see [33] for more 
details). Regarding the genotyping data, we also removed 
variants with a MAF lower than 0.01 and some possibly 
incorrectly mapped regions (errors in the genome assem-
bly) based on the rules described in [31]. The final WGS 
dataset contained 5,653,911 bi-allelic SNPs.

Methods to estimate inbreeding coefficients and HBD 
probabilities
Multiple HBD‑classes HMM
Our multiple HBD-classes model [26] is a HMM that 
describes individual genomes as mosaics of multiple 
HBD and non-HBD states. Although several non-HBD 
states can be fitted, here we used only one non-HBD state 
and K − 1 HBD states for a total of K states, where K is 
a parameter of the method that can be either predefined 
or selected by model comparison (see below). Each state 
k has its own rate parameter Rk that defines the distribu-
tion of the lengths of the segments originating from that 
class: the lengths in Morgans are distributed exponen-
tially with rate Rk. The rate corresponds approximately 
to the size of the inbreeding loop measured in genera-
tions and is closely related to age in generations of the 
common ancestors. Rk is approximately twice the num-
ber of generations to the common ancestor. Each state 
has also its own mixing proportion, which is equal to 
the frequency of segments originating from that class. 
Such a model with multiple-HBD classes will be referred 
to as a KR model, with K being equal to the number of 

distinct rates fitted, K − 1 for HBD states and 1 for the 
non-HBD state. In the case where a single HBD class 
and a single non-HBD class are fitted, we use a common 
rate for both (1R model) since such a model has better 
properties [26]. Emission probabilities of the HMM cor-
respond to the probabilities of observing a particular 
genotype conditionally on the underlying state (HBD 
or non-HBD). For non-HBD classes, these probabilities 
correspond to Hardy–Weinberg proportions [26] and 
for HBD classes, homozygotes AA are observed with a 
probability fA (1 − ε ) and heterozygotes with a probability 
ε , where fA is the frequency of allele A and ε is an error 
term corresponding to the probability of observing a het-
erozygous genotype in a HBD segment [26]. With WGS 
data, these probabilities are integrated over the different 
genotype probabilities obtained from the VCF file [26]. 
For each HBD class, the genome-wide HBD probability 
is estimated as the probability of belonging to that class 
averaged over the whole genome, whereas the local HBD 
probability is defined as the probability of belonging 
to that class at a specific genomic location (see [26] for 
more details). The genome-wide HBD probabilities cor-
respond to the percentage of the genome that is associ-
ated with a specific HBD class, e.g., the proportion of the 
genome that is located within HBD segments of a certain 
length. To estimate the inbreeding coefficient, first the 
base population must be defined, which is done by decid-
ing which classes are considered as truly autozygous. For 
instance, we might consider that ancestors associated 
with classes with a Rk rate higher than a selected thresh-
old T (i.e., Rk ≥ T) are unrelated. Then, the corresponding 
inbreeding coefficient FG-T is estimated as the probability 
to belong to any of the HBD classes with a Rk ≤ T aver-
aged over the whole genome (e.g., the inbreeding coef-
ficient is defined as the probability of sampling an HBD 
locus given a reference population). Since Rk rates of 
HBD classes are approximately equal to twice the num-
ber of generations to the common ancestor, including 
HBD classes with a Rk ≤ T amounts to setting the base 
population to approximately 0.5  *  T generations ago. In 
the remainder of the manuscript, inbreeding coefficients 
or HBD probabilities reported without specifying a base 
population or Rk, are obtained by including all HBD 
classes (e.g., using the most remote base population). In 
that case, the age of the base population or the smallest 
HBD segments captured are a function of the SNP den-
sity used. All the HBD probabilities are estimated with 
the forward–backward algorithm [34].

As an alternative to the KR model, we can use a set of 
pre-defined Rk rates and estimate only the mixing pro-
portions (MixKR model). This set of Rk rates should be 
selected to cover a wide range of past generations. In our 
analyses, we used 13 HBD states with respective Rk rates 
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equal to  [21,  22,  23, …,  213] and one non-HBD class with a 
rate of  213. These values were chosen to have a constant 
and limited degree of overlap between the exponential 
distributions that specify the HBD lengths for each suc-
cessive class. The upper rate is determined by the SNP 
density that defines the size of the smallest HBD seg-
ments that we can capture. Such models proved efficient 
to estimate the genome-wide (global) and local autozy-
gosity levels and to obtain information on recent demo-
graphic history [26]. In addition, inbreeding coefficients 
are then estimated with respect to the same reference 
population and HBD classes are defined over identical 
periods in the past, allowing better comparisons between 
individuals.

With all the models, the parameters (mixing propor-
tions for all models and Rk rates for KR models only) 
were estimated with 1000 iterations of the expectation-
maximization algorithm with constraints to force Rk to 
be between 1 and 8192. The number of classes K is fixed 
for each run but the optimal value can be determined 
by comparing models with the Bayesian information 
criterion (BIC). All analyses were performed with the 
ZooRoH software (https://github.com/tdruet/ZooRoH).

Additional inbreeding coefficient estimators
The inbreeding coefficient based on pedigree data  (FPED) 
was computed with the method of Sargolzaei et al. [35]. 
We used several measures to estimate genomic inbreed-
ing coefficients. The first measure uses the diagonal 
elements of the genomic relationship matrix (GRM) 
computed with the BLUPF90 package [36] without any 
pedigree information (α set to 1.0) and is based on the 
variance of the additive genetic values  (FGRM; [13, 37]). 
The second, which was proposed and recommended 
by Yang et  al. [38] for its smaller sampling variance, is 
based on the correlation between uniting gametes  (FUNI) 
and was estimated using the GCTA software [39]. The 
third more simple measure is defined as the homozygo-
sity  (FHOM) or the proportion of homozygous SNPs (e.g., 
[2]), which is closely related to the excess homozygosity 
estimator  (FExHOM) implemented in plink [40]. For  FGRM, 
 FUNI and  FExHOM, we estimated allele frequencies based 
on the 31 bulls born before 1985. Finally, the fourth esti-
mator measures the proportion of the genome covered 
by ROH  (FROH), which contained at least 15 SNPs and 
were identified using plink [40] with 50-SNP windows 
(no heterozygous genotypes were accepted and up to five 
missing genotypes were possible). These parameters were 
selected based on published studies in cattle (e.g., [20, 22, 
41]). The minimal SNP density, length of ROH and maxi-
mal SNP spacing were optimized for each panel as fol-
lows by order of increasing density: at least one SNP per 
500, 100 and 10 kb, the length of ROH had to be at least 

5 Mb, 1 Mb and 100 kb long and the maximum distance 
between two consecutive SNPs had to be 1  Mb, 500  kb 
and 200 kb.

Results
Estimation and age‑based partitioning of individual 
genomic inbreeding levels in the Belgian Blue Beef cattle 
population
We started by using a Mix14R model (with Rk ranging 
from 2 to 8192) to estimate the proportion of the genome 
belonging to different HBD classes for the 634 BBB sires 
(Fig.  1a), which allows the estimation of the inbreeding 
coefficient with respect to different base populations as 
explained in Methods (Fig.  1b). When considering all 
HBD classes, the fraction of the genome that is HBD 
(corresponding to the inbreeding coefficient estimated 
with the most remote base population) was equal to 
0.303 on average (ranging from 0.258 to 0.375), with a 
major contribution from HBD-classes with high Rk rates 
(Rk > 256) that account for 71.4% of the total HBD pro-
portion on average. These small ROH reflect the history 
of the population (background inbreeding and linkage 
disequilibrium associated with past effective population 
size  (Ne)) better than individual variation. Classes asso-
ciated with smaller Rk rates (i.e., with longer HBD seg-
ments) accounted for a smaller proportion of the total 
HBD proportion (the average inbreeding coefficient was 
equal to 0.054 and 0.087 when including HBD-classes 
with Rk ≤ 32 and Rk ≤ 256, respectively, and setting the 
base population approximately 16 or 128 generations 
ago) but presented more variation among individuals. 
For instance, the inbreeding coefficient associated with 
common ancestors tracing back up to approximately 
four generations ago (corresponding to HBD-classes 
with Rk ≤ 8) ranged from 0.000 to 0.137. For bulls born 
from 1980 to 2010, the percentage of the genome in 
HBD segments increased by 3.3% (+ 0.11% per year), i.e., 
approximately from 28 to 31% (see Additional file 1: Fig. 
S1a). However, the trend for more recent HBD classes 
(Rk ≤  32) was more pronounced (see Additional file  1: 
Fig. S1b), i.e., from almost 0 to 6% (+ 0.20% per year) and 
corresponded more closely to the trend observed with 
pedigree-based inbreeding coefficients (see Additional 
file  1: Fig. S1c). Bulls born before 1980 presented little 
evidence of recent autozygosity compared to modern 
bulls.

To assess the contribution of each HBD class to the 
percentage of the genome in HBD segments and to its 
variation in BBB cattle, we divided the total fraction of 
the genome in HBD classes [0.303 on average; standard 
deviation (SD) = 0.071] in four main classes (very recent 
HBD classes with Rk =  2 to 8, recent HBD classes with 
Rk = 16 to 64, ancient HBD classes with Rk = 128 to 512, 

https://github.com/tdruet/ZooRoH
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Fig. 1 Partitioning of genome‑wide autozygosity for the 634 Belgian Blue sires using the BovineHD SNP panel. a Boxplot of percentages of indi‑
vidual genomes associated with 13 HBD‑classes with pre‑defined Rk rates (Mix14R model). The percentages correspond to individual genome‑wide 
probabilities of belonging to each of the HBD‑classes. b Genomic inbreeding coefficients estimated with respect to different base populations (FG‑T) 
obtained by selecting different thresholds T that determine which HBD‑classes are considered in the estimation of FG‑T (e.g., setting the base popu‑
lation approximately 0.5 * T generations in the past). The corresponding inbreeding coefficients FG‑T are estimated as the probability of belonging to 
any of the HBD classes with a Rk ≤ T averaged over the whole genome
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and very ancient HBD classes with Rk =  1024 to 8192), 
with each group having three HBD classes except the 
last one with four HBD classes. The average fraction of 
the genome associated with each of these main classes 
(ordered from recent to ancient) was equal to 0.027 
(SD  =  0.029), 0.041 (SD  =  0.019), 0.054 (SD  =  0.013) 
and 0.180 (SD =  0.011). Note that high proportions of 
very recent HBD segments are mechanically associated 
with lower proportions of very ancient HBD segments 
(r = − 0.407) because recent HBD segments mask more 
ancient HBD segments. Although the percentage of the 
genome in HBD classes associated with recent common 
ancestors represents only 22.6% of the total autozygosity, 
it displays more individual variation than that in more 
ancient classes (more than 50% of the total variance is 
associated with very recent HBD classes). By fitting a 
linear model, we estimated that very recent HBD classes 
account for 59% of the total autozygosity variation and 
that adding recent HBD classes to the model increases 
this value to 83%. Similarly, the correlations between 
inbreeding coefficients measured with respect to dif-
ferent base populations (e.g., including different HBD 
classes in the computation) with the inbreeding coeffi-
cients estimated using all HBD classes increased abruptly 
from 0.16 for estimates based on the first class (Rk = 2) 

to 0.77 for inbreeding coefficients estimated including 
HBD classes with a Rk ≤ 8 and to 0.90 with a Rk ≤ 16, and 
then improved only marginally by adding more HBD-
classes (Fig.  2). The decrease in correlation observed at 
Rk = 1024 results from the fact that ancient autozygosity 
is concentrated at Rk = 1024 for some individuals and at 
Rk = 2048 for others.

Comparison of the results for BBB cattle with those 
of other breeds
To determine whether comparable levels and patterns of 
autozygosity are also observed in other breeds of Euro-
pean origin, we applied the same model to 10 breeds 
genotyped with the same array (Fig. 3). In most of these 
breeds, inbreeding coefficients estimated with respect 
to different base populations increased moderately up to 
 FG-256 (e.g., HBD-class with Rk ≤ 256 included in the esti-
mation) and more strongly with older base populations 
 (FG-512 to  FG-2048), which include many more generations 
of ancestors. Large differences in inbreeding coefficients 
were observed with relatively recent base populations 
 (FG-64, approximately 32 generations ago), ranging from 
0.013 and 0.042 in Piedmontese and Limousin to 0.164 
and 0.200 in Jersey and Hereford cattle. Some Hereford 
individuals presented extreme inbreeding coefficients 
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ficient estimated with the most remote base population  FG‑8192 (including all HBD classes). Different base populations are obtained by selecting 
different thresholds T that determine which HBD‑classes are considered in the estimation of FG‑T (e.g., setting the base population approximately 
0.5 * T generations in the past). The corresponding inbreeding coefficients FG‑T are estimated as the probability of belonging to any of the HBD 
classes with a Rk ≤ T averaged over the whole genome. Estimation of inbreeding coefficients was performed with the Mix14R model (13 HBD‑
classes model with pre‑defined Rk rates) for 634 Belgian Blue sires and using the BovineHD SNP panel
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estimated with recent base populations (see Additional 
file  2), i.e., up to 40% for  FG-8 (e.g., approximately four 
generations back). Part of the Hereford individuals from 
this dataset come from the Hereford Line 1, an inbred 
line, which indicates that our model captures extreme 
events correctly but also that genotyped individuals 
included in this study are not necessarily representative 
of the breed.

Estimation of inbreeding coefficients and HBD 
probabilities with different SNP densities
We fitted a Mix14R model using different SNP densities, 
i.e., from LD (6844 SNPs) to HD (601,226 SNPs) on the 
634 BBB dataset and even to WGS (5,653,911 SNPs) for 
the 50 whole-genome sequenced individuals. Average 
estimated inbreeding coefficients measured with respect 
to different base populations (Fig.  4) and Additional 
file 3: Fig. S2 were similar across SNP panels for the most 
recent base populations  (FG-32). For more ancient base 
populations, less autozygosity was captured with the LD 
panel with marked differences for ancient HBD classes 
that were captured only with HD or WGS panels. A simi-
lar trend was observed with the 50 K panel but average 
inbreeding coefficients were similar to those from the 
HD panel up to  FG-256 (approximately 128 generations 
back). The average inbreeding coefficients estimated by 
using the most remote base population and the LD, 50 K 
and HD panels were equal to 0.060, 0.093 and 0.303, 

respectively (when estimated on the 50 sequenced indi-
viduals only, these values were equal to 0.047, 0.101 and 
0.309, respectively, and to 0.359 with the WGS panel). 
The base population is then a function of the smallest 
HBD segments that can be captured by the panel used. 
The correlations between these inbreeding coefficients 
estimated with different panels were high, i.e., 0.934 (LD-
HD), 0.944 (LD-50  K) and 0.975 (50  K-HD). In spite of 
the much lower inbreeding coefficients obtained with the 
50 K panel, it captures essentially all the individual vari-
ation obtained with a HD panel, in agreement with the 
earlier observation that most of the variation was associ-
ated with recent HBD classes.

We then used the Viterbi algorithm to identify HBD 
segments with different SNP panels (Table 1). The Viterbi 
algorithm classifies each SNP position as HBD or non-
HBD whereas the forward-backward algorithm provides 
the local HBD probability. As expected, more and shorter 
HBD segments are captured with higher density panels. 
With the HD panel, a limited proportion of extremely 
small (a few kb) segments were captured. The length of 
the majority of the segments ranged from 10 to 500 kb, 
with more than half being shorter than 100 kb, but such 
segments do not necessarily have the largest contri-
bution to the total percentage of the genome in HBD 
classes since classes with fewer but longer segments 
can account for a large proportion of autozygosity. We 
also observed extremely long HBD segments (> 50 Mb), 
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which confirmed the presence of recent autozygosity 
(the longest HBD segment was more than 90 Mb long). 
On average, each of the 634 bulls had 4.25 HBD seg-
ments that were longer than 10 Mb and associated to a 
common ancestor that was present approximately five 
generations back. The number of such HBD segments 
ranged from 0 to 14 per individual. Sixty-one bulls had 
even one or more (up to three) HBD segments longer 
than 50  Mb. With the 50  K and LD panels, more than 

99% of the identified segments were longer than 100 and 
500 kb, respectively (with a peak in the classes from 1 to 
5 Mb and from 5 to 10 Mb, respectively), and only a frac-
tion of the segments were captured compared to when 
the HD panel was used. In particular, the vast majority of 
the HBD segments shorter than 1 Mb were not identified. 
At lower SNP densities, the smallest segments are sim-
ply not captured because they do not contain any SNP or 
too few. Segments of intermediate size might not reach 
high HBD probabilities due to a smaller number of SNPs 
in the segment. Conversely, the length of some HBD seg-
ments can be overestimated when using the LD panel, 
for instance when there are not enough SNPs to iden-
tify small non-HBD segments that flank HBD segments. 
Figure 5a illustrates the identification of HBD segments 
for one chromosome. It shows that (1) more segments 
were identified at higher density, (2) HBD probabilities 
were higher with denser maps, (3) the Viterbi algorithm 
declared some SNP positions as HBD although they had 
only moderate HBD probabilities, and (4) the boundaries 
of HBD segments varied with the panel density. Similarly, 
Fig. 5b represents HBD segments that were identified on 
Bos taurus chromosome (BTA) 5 for 50 individuals with 
the Viterbi algorithm with different SNP densities. The 
results are in agreement with those reported in Table 1. 
Larger proportions of the genome were declared HBD 
with the HD panel and small HBD segments accounted 
for most of the difference with results from lower den-
sity panels. Still, we observed that some HBD segments 
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Fig. 4 Comparison of inbreeding coefficients estimated with different SNP densities (LD panel in green, 50 K panel in blue and BovineHD panel 
in grey) and for different base populations (the threshold T determines which HBD classes are included in the estimation of FG‑T). Estimation of 
inbreeding coefficients was performed with the Mix14R model for 634 Belgian Blue sires

Table 1 Distribution of the length of HBD segments iden-
tified with a model with 13 HBD-classes with pre-defined 
Rk rates for different SNP densities

HBD segment length 
category

Panel density

LD panel 50 K panel BovineHD panel

≤1 kb 0 0 17

1–5 kb 0 0 1828

5–10 kb 0 0 16296

10–50 kb 1 10 570179

50–100 kb 3 40 614787

100–500 kb 48 1346 793645

0.5–1 Mb 146 2500 53984

1–5 Mb 1172 11658 25839

5–10 Mb 1728 3201 3189

10–50 Mb 2638 2643 2627

50–100 Mb 74 71 69
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Fig. 5 Illustrations of the identification of HBD segments using different SNP panels. a Example of estimated HBD probabilities for one individual on 
Bos taurus autosome (BTA) 16 using different SNP densities (LD panel in green, 50 K panel in blue and BovineHD panel in grey). The horizontal lines 
below the curves represent HBD segments as identified by the Viterbi algorithm with the three panels. An extremely long HBD segment (~ 50 Mb) 
is represented (there are only 69 such HBD segments identified in the entire data set), suggesting recent inbreeding. This bull is one of the 29 
individuals carrying such long HBD segments and has a pedigree inbreeding coefficient of 0.048. b Comparisons of HBD segments identified for 50 
individuals on BTA5 using different panels (each line represents one individual). Segments identified with the HD, 50 K and LD panels are repre‑
sented in grey, blue and green, respectively (with lower density results masking results obtained at higher density). The shortest HBD segments are 
identified with the HD panel (indicated in grey) whereas those of intermediate size are also captured with the 50 K panel (and still missed with the 
LD panel) and indicated in blue. For a few HBD segments, the use of the LD panel results in longer segments
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of a few Mb long were not identified at lower SNP den-
sity (and even more so with the LD panel). As for Fig. 5a, 
the length of some HBD segments is overestimated when 
the LD panel was used. We also compared the local HBD 
probabilities estimated by using either the LD or the 50 K 
panel with the local HBD classes inferred by using the 
HD panel and the Viterbi algorithm (Fig. 6). HBD prob-
abilities were high for recent HBD classes and dropped 
for more remote common ancestors. As expected, the 
LD panel was efficient for only the most recent com-
mon ancestors (the HBD probability was 0.90 or higher 
when Rk < 16 and ~ 0.50 for Rk = 32) whereas the 50 K 
panel allowed the capture of more ancient autozygosity 
(the HBD probability was 0.90 or higher when Rk  <  64 
and ~ 0.50 for Rk = 128). More results regarding the age 
(or length) of HBD segments that can be captured with 
different SNP densities are described in Druet and Gau-
tier [26].

Comparison of models
Models that estimate Rk rates of HBD‑classes (KR models)
For the different SNP densities tested and for each indi-
vidual, we used the BIC (see [26]) to select the KR model 
with the best statistical support (i.e., with the optimal 
number of classes K, with K −  1 HBD classes and one 
non-HBD class) after estimating the rate(s) Rk for each 
individual with each tested model. For each SNP panel, 

Table 2 shows the number of times a model was selected 
as the best one for the individual analyzed. As SNP den-
sity increases, more past generations can be explored and 
the optimal K increases accordingly. In most cases, mod-
els with one HBD class are preferred for the LD panel, 
models with two HBD classes for the 50 K panel, mod-
els with three HBD classes for the HD and WGS panels 
(although the model with four HBD classes is also often 
selected for the latter, i.e., for 23 of 50 individuals). With 
these optimal models, the first HBD-class captures the 
most recent autozygosity (Rk from 15 to 20), the second 
HBD-class captures autozygosity that is associated to 
common ancestors from a few hundred generations back 
and later classes are associated with higher Rk (>  1000) 
(Table  2). Correlations of inbreeding coefficients esti-
mated with these selected KR models with those obtained 
with the complete Mix14R model (ranging from 0.981 
to 1.000) and comparison of the average estimated 
inbreeding coefficients indicate that with these reduced 
KR models, we can effectively capture the genome-wide 
autozygosity. With 1R models and low or moderate SNP 
densities, we observed a slight underestimation of the 
inbreeding coefficients compared to the Mix14R model 
and slightly lower correlations (still above 0.98). The Rk 
rates estimated for each individual with these panels 
have a lower median value (respectively 15 and 41 with 
the LD and 50 K panels) than the Rk rates estimated with 
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higher density panels (median Rk  >  1000) for which the 
contribution of smaller ROH is much larger. As a result, 
some small fragments were not captured by the model at 
lower density whereas at higher density, inbreeding coef-
ficients are almost identical to estimates obtained with 
the Mix14R model. Models containing two or more HBD 
classes captured the same amount of autozygosity as the 
Mix14R model, irrespective of SNP density. Although 
the inbreeding coefficient is correctly estimated with a 
1R model (one HBD and non-HBD class with the same 
rate) with WGS data, the HBD segments identified tend 
to be smaller since the estimated Rk rates are higher (i.e., 
smaller expected lengths of fragments) as shown in Addi-
tional file 4: Fig. S3. Indeed, the 1R model results in more 
10 to 100  kb long segments than the Mix14R model, 
but fewer segments longer than 100 kb. Thus, with a 1R 
model, long HBD segments might be cut into smaller 
fragments in the presence of heterozygous SNPs (pos-
sibly sequencing errors) whereas with models including 
HBD class(es) associated with recent common ancestors 
(with small Rk rates), these HBD segments are identi-
fied as one long and recent fragment (because the pen-
alty to end and start a new segment is higher). Figure 7 
illustrates this with an example. Indeed, we observed 
a long segment with high HBD probabilities although 
there are multiple positions where the probability of the 

heterozygous genotype is non-null (but this is limited 
compared to flanking regions). With the Mix14R model, 
this is considered as a long segment and the local HBD 
probability remains higher than 0.99 for the entire region 
(except for a region with five consecutive heterozygous 
SNPs). With the 1R model, the HBD probabilities drop 
repeatedly due to these possibly heterozygous SNPs and 
the longest HBD segment is cut into several smaller frag-
ments (based on the results from the Viterbi algorithm). 
Note that with the HD panel, this individual is homozy-
gous for all 13,009 SNPs that are included in this 56.1-Mb 
long segment. As in Fig. 5, we note that the Viterbi algo-
rithm classifies some positions with a low estimated HBD 
probability as HBD.

Models with pre‑defined Rk rates of HBD classes (MixKR 
models)
Compared to the KR models, MixKR models present the 
advantage of using the same HBD classes for all individu-
als (Rk rates of HBD classes are not individually estimated 
but pre-defined by the user) and make comparisons 
between individuals easier (for instance, comparing two 
individuals with a single HBD class but with Rk =  8 for 
the first and Rk = 96 for the second would not be easy – 
the estimated Rk range from 4 to 1000). Several of these 
MixKR models (with K =  2, 3 and 4) were tested with 

Table 2 Comparison of models used to estimate genomic inbreeding coefficients with different numbers of HBD classes 
(from 1 to 4)

The Rk rates of each HBD class were estimated for each individual and for each SNP density (LD, 50 K, HD panels or whole-genome sequence data). The table reports 
which models are selected as best based on the BIC criterion, the average  FG and its correlation with a reference  FG obtained with a model using 13 HBD classes
a N = number of individuals with the corresponding model selected as best based on the BIC
b The reference inbreeding coefficient  FG-8192 is obtained with a Mix14R model and the same SNP density

Panel density Na Number of fitted HBD 
classes

Mean  FG Correlation with Fb
G-8192 Median of estimated Rk rates per HBD class

1st HBD class 2nd HBD class 3rd HBD class 4th HBD class

LD 634 1 0.058 0.982 15

LD 0 2 0.061 0.998 11 106

LD 0 3 0.061 0.999 11 104 162

LD 0 4 0.061 0.999 10 42 150 175

50 K 289 1 0.083 0.983 41

50 K 345 2 0.094 0.999 15 198

50 K 0 3 0.094 1.000 14 173 238

50 K 0 4 0.094 1.000 11 64 240 243

HD 0 1 0.297 0.999 1214

HD 0 2 0.302 1.000 60 1679

HD 629 3 0.303 1.000 22 392 1887

HD 5 4 0.303 1.000 19 342 1823 1914

WGS 0 1 0.354 1.000 3740

WGS 0 2 0.359 1.000 577 8158

WGS 27 3 0.359 1.000 55 1009 8192

WGS 23 4 0.359 1.000 21 206 1104 8192
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the LD panel (Table 3) to assess whether reduced mod-
els with pre-defined rates of HBD classes are efficient. To 
select these pre-defined rates, either we used medians 
of estimated rates obtained from models with the same 
number of classes (see previous section) or we selected 
a few classes from the MixKR model in order to cover 
the range of estimated values (e.g., one class for recent 
HBD segments and one for ancient HBD segments). In 
agreement with previous observations on KR models, 
comparisons of estimated inbreeding coefficients with 
those obtained with the Mix14R model indicate that 
models with a single HBD class slightly underestimate 
the inbreeding coefficients and result in lower correla-
tions (> 0.96) than models with two or more HBD classes 

(>  0.99). Presence of multiple HBD-classes (>  2) allows 
better assessment of the contributions from different past 
generations (e.g., Rk = 8 vs 64) but does not provide bet-
ter estimates of the genome-wide inbreeding coefficient.

Comparison to other inbreeding coefficient estimators
Means and ranges of inbreeding coefficients estimated 
with different methods and the HD panel are in Table 4 
and their correlations are in Table  5, and in Additional 
file  5: Tables S1 and S2 for other panels. Similar to our 
model, models based on observed homozygosity and 
ROH resulted in high inbreeding coefficients (respec-
tively, 0.644 and 0.151 on average) whereas other genomic 
estimators resulted in inbreeding coefficients centered 
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Fig. 7 Comparison of the length of HBD segments identified with WGS data and with the 1R or the Mix14R models on BTA3. The grey and red lines 
represent the HBD probabilities estimated with the 1R and Mix14R models, respectively; the dark grey dots represent the probability of heterozy‑
gous genotypes (obtained from the VCF); the blue and yellow segments represent HBD segments identified with the Viterbi algorithm with the 1R 
and the Mix14R model, respectively

Table 3 Estimation of genomic inbreeding coefficients with models using different numbers of HBD classes (from 1 to 4) 
with pre-defined Rk rates that correspond to the expected length in Morgans of HBD segments and with the LD panel

a The reference inbreeding coefficient  FG is obtained with a Mix14R model and the same SNP density

Number of fitted HBD classes Mean  FG Correlation with reference FG
a Predefined Rk rates used for each HBD class

1st HBD class 2nd HBD class 3rd HBD class

1 0.058 0.967 20

1 0.056 0.963 16

2 0.060 0.996 10 100

2 0.061 0.994 16 256

3 0.061 0.996 8 64 256



Page 13 of 18Solé et al. Genet Sel Evol  (2017) 49:92 

around 0 and including negative values. It should be 
noted that higher values are obtained on average (0.268) 
when using less stringent rules to identify ROH (e.g., 
windows of 20 SNPs and at least 10 SNPs per ROH). We 
observed very high correlations between HMM-based 
estimates and both measures based on homozygosity 
(r = 0.95 with  FHOM and  FExHOM, these two measures pre-
senting a correlation of 1 and being essentially the same) 
or on ROH (r = 0.95 with  FROH), which suggest that with 
large numbers of SNPs, simple heuristics (ignoring allele 
frequencies, SNP spacing, etc.) are efficient  (FHOM and 
 FROH being highly correlated, r =  0.97). The correlation 

between  FHOM estimated with LD and HD panels is equal 
to 0.890, which is slightly lower than the correlation 
between estimates obtained with the HMM for these two 
panels (r = 0.934), which indicates that global estimators 
still work properly with 6844 SNPs in this population. 
Rule-based ROH methods are less efficient at lower SNP 
densities since they capture only the longest fragments 
(5 Mb or more and 20 Mb on average) with the param-
eters used in the current study (the default windows size 
in plink). In fact, ROH-based estimators are rarely used 
with the LD panel in cattle although more HBD seg-
ments might be identified with less stringent rules, at 
the expense of an increased rate of false positives. At low 
SNP density, the HMM framework still provides correct 
global and local HBD probabilities although HBD seg-
ments are not identified without ambiguity [26].

Correlations of estimates from the traditional GRM 
with our estimates are moderately high (r =  0.73) and 
lower with homozygosity estimators (r = 0.63) and ROH-
based estimators (0.61). The  FGRM was computed with the 
formula proposed by [13], which divides all SNP contri-
butions by the same weight. When estimated with the 
alternative formula, which divides each SNP contribu-
tion by its own weight 2fi (1 − fi) (fi being the frequency 
of SNP i) as in Amin et al. [42], correlations were lower 
(i.e., 0.48 with  FG, 0.34 with  FHOM and 0.33 with  FROH). 
The estimator based on the unified correlations between 
gametes proposed by Yang et al. [38] presented relatively 
high correlations with both  FG and  FGRM (respectively, 
0.90 and 0.92) and slightly lower correlations with the 
other estimators (r = 0.87 and 0.85 with  FHOM and  FROH, 
respectively).

Correlations of these estimates with pedigree inbreed-
ing coefficients (considering only individuals born after 
1999 to increase pedigree depth) are also in Table  5. 
Overall correlations were moderate with the highest 

Table 4 Summary statistics for the inbreeding coefficients 
estimated for the 634 Belgian Blue sires with different 
methods and using the HD panel

FG, inbreeding coefficient estimated as the probability of belonging to any of 
the HBD classes averaged over the whole genome; FHOM, inbreeding coefficient 
based on the proportion of homozygous SNPs; FExHOM, excess homozygosity 
estimator; FROH, inbreeding coefficient estimated as the proportion of the 
genome captured by ROH; FGRM1, inbreeding coefficient based on the diagonal 
elements of the genomic relationship matrix (dividing all SNP contributions by 
the same denominator); FGRM2, inbreeding coefficient based on the diagonal 
elements of the genomic relationship matrix (dividing each SNP contribution 
by its own weight 2fi (1 − fi), fi being the frequency of allele i); FUNI, inbreeding 
coefficient based on the correlation between uniting gametes; FPED, inbreeding 
coefficient estimated from pedigree data

*Estimated on the 313 bulls born after 1999

Estimators mean F min F max F

FG 0.303 0.258 0.375

FHOM 0.644 0.621 0.683

FExHOM − 0.001 − 0.066 0.111

FROH 0.151 0.098 0.237

FGRM1 0.031 − 0.150 0.150

FGRM2 0.059 − 0.194 0.245

FUNI 0.017 − 0.092 0.139

FPED* 0.042 0.004 0.091

Table 5 Correlations between inbreeding coefficients estimated for the 634 Belgian Blue sires with different methods 
and using the HD panel

FG, inbreeding coefficient estimated as the probability of belonging to any of the HBD classes averaged over the whole genome; FHOM, inbreeding coefficient based 
on the proportion of homozygous SNPs; FExHOM, excess homozygosity estimator; FROH, inbreeding coefficient estimated as the proportion of the genome captured 
by ROH; FGRM1, inbreeding coefficient based on the diagonal elements of the genomic relationship matrix (dividing all SNP contributions by the same denominator); 
FGRM2, inbreeding coefficient based on the diagonal elements of the genomic relationship matrix (dividing each SNP contribution by its own weight 2fi (1 − fi), fi being 
the frequency of allele i); FUNI, inbreeding coefficient based on the correlation between uniting gametes; FPED, inbreeding coefficient estimated from pedigree data

FHOM FExHOM FROH FGRM1 FGRM2 FUNI FPED

FG 0.948 0.945 0.945 0.730 0.481 0.905 0.463

FHOM 0.999 0.974 0.627 0.343 0.873 0.546

FExHOM 0.974 0.633 0.351 0.878 0.547

FROH 0.610 0.328 0.853 0.551

FGRM1 0.938 0.917 0.286

FGRM2 0.748 0.091

FUNI 0.454



Page 14 of 18Solé et al. Genet Sel Evol  (2017) 49:92 

values for correlations with homozygosity and ROH-
based measures (0.55 for both measures) and slightly 
lower values for those with the HMM-based estimator 
(0.46), whereas we observed a low relationship with  FGRM 
(0.29) and a moderate correlation with  FUNI (0.45). We 
also compared the  FPED and inbreeding coefficients esti-
mated with our model with respect to different base pop-
ulations (Fig. 8) and found that correlations increased up 
to  FG-32 (capturing the inbreeding from ancestors approx-
imately 16 generations back) and then presented a pla-
teau from  FG-32 to  FG-256 reaching a maximum at r = 0.56 
(i.e., slightly better than homozygosity-based estima-
tors). This trend was expected since  FPED is estimated for 
a limited number of generations back in time. The aver-
age equivalent number of known generations estimated 
with PEDIG [43] was 6.3 for the bulls born after 1999 
(it increased from 5.5 for bulls born in 2000 to 7.5 for 
those born in 2010) corresponding on average to  FG-16. 
The addition of HBD-class Rk = 32 allows the capture of 
contributions from some older branches of the pedigree 
and the smallest HBD segments inherited from common 
ancestors in the pedigree.

Discussion
For several reasons, the Belgian Blue Beef cattle breed is 
considered as an extremely selected breed. It is famous 
for its exceptional muscular development referred to as 

“double muscling”, which is caused by an 11-bp deletion 
in the myostatin gene [44]. This loss-of-function variant 
is almost fixed in the current population (e.g., [45]) but 
muscular development was further improved through 
intense selection [46]. As a result, most often calving 
requires caesarian section. In addition, artificial insemi-
nation is more frequent in this breed compared to other 
beef cattle breeds, which allows a more intense use of 
key sires. In recent years, several outbursts of recessive 
defects associated with inbreeding have been reported. 
For instance, causative variants were identified for eight 
recessive defects including congenital muscular dystonia 
1 and 2 [5], crooked tail syndrome [6, 7], stunted growth 
[8], gingival hamartome [9], prolonged gestation, lethal 
arthrogryposis syndrome [10] and junctional epidermol-
ysis bullosa [11]. Some of these defects have reached a 
high frequency in the population.

When estimated over all HBD-classes, the average 
genomic inbreeding coefficient was high (higher than 
0.30) but these values were comparable to those obtained 
for other cattle breeds of European origin (i.e., BBB pre-
sented intermediate values). In agreement with Purfield 
et al. [22], samples from breeds that originated from the 
British Isles (Hereford, Angus, Jersey or Guernsey) pre-
sented high inbreeding coefficients (≈  34 to 40%), pos-
sibly as a result of closed population histories and strict 
importation restrictions [22]. Similarly, high levels of 
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Fig. 8 Correlations between the inbreeding coefficients estimated with respect to different base populations (FG‑T) and the inbreeding coefficient 
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inbreeding in Holstein and Brown Swiss breeds were pre-
viously reported [21, 41, 47]. When focusing on recent 
common ancestors only (associated with HBD-classes 
with Rk ≤ 64), we observed lower inbreeding coefficients 
in BBB cattle, ranging from 1.0 to 17.7% across animals 
(6.8% on average), with a positive trend: animals from 
the current population presenting 6% higher inbreeding 
coefficients on average than individuals born 30  years 
ago. Some individuals accumulated more than 10% 
recent autozygosity and carried HBD segments longer 
than 10 or even 50 Mb. The same model applied to other 
species, i.e., dog breeds or sheep populations that suf-
fered severe bottlenecks revealed significantly higher lev-
els of recent autozygosity [26]. Conversely, some human 
and sheep populations presented lower levels of recent 
autozygosity (even lower than 1% on average). The recent 
HBD-classes are probably more relevant for management 
purposes because they account for most of the individual 
variation in genome-wide autozygosity. In addition, del-
eterious variants might be mostly associated to recent 
HBD segments because older variants have undergone 
more generations of selection against deleterious effects 
(e.g., [3, 48, 49]). Recent intensive selection of key sires 
allowed some deleterious variants to reach higher fre-
quency than under natural selection. Indeed, strong bot-
tlenecks that occur with domestication, breed creation 
or intensive selection in cattle result in the relaxation of 
purifying selection and increase the load of deleterious 
mutations (e.g., [50, 51]). For instance, all identified vari-
ants that cause recessive defects in BBB cattle are specific 
to this breed (suggesting their young age). We applied 
our model to previously genotyped cases (see [52]) and 
the causative variants were found on recent HBD seg-
ments (associated with HBD-classes with Rk ≤  32), also 
suggesting that these variants are relatively young.

Application of our model with different SNP densities 
showed large differences in average estimated inbreed-
ing coefficients, with the average  FG equal to 0.060, 0.093 
and 0.303 using the LD, 50  K and HD panel, respec-
tively. Correlations between these estimates were very 
high (even with the LD panel, r  >  0.93). High-density 
panels allow the capture of shorter ROH that are asso-
ciated with very ancient ancestors, are characteristic of 
the population (associated with past demographic his-
tory) and present little individual variation. For recent 
HBD classes, estimators were similar across SNP pan-
els (up to Rk =  32 with the LD panel and 256 with the 
50  K panel). Small HBD segments, ranging from 10  kb 
to 1 Mb, accounted for most of the differences obtained 
with the HD panel compared to the lower density panels. 
A substantial proportion of HBD segments longer than 
respectively 1 and 5 Mb were identified with the LD and 
the 50 K panels. These observations are consistent with 

those of Ferenčaković et  al. [20] and Purfield et  al. [22] 
who showed that denser panels can be used to identify 
short ROH and that the 50  K panel proved suitable to 
identify ROH longer than 5 Mb. If the goal is to estimate 
the inbreeding coefficient with respect to a recent base 
population, which has more variation and is possibly the 
most functionally relevant one (see above), these LD and 
50 K panels provide enough information (e.g., the corre-
lation between  FG estimated with the HD and the 50  K 
panels was equal to 0.975). Regarding the optimal model, 
our comparisons indicated that models with a few HBD 
classes (1 or 2 according to SNP density) achieved results 
that were as good as those obtained with 13 HBD classes 
in terms of  FG and correlations with more complex mod-
els. Thus, such parsimonious models were selected based 
on the BIC. For each SNP panel, we recommend the use 
of the largest K that is optimal for a substantial propor-
tion of individuals since that value is required for these 
animals and using a larger K will not penalize the other 
individuals. To make comparisons between individuals 
easier, we also recommend the use of a model with pre-
defined Rk rates and the same HBD-classes for all indi-
viduals. In that case, the use of at least two HBD-classes 
is preferable with low-density panels, one to capture the 
recent HBD segments and one that is associated with 
more remote ancestors. Three HBD-classes models pre-
sent a parsimonious solution to distinguish recent from 
ancient autozygosity (similarly to [16]) but if the objective 
is to obtain a finer age-based partitioning of autozygosity, 
more HBD classes could be recommended.

Comparisons of inbreeding coefficients obtained with 
different estimators have already been reported in the 
literature. In this paper, we also report correlations with 
our estimates of genome-wide inbreeding. These com-
parisons are essentially indicative since different methods 
refer to different base populations and all estimators are 
not fully comparable (e.g., [53]). In addition, some esti-
mators are sensitive to the estimated allelic frequencies. 
Here, we used frequencies that were estimated using the 
set of genotyped bulls born before 1985. At moderate to 
high SNP density, the genome-wide inbreeding coeffi-
cient estimated with our model, averaged over all SNPs 
and HBD classes, was highly correlated with homozygo-
sity measures or ROH-based estimates, whereas lower 
correlations were obtained when compared to estimates 
based on the genomic relationship matrix. Low cor-
relations between  FGRM and homozygosity measures 
(homozygosity or ROH) were previously reported (e.g., 
[54]) although moderate to high correlations were also 
found (e.g., [2, 4]). It should be kept in mind that these 
results must be interpreted with caution because global 
estimators, and particularly  FGRM, depend strongly on 
the estimation of allele frequencies in the population. In 
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addition to global inbreeding coefficients, our model also 
estimates local autozygosity (i.e., it identifies HBD seg-
ments) and uses the linkage between SNPs as ROH-based 
estimators, conversely to global estimators that consider 
all SNPs as independent  (FHOM,  FGRM,  FUNI or  FPED). Cor-
relations with homozygosity measures decreased at lower 
SNP densities when the use of linkage between succes-
sive SNP positions was more important to determine 
whether a position is IBD or not. ROH-based estimators 
are not frequently used with LD panels in cattle and pre-
vious studies concluded that LD panels were appropriate 
to identify recent inbreeding or HBD segments longer 
than 5 Mb [20, 22]. The HMM proved to work well with 
LD panels, i.e., it captured the recent HBD segments, 
presented high correlations with coefficients estimated 
at higher density, and provided HBD probabilities. It is 
indeed recommended to use such probabilities at low-
density because they account for uncertainty due to lower 
informativeness as opposed to ROH-based classification 
or the Viterbi algorithm. We showed that, at lower SNP 
densities, the smallest HBD segments are not captured 
but also that the Viterbi algorithm even fails to identify 
some segments of moderate size. Therefore, we recom-
mend the use of HBD probabilities that are obtained 
with the forward-backward algorithm. Most of the global 
estimators provided inbreeding coefficients relative to a 
base population, i.e., the founders of the pedigree or the 
population used to estimate allele frequencies, whereas 
the multiple-HBD class model provides an age-based 
partitioning of autozygosity. As a result, inbreeding 
coefficients estimated by including all HBD classes are 
higher because some HBD-classes trace back to more 
remote generations than the base population commonly 
used by other methods and the SNP density determines 
how ancient HBD segments can be captured. Compared 
to rule-based ROH, the HMM framework also allows 
to accommodate low-fold sequencing or genotype-by-
sequencing data, i.e., when genotypes are not unambigu-
ously determined, as described in Vieira et  al. [25] and 
Druet and Gautier [26].

Moderate to high correlations between  FPED and  FROH 
(from 0.50 to 0.75) were reported in cattle (e.g., [3, 21, 
22, 54, 55]). In addition, long ROH (> 5 Mb) were shown 
to be closely associated with pedigree inbreeding coef-
ficients [22]. Correlations between estimators obtained 
from the pedigree and the genomic relationship matrices 

are more variable, ranging from moderate (e.g., [4]) to 
high (e.g., [37]), whereas in other studies, these correla-
tions were particularly low [54, 56]. As mentioned above, 
these differences might be due to the estimation of the 
allelic frequencies. Inbreeding coefficients estimated with 
the HMM had moderate correlations with pedigree-based 
inbreeding coefficients, lower than with methods based 
on homozygosity or ROH that were in the range with cor-
relations reported in previous studies. However, correla-
tions were higher with the autozygosity associated to the 
recent HBD-classes, which is a desired feature since these 
recent classes correspond to the autozygosity captured by 
the pedigree whereas old HBD-classes are associated to 
ancestors tracing further back than the genealogy. Simi-
larly, correlations between HMM inbreeding coefficients 
estimated with the LD panel and pedigree-based esti-
mates were higher since they capture only recent autozy-
gosity (compared to higher density panels).

Conclusions
Although we observed high levels of inbreeding asso-
ciated with small HBD segments in Belgian Blue Beef 
cattle, recent HBD segments account for most of the 
individual variation. Recent autozygosity can be cap-
tured efficiently with low-density SNP panels and with 
relatively simple models (e.g., two HBD classes) although 
we recommend the use of models with pre-defined Rk 
rates that are associated with the expected length of HBD 
segments (the same HBD-classes are then used for all 
individuals) to make comparisons between individuals 
easier. More complex models (with more age-based HBD 
classes) are needed to obtain a finer age-based partition-
ing of inbreeding levels and indications of the past demo-
graphic history of a population. Such partitioning allows 
to better understand which HBD classes contribute to 
individual autozygosity. In addition, the use of more 
classes avoids the fragmentation of long HBD segments 
into smaller fragments with next-generation sequenc-
ing data. Estimates obtained with the HMM framework 
are highly correlated with those obtained based on rela-
tive homozygosity (or ROH). In addition, such HMM can 
use genotype probabilities (e.g., with low-fold sequencing 
data) and provide, beyond global estimates, local HBD 
probabilities that are still useful at lower SNP densities. 
Such local HBD probabilities might be useful to identify 
regions associated with inbreeding depression.
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inbreeding coefficients in the 634 Belgian Blue sires. Inbreeding coeffi‑
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are more variable, ranging from moderate (e.g., [4]) to 
high (e.g., [37]), whereas in other studies, these correla-
tions were particularly low [54, 56]. As mentioned above, 
these differences might be due to the estimation of the 
allelic frequencies. Inbreeding coefficients estimated with 
the HMM had moderate correlations with pedigree-based 
inbreeding coefficients, lower than with methods based 
on homozygosity or ROH that were in the range with cor-
relations reported in previous studies. However, correla-
tions were higher with the autozygosity associated to the 
recent HBD-classes, which is a desired feature since these 
recent classes correspond to the autozygosity captured by 
the pedigree whereas old HBD-classes are associated to 
ancestors tracing further back than the genealogy. Simi-
larly, correlations between HMM inbreeding coefficients 
estimated with the LD panel and pedigree-based esti-
mates were higher since they capture only recent autozy-
gosity (compared to higher density panels).

Conclusions
Although we observed high levels of inbreeding asso-
ciated with small HBD segments in Belgian Blue Beef 
cattle, recent HBD segments account for most of the 
individual variation. Recent autozygosity can be cap-
tured efficiently with low-density SNP panels and with 
relatively simple models (e.g., two HBD classes) although 
we recommend the use of models with pre-defined Rk 
rates that are associated with the expected length of HBD 
segments (the same HBD-classes are then used for all 
individuals) to make comparisons between individuals 
easier. More complex models (with more age-based HBD 
classes) are needed to obtain a finer age-based partition-
ing of inbreeding levels and indications of the past demo-
graphic history of a population. Such partitioning allows 
to better understand which HBD classes contribute to 
individual autozygosity. In addition, the use of more 
classes avoids the fragmentation of long HBD segments 
into smaller fragments with next-generation sequenc-
ing data. Estimates obtained with the HMM framework 
are highly correlated with those obtained based on rela-
tive homozygosity (or ROH). In addition, such HMM can 
use genotype probabilities (e.g., with low-fold sequencing 
data) and provide, beyond global estimates, local HBD 
probabilities that are still useful at lower SNP densities. 
Such local HBD probabilities might be useful to identify 
regions associated with inbreeding depression.
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