
HAL Id: hal-01671994
https://hal.science/hal-01671994v1

Submitted on 22 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coq’s Prolog and application to defining semi-automatic
tactics

Théo Zimmermann, Hugo Herbelin

To cite this version:
Théo Zimmermann, Hugo Herbelin. Coq’s Prolog and application to defining semi-automatic tactics.
Type Theory Based Tools, Jan 2017, Paris, France. �hal-01671994�

https://hal.science/hal-01671994v1
https://hal.archives-ouvertes.fr


Coq’s Prolog and application to defining semi-automatic tactics

Théo Zimmermann Hugo Herbelin
IRIF, Université Paris Diderot, Université Sorbonne Paris-Cité

ΠR2, INRIA
theo.zimmermann@univ-paris-diderot.fr / hugo.herbelin@inria.fr

Abstract
We report on a work-in-progress to re-implement Coq’s apply
tactic in order to embed some form of simple automation. We
design it in a declarative way, relying on typeclasses eauto,
a tactic which gives access to the proof-search mechanism behind
type classes. We qualify this mechanism of “Coq’s Prolog” and
describe it in a generic way and explain how it can be used to
support the construction of automatic and semi-automatic tactics.

Keywords apply, automation, Coq, proof assistant, reflection,
type theory, views.

1. Introduction
Since version 8.2 [2], Coq has included a type class mecha-
nism which can intervene during type-inference. The resolution
phase of this mechanism is also accessible via the user-side tactic
typeclasses eauto. In fact typeclasses eauto implements
a general Prolog-like proof-search mechanism that can be instru-
mented to do much more. While by default, it uses the specific
typeclass instances hint database, one can use it with alterna-
tive hint databases. In this case, despite the name of the tactic, it
has nothing to do with the type class mechanism anymore (apart
from the underlying implementation). It can be viewed as a re-
implementation of the former eauto tactic, dating back from Coq
version 5.10.

Many partially automated tactics have already been built upon
Coq’s type class mechanism. One example is the re-implementation
of the rewrite tactic [3], which relies on the mechanism in a
second phase of constraint resolution. Another is our transfer
library [4]. We argue that both of these applications (and many oth-
ers) abuse the type class mechanism, by polluting the typeclass
instances hint database, when they should instead define their
own disjoint hint databases and rely on the underlying Prolog-
like proof-search mechanism that is made accessible via the
typeclasses eauto tactic.

We demonstrate the usefulness of this “Coq’s Prolog” with a small
re-implementation of the apply tactic. This tactic is parametrized
by a set of “views” à la SSReflect [1] which it is able to apply
automatically. It also demonstrates a new way of instrumenting
typeclasses eauto to progress on a goal instead of solving it
(“forward mode”, proposed in particular by Michael Soegtrop on
the Coq-Club mailing list).

2. Presentation of Coq’s Prolog
The typeclasses eauto tactic is documented in the chapter on
type classes of Coq’s user manual [2, Chapter 20]. Like eauto, it is
possible to specify on which hint database it should operate using
the with myhintdb clause. By default, the proof-search depth
is unbounded and the traversing strategy is depth-first. It is also

possible to limit the proof-search depth, and an alternative iterative-
deepening traversing strategy exists.

Most hints are lemmas which can be read as Prolog Horn clauses.
For instance:

Lemma or_introl : forall A B, A -> A \/ B.

can be read as the clause1:

prove(or(A,B)) :- prove(A).

Such hints can be introduced with the Hint Resolve command:

Hint Resolve or_introl : myhintdb.

Some more complex hints can be introduced thanks to the Hint
Extern command. One very special application of such external
hints is to put some sub-goals “on the shelf”:

Hint Extern 0 (solveLater _) =>
unfold solveLater; shelve : myhintdb.

The shelf is a special place in the Coq proof engine which is nor-
mally reserved to sub-goals that will be solved by solving other
sub-goals that depend on them. It can be instrumented to temporar-
ily store away some sub-goals that we want to keep for later (at
which time they will be “unshelved”). The “unshelve” tactical can
be used to put back in the list of sub-goals to solve those which had
been shelved by the tactic it is applied on. Thus, a combination of
the previous external hint plus a call to unshelve typeclasses
eauto with myhintdb is a way to use this Prolog-like proof-
search mechanism in forward mode, instead of the normal solving
mode.

Finally, a control operator on the search space is available. It is not
comparable to Prolog’s cut operator in that it allows to specify reg-
ular expressions of search-paths which should be cut but does not
restrict backtracking. It is still limited in that regular expressions
can only talk about hints declared with Hint Resolve and not
Hint Extern. Additionally, there is no negative expressions and
even if regular expressions are known to be closed under comple-
ment, the construction requires to know all the alphabet, which is
not the case here since new hints can be added dynamically. We can
expect to see improvements in control operators for typeclasses
eauto in the next versions of Coq. Here is an example2 of using
this control operator to forbid any proof using or introl twice:

Hint Cut [(_*) or_introl (_*) or_introl] : myhintdb.

1 We introduce the Prolog predicate prove to denote the idea that the
hints are used when looking for a proof of a statement. When using
typeclasses eauto to solve type class goals, there is always a head-constant
(the type class) which can serve the same role as prove but when using it
on non-type-class goals, it is not necessarily the case.
2 Be careful when using it that the precedence levels are not what one would
expect. They should get fixed in Coq 8.7 but, in the meantime, the best way
of writing forward-compatible code is to parenthesize everything.



3. An apply tactic with views
Our work is part of a larger effort to make the life of mathemati-
cians using Coq easier. The specific issue we address here is to
design an extension of the apply tactic which embeds some bits of
trivial reasoning, such as reasoning modulo symmetry of equations
(identifying u = t and t = u). There is already a little bit of hard-
coded trivial reasoning in the current implementation (automatic
decomposition of single-constructor inductive types): for instance
it supports applying a theorem of the form A -> B /\ C to a goal
of the form B.

SSReflect defines views which are basically small theorems of the
form A -> B where A is a different way of viewing B. Our re-
implementation of apply tries to solve the problem we were de-
scribing by allowing the user to parametrize it with such “views”.
Without any view, it is less powerful than the current implementa-
tion (because of the absence of decomposition of single-constructor
inductive types). With many views, it can be much more powerful.
The various levels of parametrization could reveal especially useful
for teaching (from a level where everything must be done by hand,
to a level where most details are handled automatically).

Given the inspiration source we described in the previous para-
graph, an obvious application of our work will be to support au-
tomatic insertion of views in the context of small scale reflection.
In particular, it will be possible to simply register the reflection
lemma:

Lemma andP : forall b1 b2 : bool, reflect
(b1 = true /\ b2 = true) ((b1 && b2) = true).

in a special hint database and apply will know about it and use it
when necessary.

There are two main ideas in our implementation. The first is that
we are launching a proof search to prove that the theorem we wish
to apply implies the current goal:

?prove : arrow theorem goal

where arrow is a relation that is definitionally equal to Coq’s im-
plication. We use it because otherwise the proof-search mechanism
would introduce the premise theorem in the proof context and then
try to prove goal with it, and this is not what we want.

The second is that although we cannot actually prove this implica-
tion most of the time, we can provide an incomplete proof and let
the user fill the holes (this is after all the principle of apply):

solveLater A -> arrow B C -> arrow (A -> B) C

where solveLater is a dummy constant introduced to call the
external hint we described earlier, which will shelve the sub-goal
A until the full search succeeds and then unshelve it for the user to
prove. In fact, because the conclusion B might be dependent on the
premise A, we rather write:

forall (t : T), arrow (U t) V ->
arrow (forall x : T, U x) V

and then shelve t. A few other generic rules are present, one of
them allowing to go under quantifiers and, of course, the reflexivity
of arrow:

(forall x : A, arrow (f x) (g x)) ->
arrow (forall x : A, f x) (forall x : A, g x)

arrow T T

With these rules only, we can reproduce the behavior of apply, ex-
cept for the built-in handling of single-constructor inductive types.

Actually already at that point, we do not reproduce the exact same
behavior because our implementation allows applying a theorem
forall x y, P x y to a goal forall x, P x 0.

With this basic infrastructure in place, we can start adding views,
such as:

arrow P P’ -> arrow (P /\ Q) P’
arrow Q Q’ -> arrow (P /\ Q) Q’

which will be useful in emulating the current behavior of apply.
We can also add a very simple rule to handle symmetry (one could
think of more complex and powerful ways):

arrow (u = t) (t = u)

and finally, we register some more generic rules like:

reflect P b -> arrow P (b = true)
reflect b P -> arrow (b = true) P

so that people can easily extend the hint database with existing
reflection lemmas such as the one seen above.

4. Conclusion
This work is very preliminary but shows an interesting path to
removing some of the hindrances there are in using both SSRe-
flect and vanilla Coq. It is also a demonstration of the power of
typeclasses eauto, even when not working with type classes.
Sometimes, the type class mechanism has been used while what
was really wanted was this Coq’s Prolog that it gives access to.
One such example is the implementation of rewrite: it probably
could and should be based on a specific hint database instead of the
typeclass instances database.

We are planning first to continue to test and improve our re-
implementation of apply. We would in particular like to have
views for applying a theorem modulo commutativity / associativity.
We are also planning to merge this work with our previous work on
applying theorems modulo isomorphisms [4]. A lot of ideas from
this earlier work were reused here and the two implementations
could very likely be combined together.

References
[1] G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Ex-

tension for the Coq system. Research Report RR-6455, Inria Saclay Ile
de France, 2016. URL https://hal.inria.fr/inria-00258384.

[2] The Coq development team. The Coq proof assistant reference manual.
Technical report, INRIA, 2016. URL https://coq.inria.fr/.
Version 8.6beta1.

[3] M. Sozeau. A new look at generalized rewriting in type theory. Journal
of Formalized Reasoning, 2(1):41–62, 2010.

[4] T. Zimmermann and H. Herbelin. Automatic and Transparent Transfer
of Theorems along Isomorphisms in the Coq Proof Assistant. In Con-
ference on Intelligent Computer Mathematics, work-in-progress track,
2015. URL https://arxiv.org/abs/1505.05028.


