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ABSTRACT

Context. The location of pure frequencies in the spectrum of an irregularly sampled time series is an important topic in astrophysical
data analysis. Especially in the domain of asteroseismology, a highly precise and unambiguous study of frequencies in photometric
light or radial velocity curves is required.
Aims. Due to sampling irregularities and large observational gaps, the classic methods for frequency estimation (prewhitening tech-
niques, clean, cleanest, etc.) sometimes suffer false detections. We propose a new framework for this problem that allows a more
precise and unambiguous frequency location.
Methods. Multisine fitting is addressed as the sparse representation of the data in an overcomplete dictionary of frequencies, hence the
name SparSpec for the method. We model the data as the sum of an arbitrarily large number of pure frequencies, discretised on a fixed
grid. Among all the many representations fitting the data, we seek the one with the fewest non-zero amplitudes. This solution can be
computed by minimising a convex criterion with no local minima. A computationally efficient and convergent optimisation strategy
is derived and a user-friendly software implementing SparSpec is provided online at http://www.ast.obs-mip.fr/Softwares.
Results. The method is first illustrated on a simple test example where SparSpec correctly locates the frequencies while classic meth-
ods fail. Then, simulations on more realistic artificial time series reveal the interest of this new methodology in terms of robustness
toward sampling aliases. An application to the radial velocity curve of the pre-main sequence Herbig Ae star HD 104237 is finally
presented, where the method is able to determine oscillation frequencies even in the presence of strong low-frequency perturbations
such as orbital movements. While SparSpec mainly confirms previously published studies for the four more important frequencies,
it suggests some ambiguity about the position of a fifth frequency. Additional simulations show that the SparSpec results are more
plausible.
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1. Introduction

Detection and estimation of pure frequencies from irregularly
sampled time series is a frequent problem in astrophysical data
analysis. Especially in the domain of asteroseismology, all sci-
ence is based on obtaining the largest number of stellar oscil-
lation frequencies by observing different variables such as, e.g.,
photometric light or radial velocity curves. Knowing the largest
number of frequencies with very high accuracy and low false
alarm probability provides strong constraints on the subsequent
stellar interior modelling. Stellar oscillation codes predict phys-
ical oscillation modes and associated frequencies, the goal obvi-
ously being to reproduce the observed frequencies by adjusting
the stellar structure model and additional input parameters.

From an observational point of view, the observed light or
radial velocity curves usually suffer from incomplete time cov-
erage. In particular, periodic gaps caused by the earth’s rotation
and revolution, may generate high secondary lobes in the spec-
tral window and consequently perturb the interpretation of the
Fourier spectrum. Moreover, long-term observations are usually
irregularly time-spaced, so that many classic signal processing
tools are inapplicable (Kay 1988).

Specific methods of frequency estimation have been de-
veloped in the astrophysical context. On the one hand, phase-
binning techniques (Lafler & Kinman 1965; Stellingwerf 1978;

Dworetsky 1983) aim at specifically searching one short-time
periodicity from small data sets with a long time coverage,
but cannot be used as general spectral analysis methods. On
the other hand, Fourier-based methods are more adapted to
the analysis of sinusoidal oscillations. The Lomb-Scargle peri-
odogram (Lomb 1976; Scargle 1982) and the date-compensated
discrete Fourier transform (DCDFT, Ferraz-Mello 1981) take
the sampling irregularities into account, but are only statisti-
cally valid for a single sinusoid (Foster 1996). For multisine es-
timation, iterative procedures are generally preferred where, at
each iteration, a pure frequency is estimated after a prewhiten-
ing step, i.e., from the data where the contributions of previ-
ously estimated frequencies have been removed (Barning 1963;
Gray & Desikachary 1973). This strategy, however, is subject
to false detections caused by sampling artifacts in the Fourier
spectrum. Posterior refinements based on the clean method
(Högbom 1974) aim at improving the prewhitening efficiency
(Roberts et al. 1987; Foster 1995), but can also lead to unsatis-
factory frequency location.

The aim of this paper is to present a new method of estimat-
ing the spectral components of a signal from irregularly sam-
pled data. Based on the framework of sparse representations,
we named this method SparSpec. Multiple sinusoids are esti-
mated by reconstructing a high-dimensional vector of spectral
amplitudes corresponding to a whole (discrete) frequency grid.
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A sparse representation of the spectrum is encouraged, that is,
a representation that fits the data with the fewest non-zero spec-
tral amplitudes. This solution can be computed by minimising
a convex criterion, so that no local minimum can be reached.
Thus, the proposed estimator shows less sensitivity to sampling
artifacts in terms of frequency location.

We first recall in Sect. 2 the bases of the classic methods and
focus on their limitations. Then, Sect. 3 sets the framework of
the SparSpec method and Sect. 4 describes the practical imple-
mentation. Simulations in Sect. 5 reveal both the advantages of
this method compared to the prewhitening techniques on artifi-
cial data similar to those used by Foster (1995) and its limitations
in case of physical indeterminacy. In Sect. 6, the power of this
new methodology is illustrated in application to the radial ve-
locity curve of Herbig Ae star HD 104237 limited to the 1999
data set (Böhm et al. 2004). This analysis confirms the detection
of four frequencies with similar parameters to the previous re-
sults by Böhm et al. (2004), but it also helps to identify a fifth
frequency.

2. Limits of the classic approaches

A direct approach to the estimation of multiple oscillations con-
sists in the identification of a multisine model. This section con-
siders the difficulties that may arise when trying to estimate the
corresponding parameters.

2.1. The direct multisine estimation

Let yn, n=1...N represent N samples of a physical quantity mea-
sured at instants tn, n=1...N and consider the multisine modelMM:

yn =

M∑
m=1

Am cos (2πνmtn + φm) + εn (1)

∆
= MM(θM , tn) + εn,

where parameters θM = (Am, νm, φm)m=1...M and the number of
frequencies M are unknown, and εn is a perturbation term that
stands for model errors and observation noise. For a fixed num-
ber M of sinusoids, the determination of the best least-square
fitting, i.e., the minimisation with respect to θM of the quadratic
criterion,

IM(θM) =
N∑

n=1

(yn −MM(θM , tn))2 , (2)

corresponds statistically to the maximum likelihood estimation
of θM for additive independent and identically distributed (i.i.d.)
Gaussian perturbations εn. In practice, however, this estimation
raises a difficult question:

– for a given M, modelMM is not linear1 in the frequencies
νm, and criterion IM has many local minima in these parame-
ters (Stoica et al. 1989). Thus, a global optimisation strategy
is tricky;

– selecting the number M of searched frequencies is a hard
task. One may want to find a relatively small number of sig-
nificant sinusoids, but in such a way that the corresponding
model fits the data with sufficient adequation.

1 Model (1) is also not linear in the phases φm. However, it can be
written yn =

∑M
m=1 am cos(2πνmtn) + bm sin(2πνmtn) + εn with am =

Am cos(2πφm), bm = −Am sin(2πφm). Thus, the only important non-
linearities to deal with concern the frequency parameters.

Classic sequential methods iteratively remove sinusoidal com-
ponents from the data, which are identified as the maxima
of the Fourier spectrum of the residuals after a prewhitening
step (Barning 1963; Gray & Desikachary 1973). However, due
to sampling artifacts, these maxima may not correspond to true
frequencies – see the example introduced in Sect. 2.2. This is the
main drawback of the basic prewhitening method as it may lead
to fatal error propagation, so the solution may not correspond to
the minimum of criterion (2). Two kinds of refinements aim at
improving its efficiency:

– the clean procedure as described by Roberts et al. (1987)
introduces a clean gain, i.e., only removes a fraction g of
the sinusoidal component (0 < g < 1) at each iteration.
This ad-hoc solution tries to prevent the propagation of er-
rors through the algorithm, but it does not provide the iden-
tification of model (1) directly, as a single spectral line will
be estimated by several components with close frequencies.
A posterior reconvolution step is usually performed to make
the result more readable, but it reduces the frequency reso-
lution of the estimation and does not directly give values for
parameters θM;

– the cleanest method adds a step of local optimisation
of criterion (2) with respect to parameters θM to each it-
eration. A second refinement of this strategy holds in the
use of the date-compensated Fourier transform by Ferraz-
Mello (1981), which is more efficient than the basic Fourier
spectrum for frequency estimation – see Foster (1995) for
a formal description. While satisfactory results are usually
achieved in practice, the best fit (i.e., the lowest least-square
value of IM) cannot be guaranteed.

Note that those strategies also suffer from the difficult estimation
of model order M, which is related to the number of iterations
before algorithm stops: this requires a decision from the user
that may be hard to handle. Many empirical or statistical tests
have been proposed to associate some confidence level to the
amplitude of each extracted component (e.g., Breger et al. 1993;
Kuschnig et al. 1997; Reegen 2004), but this is beyond the scope
of this paper.

2.2. A test example where classic methods fail

The artificial data in Fig. 1 are two noise-free sinusoids ir-
regularly sampled during four days with daily 8-hour gaps.
Frequencies are set such that f2 − f1 = 2 c/d (cycles per day),
so that the sidelobes due to the spectral window for each fre-
quency superimpose at fw = ( f1 + f2)/2, leading to a wrong
global maximum of the Fourier spectrum. Because of inaccurate
initialisation, the classic prewhitening method, as well as clean
and cleanest, would lead to erroneous results. Note that here
a more sophisticated methodology would be able to identify the
two lines, as the global cleanest described by Foster (1995).
Nevertheless, this is an ad-hoc solution that cannot be used au-
tomatically for fitting multiple sinusoids.

This simple example shows the sensitivity of prewhiten-
ing procedures when they meet sampling artifacts. We will see
in Sect. 3 that the proposed formulation is not subject to these
limitations.

3. An alternative strategy

The limits of classic identification methods are caused es-
sentially by the multimodality of criterion IM, which is the
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Fig. 1. A pathological test example, showing the irregularly sampled artificial data (left), the spectral window (centre) and the Fourier spectrum
(right). Diamonds indicate the two true spectral lines.

consequence of the non-linearity of model (1) in the unknown
frequencies νm. In this approach, we propose an alternative
model that is linear in the frequency parameters.

3.1. A linear model

Data are modelled as the noisy superposition of an arbitrarily
large number K of sine waves with discretised frequencies fk =
k
K fmax, k=0...K ranging from 0 to a maximum fmax. This can be
written:

yn =

K∑
k=−K

xk exp

(
j2π

k
K

fmaxtn

)
+ εn, n = 1 . . .N (3)

where xk are unknown complex spectral amplitudes and εn is
the usual perturbation term. For real-valued data yn, one has
of course x−k = x∗k, where notation ∗ refers to the conjugate
complex number. Then xk, as well as x−k, represents ampli-
tude and phase information of a potential sinusoid at frequency
fk = k

K fmax. Collecting all quantities in matrix-vector forms,
model (3) is written as

y = Wx + ε (4)

where y = [y1 . . . yN]T , x = [x−K . . . xK]T , ε = [ε1 . . . εN]T , and
matrix W =

{
exp ( j2π fktn)

}
k=−K...K, n=1...N .

Of course, if we want to estimate the parameters of a mul-
tisine model – i.e., a relatively small number of oscillation fre-
quencies – then only a few components in x, say {xk, k∈K}, should
be non-zero: the representation of the spectrum by vector x is
said to be sparse. Sinusoidal oscillations are then identified at
frequencies { fk, k∈K}, with corresponding amplitudes {2|xk|, k∈K}
and phases {arg xk, k∈K}. This approach allows one to tackle the
multisine estimation problem in a different way than the clas-
sic use of model (1). Model (3) is linear and considers jointly a
high number K of potential frequencies, where the only param-
eters to estimate are amplitudes. On the contrary, in model (1)
the frequency parameters have to be estimated, which makes the
problem trickier.

3.2. Sparse representations

The frequency resolution in model (3) is intrinsically limited by
the discretisation step of the frequency grid fmax/K. Thus, the
size of unknown vector x, that is, 2K + 1, must be very large
to yield a resolution comparable to that of classic prewhitening
methods, even larger than the amount of data (typically, a vec-
tor with several thousand unknown parameters is used). In this
case, an infinite number of vectors x perfectly fit the data with

model (3), i.e., solve equation y = Wx. Among all possible solu-
tions, our aim is to obtain the sparsest one, i.e., the solution of (3)
with the fewest non-zero complex amplitudes. In the noise-free
case, this problem is written as

(P0) : find arg min ‖x‖0 under the constraint y = Wx,

where the �0-norm ‖x‖0 is the number of non-zero components
in x. Fuchs (2004) has shown under some conditions that solving
(P0) is equivalent2 to solving (P1):

(P1) : find arg min ‖x‖1 under the constraint y = Wx,

substituting ‖x‖0 by the �1-norm: ‖x‖1 = ∑
k |xk |. For noisy data

– our case – this problem is converted into the minimisation of
a composite criterion (Donoho et al. 2006), which defines the
spectral estimator as:

x̂ = arg min J(x), J(x) =
1
2
‖y −Wx‖2 + λ

K∑
k=−K

|xk|, (5)

where the value of λ > 0 balances between data fidelity – with
a low value of the quadratic misfit measure – and prior spar-
sity – with a low �1-norm. Definition (5) is the core of the
SparSpec estimation.

Definition (5) of the spectral estimator can be described
within the Tikhonov regularisation framework (Tikhonov &
Arsenin 1977; Demoment 1989), where the second term in cri-
terion J is called the penalisation function. Similar formulations
of the spectral analysis problem have been proposed during the
past ten years, using other penalisation functions (Sacchi et al.
1998; Ciuciu et al. 2001). In our case, the choice of the �1-norm
was motivated by the strong theoretical background concerning
sparse representations, as well as for technical reasons. First, it
leads to a convex criterion, so its global minimum can be reached
by descent techniques. Second, a computationally efficient algo-
rithm can be obtained (see Sect. 4.2), whereas algorithms pro-
posed by the aforementioned authors are only efficient for regu-
larly sampled data.

3.3. Comparison with the classic approach

Compared with model (1), the association of the linear model (3)
with sparse representations leads to several practical conse-
quences.

2 Note that the sparsity properties of this minimiser have been theo-
retically studied for real-valued parameters (Fuchs 2004; Donoho et al.
2006). In practice, sparse estimators are also obtained in the considered
complex case.
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Fig. 2. SparSpec estimator |̂xλ | obtained from data in Fig. 1 for λ =
30 (full line). The two true lines (diamonds) are correctly estimated in
frequency.

i) As the complex modulus function is a convex function, so
is the criterion to minimise. Thus, there are no local minima
and local optimisation algorithms are guaranteed to con-
verge toward the lowest value of the criterion. This is not
the case for model (1) where a least-square fitting proce-
dure can be trapped in local modes. Figure 2 illustrates this
point in application to the example introduced in Fig. 1,
where prewhitening methods failed. For an adequate tun-
ing of parameter λ – as will be discussed in Sect. 4.1 –
the SparSpec estimation enables the correct identification of
the two spectral lines and does not provide false detections.
Note that amplitudes are systematically underestimated by
this method; this point will be studied in Sect. 5.

ii) Since J is not strictly convex, the unicity of minimiser
x̂ cannot be theoretically guaranteed. It can be shown,
however, that J has a unique minimiser with less than
N/2 non-zero components, where N is the number of
data (Bourguignon 2006). In other words, if the minimiser
x̂ of criterion (5) has less than N/2 non-zero components
– if it is sparse enough – then it is the only sparse solution.

iii) Here order selection – i.e., estimation of the number of sinu-
soids extracted from the data – is a direct byproduct of the
estimation result since all components of vector x are esti-
mated jointly. With this approach, the number of frequen-
cies corresponds to the amount of sparseness in x, which is
controlled by the value of λ.

Of course, the price to pay for these properties is consequently
high, as it results in a considerable increase in the number of
parameters to estimate. Thus, the estimation procedure may re-
quire a much higher computational time than, e.g., sequential
prewhitening methods do. However, the efficient optimisation
procedure proposed in Sect. 4.2 allows one to deal with high-
dimensional unknown vectors x – that is, high spectral resolu-
tion – at a reasonable computational cost.

4. Practical implementation

Definition (5) of the SparSpec estimator requires two essential
points to be examined with precision. First, a practical rule is
needed for tuning the λ parameter. Then, an efficient optimisa-
tion strategy must be defined to compute the minimiser x̂ at low
computational cost.

4.1. Tuning the λ hyperparameter

We first give a statistical interpretation of λ using the Bayesian
framework. Then we show that, in practice, optimal λ should be-
long to some interval [λmin, λmax] depending on the data. Based

on this, we propose some heuristic rules to tune the λ parameter
satisfactorily.

Bayesian interpretation

The proposed estimation procedure can be described through the
Bayesian statistical framework (Idier 2001). We suppose here
that additive perturbations εn are i.i.d. centred Gaussian random
variables with variance σε2. Minimiser x̂ of the penalised crite-
rion writes equivalently as the maximiser of:

exp

(
− 1

2σε2
‖y −Wx‖2

)
exp

(
− λ
σε2
‖x‖1

)
(6)

where first term corresponds, up to a normalisation coefficient,
to the likelihood L(y; x) of model (3).

The Bayesian statistics stipulates that the posterior probabil-
ity of unknown vector x given the observations y is proportional
to the product of the likelihood by the prior probability distribu-
tion on x: p(x|y) ∝ L(y; x) p(x). Within this framework, estima-
tor x̂ corresponds to the maximiser of the posterior probability
distribution p(x|y), where the second term in expression (6) can
be identified with a prior distribution p(x) on the unknown vec-
tor that writes (up to a normalisation coefficient):

p(x) ∝ exp

(
− λ
σε2
‖x‖1

)
=

K∏
k=−K

exp

(
−λ|xk|
σε2

)
.

That is, x̂ can be defined as the Bayesian maximum a posteriori
estimator assuming that the modulus of the spectral amplitudes
are i.i.d. according to a centred Laplace prior distribution with
variance E

[
|xk |2

]
= 2σε4/λ2. Then, the signal power, which is

the power due to the spectral content of x in every sample yn,
reduces to (2K + 1)E

[
|xk|2

]
= 2 (2K + 1)σε4/λ2, and the signal-

to-noise ratio is finally written as

SNR =
signal power
noise power

= 2 (2K + 1)
σε

2

λ2
· (7)

Consequently, the prior knowledge of the signal-to-noise ratio
and the noise power gives a statistically meaningful value for
parameter λ. As this information may not be available, we pro-
pose heuristic methods for efficiently tuning the λ parameter in
the following.

Acceptable bounds on λ

It can be shown (Bourguignon 2005) that a minimum point of
criterion (5) is characterised by the following condition:

x̂ minimises J ⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(i) ∀k / |̂xk| = 0 : |rk | ≤ λ,
(ii)∀k / |̂xk| � 0 : rk + λ

xk

|xk | = 0, (8)

with r = W†(Wx̂ − y), where notation W† designs the conjugate
transpose of matrix W. This is a generalisation of the condition
that holds for a differentiable criterion, which stipulates that the
gradient has to be zero at the minimum. Property (8) allows rea-
sonable bounds to be derived for λ:

– it is straightforward to show that x̂ is identically zero if λ >
λmax = max

∣∣∣W†y∣∣∣;
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– r is merely the discretised Fourier spectrum of the residuals
Wx̂ − y, and property (8) imposes |rk | ≤ λ: the λ parame-
ter can be viewed as the maximum peak amplitude allowed
in these residuals. Thus, it is reasonable to set a minimum
value for λ to some small fraction of the initial Fourier spec-
trum, say 1%: λmin = max

∣∣∣W†y∣∣∣ /100. Note that estimator x̂
naturally suffers some bias in the amplitude estimation (see
Sect. 5), so r is not exactly the residual spectrum after re-
moving the extracted frequencies, in the sense of the residual
after prewhitening steps for sequential methods.

Practical use

In practice, efficient tuning of λ can be obtained using the fol-
lowing principle: first, compute the minimiser of criterion (5)
for several values of λ ∈ [λmin, λmax], say x̂λ, and then decide
which is the best. The heuristic L-curve technique uses a plot of
the value of the penalisation function at the solution R(̂xλ) versus

the goodness-of-fit measure Q(̂xλ) = 1
2

∥∥∥y −Wx̂λ
∥∥∥2

. The result-
ing curve was shown to have an L shape in the case of quadratic
penalisation (Hansen 1992); selecting a solution corresponding
to the corner of the L then gives a satisfactory compromise be-
tween both Q and R terms. In order to plot energetic quantities
on both axes, we prefer to use the curve

(
Q(̂xλ),R(̂xλ)2

)
here.

Although the use of this method for non-quadratic �1 penalisa-
tion is not based on any theoretical property, satisfactory results
were obtained in practice.

Another possibility is simply to select among all x̂λ those
that work the best visually. Start with λ = λmax and then progres-
sively decrease λ until under-regularisation is detected, charac-
terised by the presence of spurious peaks along the full recon-
struction grid. Examples of a correct selection of λ using these
methods will be given in Sect. 5.

4.2. Optimisation algorithm

As function J(x) is not differentiable for every vector containing
a zero value (the complex modulus function is not differentiable
at zero), classic gradient-based descent techniques cannot be ap-
plied. In the case of real-valued variables, the minimisation of
criterion J can be written as a constrained quadratic optimisa-
tion problem (Fuchs 2004), which can be solved using standard
algorithms from many programming libraries. In our case, vari-
ables xk are complex-valued and this is not true any more.

To compute the SparSpec solution, we minimise criterion (5)
by an iterative coordinate descent (ICD) procedure (Bertsekas
1995), which consists in performing successive one-dimensional
minimisation steps with respect to each complex-valued param-
eter xk. As criterion J is convex, the convergence of such algo-
rithm toward the minimum of the criterion is ensured (Alliney
& Ruzinsky 1994). The use of an ICD algorithm to minimise
the �1-penalised criterion leads to a computationally attrac-
tive implementation. Note that a similar strategy was proposed
by Alliney & Ruzinsky (1994) for real-valued parameters, but
our implementation outperforms their procedure, thanks to the
following property: every scalar minimisation has an explicit
solution that can be computed almost instantaneously. Indeed,
let wk design the column with index k in matrix W and ek =
y − ∑

��k w�x� and consider criterion J only as a function of

parameter xk. It can be shown (Bourguignon 2005) that

xmin
k = arg min

xk

J(x) ⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
if |w†kek | ≤ λ : xmin

k = 0,
if |w†kek | > λ : arg xmin

k = argw†kek

and
∣∣∣xmin

k

∣∣∣ = 1
N

(
|w†kek | − λ

)
.

(9)

In practice, iterations like (9) are repeated until condition (8)
is verified up to a numerical threshold. One implementation of
SparSpec is available online at
http://www.ast.obs-mip.fr/Softwares.

5. Simulation results

The efficiency of SparSpec is evaluated using two artificial data
sets similar to those proposed by Foster (1995), which consist
in three sinusoids with periods ν−1

1 = 370, ν−1
2 = 230, and

ν−1
3 = 100 days and amplitudes 3, 2.828, and 3, respectively.

A constant value of 10 was also added. An initial data set was
generated with 200 points sampled every 10 days. Data set (A)
shows gaps of 100 days every 365 days and gaps of 10 days every
30 days. Data set (B) shows gaps of 200 days every 365 days and
gaps of 10 days every 30 days. Data sets (A) and (B) correspond
in Foster (1995) to data sets 2 and 3, respectively. To make the
problem a bit trickier, a fourth sinusoid was added with period
ν′1
−1 = 122.5 days and amplitude 3, such that ν′1 − ν1 = 2νyear

with ν−1
year = 365 days, so that the sidelobes caused by the annual

gaps superimpose at νalias = (ν1 + ν′1)/2. White Gaussian noise
with standard deviation σε = 0.3 was also added. The top and
bottom of Fig. 3 show the corresponding time series, the spec-
tral windows, and the Fourier spectra for data sets (A) and (B),
respectively. Because of high sidelobes in the spectral windows,
both Fourier spectra show many aliased peaks.

Results obtained for data set (A) using basic prewhitening3

and cleanest4 strategies are plotted in Fig. 4. Both methods fail
because of the aliased frequency at νalias. The basic prewhitening
retrieves the four true frequencies but also three wrong ones with
a higher amplitude than ν1, whereas cleanest is not able to re-
trieve ν3. Figure 5 plots the SparSpec estimation with P = 4000
frequencies ranging from 0 to fmax = 0.02 c/d for λ = 10, i.e.,
λ/λmax 
 0.05 (in this example λmax = 206 and λmin = 2.06).
The only non-zero components are located at zero and around
each of the four true frequencies, and a non-zero value is also
obtained at νalias, but with very low amplitude. Note that the
raw estimator suffers a loss in the amplitude estimation, which
is inherent to the regularisation procedure: the minimiser of cri-
terion (5) no longer minimises the least-square term for data fi-
delity. However, once the frequencies are correctly determined,
posterior amplitude re-estimation is straightforward by least-
square fitting the amplitudes of a multisine model such as (1)
with estimated frequencies. As the true frequencies do not be-
long exactly to the reconstruction grid, a frequency may be esti-
mated by two adjacent non-zero values in x̂: if so, the estimated
frequency can be obtained by averaging these two adjacent com-
ponents, weighted by their corresponding amplitude. The final
result is plotted in Fig. 5 bottom, which shows an accurate esti-
mation for both frequency and amplitude parameters.

3 The basic sequential prewhitening procedure was implemented as
proposed by Roberts et al. (1987), with no clean gain.

4 The cleanest procedure was performed with the Period04 pack-
age: http://www.univie.ac.at/tops/Period04/
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Fig. 3. Artificial data sets (A) (top) and (B) (bottom). Left: available data (circles) and full signal (solid line). Centre: spectral window.
Right: Fourier spectrum (solid line) and true spectral lines (diamonds).
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Fig. 4. Prewhitening results with data set (A). Top: basic prewhitening.
Bottom: cleanest prewhitening. Circles correspond to the extracted
components, diamonds to the true components, and the solid line to the
residual spectrum.

Efficient tuning of the λ parameter is illustrated in Fig. 6.
For λ/λmax ∈ [0.04, 0.45], that is, in the corner of the L-curve
plotted in Fig. 6 top, x̂λ locates the same non-zero components.
Figure 6 bottom shows estimators x̂λ for λ values out of this
range, which clearly characterise over-regularisation (left) and
under-regularisation (right).

More ambiguous results are obtained on the more critical
data set (B), as shown in Fig. 7: the frequency at ν1 = 1/370 c/d
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Fig. 5. SparSpec results for data set (A). Top: estimator |̂xλ | for
λ/λmax = 0.05 (solid line) and true lines (diamonds). Bottom: zoom
around each true frequency. Width of every window is 4.10−5 c/d. The
circles correspond to the posterior least-square estimation of amplitudes
once frequencies have been determined.

is not retrieved, but is replaced by two wrong components at
higher frequencies. Figure 8 shows, however, that the solution
given by SparSpec models the available data quite well, while
the reconstruction obtained in the gapped periods is inaccurate.
The lack of success here is caused by some physical indetermi-
nacy. Although the sparsest solution to criterion (5) is unique, in
this case other multisine functions exist that are modelling the
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Fig. 8. Signal reconstruction from SparSpec estimation (solid line) for
data set (B). Left: total time coverage. Right: zoom on a portion. The
plus represent the available data and the dotted line corresponds to the
true fully-sampled signal.

data (including of course the true one), and data do not contain
enough information to distinguish those solutions.

6. Application to HD 104237 data

Figure 9 shows the radial velocity curve of the Herbig Ae star
HD 104237 from Böhm et al. (2004). These data correspond to
five observing nights of high resolution spectroscopy at
SAAO (South Africa) during April 1999. The individual radial

velocities were determined by adjusting a Gaussian to the
resolution-dominated spectral profiles and taking its centroid,
more precisely by adjusting it to the least-square deconvolved
profiles (LSD, Donati et al. 1997).

Variations are dominated by the low-frequency orbital move-
ment caused by the system multiplicity and, as the correspond-
ing Fourier spectrum shows, direct application of a prewhiten-
ing procedure to these data would lead to unsatisfactory results.
Since HD 104237 was observed during a second observation
campaign in April and May 2000, Böhm et al. (2004) were able
to determine the orbital parameters with high accuracy by a bi-
nary approximation merging both data sets. Then, after remov-
ing the main part of the orbital component (see Fig. 9 right), ap-
plication of a prewhitening method was possible, allowing these
authors to detect five oscillations between 28.5 c/d and 35.6 c/d.

As time sampling is irregular, there is no more Nyquist
limit as in the regular sampling case, and aliasing is pushed
at much higher frequencies (Eyer & Bartholdi 1999). This of-
fers the possibility of searching for oscillations in a much wider
frequency range. Note that aliasing is caused by the periodic-
ity of the spectral window W( f ) =

∑
n e j2π f tn/N, for which no

general properties can be established in the irregular sampling
case, except hermitian symmetry. Thus, a plot of the spectral
window for f ∈ [− fmax, fmax] is necessary to ensure that the
bandwidth [0, fmax] is alias-free. The template should be free of
any periodicity or pseudo-periodicity. For this sampling scheme,
Fig. 10 (top) shows that the first pseudo-periodicity occurs at
240 c/d. A first try with fmax at 100 c/d was performed, where
no spectral component was found above 40 c/d. In the follow-
ing results, fmax was set to 40 c/d to reduce the computational
cost. The grid size here is K = 5000 so that frequency precision
is fmax/K = 0.008 c/d. A zoom on the central template of the
spectral window is plotted in Fig. 10 (bottom), showing the high
sidelobes caused by the daily gaps.

SparSpec was applied on both raw and corrected data for
HD 104237 (Figs. 9a) and c), respectively), and very similar re-
sults were obtained for both data sets (except for low frequen-
cies, of course). This shows the robustness of SparSpec toward
low-frequency perturbations, which is a consequence of using
model (3) with fixed frequencies over the whole grid.

Figure 11 shows estimator |̂xλ| obtained by SparSpec from
the corrected data for λ/λmax = 0.08. The lines detected
by Böhm et al. (2004) using a cleanest algorithm after or-
bital correction are also plotted in this figure5. Note that a
basic prewhitening strategy led to results that are similar to
cleanest. Numerical values are reported in Table 1, where fre-
quencies are arranged in their order of appearance in the sequen-
tial prewhitening procedure. Both estimations coincide very well
for the four main frequencies. The fifth frequency detected by
SparSpec at ν5 = 34.6 c/d differs quite significantly from the
one detected at ν5 = 33.862 c/d by Böhm et al. (2004).

It is quite difficult to distinguish both fits, and one can even
think of some physical indeterminacy. To this end, complemen-
tary simulations were performed. SparSpec and the sequential
prewhitening method were run on two simulated data sets us-
ing the HD 104237 data time sampling and both sets of spec-
tral components reported in Table 1. Figure 12 shows the corre-
sponding four estimates: we can see that in both cases SparSpec
correctly locates the five components, whereas the prewhitening
method fails to retrieve the line at ν5 = 34.6 c/d for the simu-
lated data corresponding to the SparSpec fit. This shows that a

5 We only keep in this comparison the five frequencies to which a
high confidence level was associated by Böhm et al. (2004).
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Fig. 9. HD 104237 data from Böhm et al. (2004): raw data, extracted orbital movement and corrected data. Top: radial velocity curves (km s−1).
Time is expressed in HJD, heliocentric Julian date, with HJD = 2 450 000 + ∆HJD. Bottom: moduli of their Fourier spectra.
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prewhitening strategy is unable to detect the fifth frequency at
34.6 c/d if it was present in the data. In contrast, if a frequency
at 33.862 c/d really existed in the data, then SparSpec should
be able to retrieve it. As a conclusion, the frequencies identified
from the SparSpec estimation – in particular, the detection of an
oscillation frequency at ν5 = 34.6 c/d – is a more reliable result.

am
pl

it
ud

e
(k

m
/s

)

0 10 20 30 40
0

0.5

1

1.5

Frequency (c/d)

am
pl

it
ud

e
(k

m
/s

)

28 30 32 34 36
0

0.5

1

1.5

Frequency (c/d)

Fig. 11. Top: SparSpec estimator |̂xλ| obtained from HD 104237 cor-
rected data for λ/λmax = 0.08 (circles). Bottom: zoom on the frequency
range [27 c/d, 37 c/d]. The diamonds indicate former estimation results
by Böhm et al. (2004).

7. Conclusion

In this paper we presented an alternative approach to identify-
ing multiple sinusoids. A linear model was proposed, where the
spectrum is discretised on a fixed frequency grid with arbitrar-
ily high frequency precision. Using the sparse representations
framework, the SparSpec spectral estimator was defined as the
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Table 1. Numerical comparison between the SparSpec results ob-
tained from HD 104237 corrected data and results previously obtained
by Böhm et al. (2004).

SparSpec cleanest (Böhm et al. 2004)
precision fmax

K = 0.008 c/d precision 0.04 c/d

Frequency Amplitude Frequency Amplitude
(c/d) (km s−1) (c/d) (km s−1)

ν1 33.288 1.320 33.289 1.320
ν2 35.613 0.397 35.606 0.474
ν3 28.504 0.178 28.503 0.195
ν4 30.992 0.127 30.954 0.139
ν5 34.616 0.064 33.862 0.099

Simulations corresponding to the SparSpec fit:
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Fig. 12. Comparison of SparSpec and prewhitening results using artifi-
cial data simulated from the SparSpec fit (top) and the previous clean-
est fit (bottom) of HD 104237 data. Circles correspond to the estimated
components and diamonds to the true values.

global minimiser of a convex criterion, for which an efficient al-
gorithm was described to perform the estimation at a reasonable
computational cost. Compared with classic sequential methods,
the determination of the frequency locations with SparSpec is
less ambiguous. Indeed, the criterion minimised by classic meth-
ods has numerous local minima in which optimisation algo-
rithms can be trapped, leading to false frequency detections.

The proposed procedure was validated on simulations where
spectral lines were correctly estimated, whereas results of
prewhitening methods are less satisfactory because of strong
sampling aliases. Finally, an application of SparSpec to the
HD 104237 radial velocity data was presented and compared to
former results by Böhm et al. (2004), obtained with a cleanest

procedure after orbital correction. While similar results were
achieved for the four main frequencies, both methods locate a
fifth frequency differently. Additional simulations showed that
the SparSpec result was more plausible. To summarise, the main
advantages of SparSpec consist in:

– more robustness than usual sequential prewhitening methods
toward sampling artifacts;

– accurate estimation of both frequencies and amplitudes;
– insensitivity to low-frequency perturbations, e.g. to those

caused by orbital movements.

As a conclusion, SparSpec may become an efficient alternative to
prewhitening methods, especially in the case of ambiguous fre-
quency location. Researchers are invited to test it intensively and
send their comments to the authors6 for further improvements.
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