
HAL Id: hal-01671903
https://hal.science/hal-01671903

Submitted on 22 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BIKE: Bit Flipping Key Encapsulation
Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim
Guneysu, Carlos Aguilar Melchor, et al.

To cite this version:
Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, et al.. BIKE: Bit
Flipping Key Encapsulation. 2017. �hal-01671903�

https://hal.science/hal-01671903
https://hal.archives-ouvertes.fr

BIKE:
Bit Flipping Key Encapsulation

Nicolas Aragon, University of Limoges, France

Paulo S. L. M. Barreto, University of Washington Tacoma, USA

Slim Bettaieb, Worldline, France

Loïc Bidoux, Worldline, France

Olivier Blazy, University of Limoges, France

Jean-Christophe Deneuville, INSA-CVL Bourges and University of Limoges, France

Philippe Gaborit, University of Limoges, France

Shay Gueron, University of Haifa, and Amazon Web Services, Israel

Tim Güneysu, Ruhr-Universität Bochum, and DFKI, Germany,

Carlos Aguilar Melchor, University of Toulouse, France

Rafael Misoczki, Intel Corporation, USA

Edoardo Persichetti, Florida Atlantic University, USA

Nicolas Sendrier, INRIA, France

Jean-Pierre Tillich, INRIA, France

Gilles Zémor, IMB, University of Bordeaux, France

Submitters: The team listed above is the principal submitter. There are no
auxiliary submitters.

Inventors/Developers: Same as the principal submitter. Relevant prior work is
credited where appropriate.

Implementation Owners: Submitters, Amazon Web Services, Intel
Corporation, Worldline.

Email Address (preferred): rafael.misoczki@intel.com

Postal Address and Telephone (if absolutely necessary):
Rafael Misoczki, Intel Corporation, Jones Farm 2 Building, 2111 NE 25th
Avenue, Hillsboro, OR 97124, +1 (503) 264 0392.

Signature: x. See also printed version of “Statement by Each Submitter".

1

Contents
1 Introduction 4

1.1 Notation and Preliminaries . 4
1.2 Quasi-Cyclic Codes . 5

1.2.1 Definition . 5
1.2.2 Representation of QC Codes 5

1.3 QC-MDPC Codes . 6
1.3.1 Definition . 6
1.3.2 Decoding - The Bit Flipping Algorithm 6

1.4 Key Encapsulation Mechanisms . 10

2 Algorithm Specification (2.B.1) 10
2.1 BIKE-1 . 11

2.1.1 KeyGen . 11
2.1.2 Encaps . 11
2.1.3 Decaps . 12

2.2 BIKE-2 . 12
2.2.1 KeyGen . 12
2.2.2 Encaps . 12
2.2.3 Decaps . 13

2.3 BIKE-3 . 13
2.3.1 KeyGen . 13
2.3.2 Encaps . 13
2.3.3 Decaps . 14

2.4 Suggested Parameters . 14
2.5 Decoding . 15

2.5.1 One-Round Decoding . 15
2.6 Auxiliary Functions . 17

2.6.1 Pseudorandom Random Generators 18
2.6.2 Efficient Hashing . 19

3 Performance Analysis (2.B.2) 19
3.1 Performance of BIKE-1 . 20

3.1.1 Memory Cost . 20
3.1.2 Communication Bandwidth 20
3.1.3 Latency . 21

3.2 Performance of BIKE-2 . 21
3.2.1 Memory Cost . 21
3.2.2 Communication Bandwidth 21
3.2.3 Latency . 22

2

3.3 Performance of BIKE-3 . 22
3.3.1 Memory Cost . 22
3.3.2 Communication Bandwidth 22
3.3.3 Latency . 23

3.4 Optimizations and Performance Gains 23
3.4.1 BIKE-2 Batch Key Generation 23

3.5 Additional Implementation . 24

4 Known Answer Values – KAT (2.B.3) 26
4.1 KAT for BIKE-1 . 26
4.2 KAT for BIKE-2 . 26
4.3 KAT for BIKE-3 . 27

5 Known Attacks (2.B.5) 28
5.1 Hard Problems and Security Reduction 28

5.1.1 Hardness for QC codes. 28
5.2 Information Set Decoding . 29

5.2.1 Exploiting the Quasi-Cyclic Structure. 30
5.2.2 Exploiting Quantum Computations. 30

5.3 Defeating the GJS Reaction Attack 31
5.4 Choice of Parameters . 31

6 Formal Security (2.B.4) 32
6.1 IND-CPA Security . 32
6.2 Public Keys and Subcodes . 35

7 Advantages and Limitations (2.B.6) 35

8 Acknowledgments 37

A Proof of Theorem 1 42
A.1 Basic tools . 42
A.2 Estimation of the probability that a parity-check equation of weight

w gives an incorrect information 44
A.2.1 Main result . 44
A.2.2 Proof of Lemma 4 . 45

A.3 Estimation of the probability that a bit is incorrectly estimated by
the first step of the bit flipping algorithm 47

A.4 Proof of Theorem 1 . 48

B Proof of Proposition 1 50

3

1 Introduction
This document presents BIKE, a suite of algorithms for key encapsulation based on
quasi-cyclic moderate density parity-check (QC-MDPC) codes that can be decoded
using bit flipping decoding techniques. In particular, this document highlights the
number of security, performance and simplicity advantages that make BIKE a
compelling candidate for post-quantum key encapsulation standardization.

1.1 Notation and Preliminaries
Table 1 presents the used notation and is followed by preliminary concepts.

Notation Description

F2: Finite field of 2 elements.

R: The cyclic polynomial ring F2[X]/〈Xr − 1〉.

|v|: The Hamming weight of a binary polynomial v.

u
$←U : Variable u is sampled uniformly at random from set U .

hj : The j-th column of a matrix H, as a row vector.

?: The component-wise product of vectors.

Table 1: Notation

Definition 1 (Linear codes). A binary (n, k)-linear code C of length n dimension
k and co-dimension r = (n− k) is a k-dimensional vector subspace of Fn2 .

Definition 2 (Generator and Parity-Check Matrices). A matrix G ∈ Fk×n2 is called
a generator matrix of a binary (n, k)-linear code C iff

C = {mG | m ∈ Fk2}.

A matrix H ∈ F(n−k)×n
2 is called a parity-check matrix of C iff

C = {c ∈ Fn2 | HcT = 0}.

A codeword c ∈ C of a vector m ∈ F(n−r)
2 is computed as c = mG. A syndrome

s ∈ Fr2 of a vector e ∈ Fn2 is computed as sT = HeT .

4

1.2 Quasi-Cyclic Codes
A binary circulant matrix is a square matrix where each row is the rotation one
element to the right of the preceding row. It is completely defined by its first row.
A block-circulant matrix is formed of circulant square blocks of identical size. The
size of the circulant blocks is called the order. The index of a block-circulant matrix
is the number of circulant blocks in a row.

1.2.1 Definition

Definition 3 (Quasi-Cyclic Codes). A binary quasi-cyclic (QC) code of index n0
and order r is a linear code which admits as generator matrix a block-circulant
matrix of order r and index n0. A (n0, k0)-QC code is a quasi-cyclic code of index
n0, length n0r and dimension k0r.

For instance:

G = � �
The rows of G span a (2, 1)-QC code

G = � � �
The rows of G span a (3, 1)-QC code

1.2.2 Representation of QC Codes

Representation of Circulant Matrices. There exists a natural ring iso-
morphism, which we denote ϕ, between the binary r×r circulant matrices and the
quotient polynomial ring R = F2[X]/(Xr − 1). The circulant matrix A whose first
row is (a0, . . . , ar−1) is mapped to the polynomial ϕ(A) = a0+a1X+· · ·+ar−1Xr−1.
This will allow us to view all matrix operations as polynomial operations.

Transposition. For any a = a0 +a1X+a2X
2 + · · ·+ar−1X

r−1 in R, we define
aT = a0 + ar−1X + · · ·+ a1X

r−1. This will ensure ϕ(AT) = ϕ(A)T .

Vector/Matrix Product. We may extend the mapping ϕ to any binary vec-
tor of Fr2 . For all v = (v0, v1, . . . , vr−1), we set ϕ(v) = v0 + v1X + · · ·+ vr−1X

r−1.
To stay consistent with the transposition, the image of the column vector vT

must be ϕ(vT) = ϕ(v)T = v0 + vr−1X + · · · + v1X
r−1. It is easily checked that

ϕ(vA) = ϕ(v)ϕ(A) and ϕ(AvT) = ϕ(A)ϕ(v)T .

5

Representation of QC Codes as Codes over a Polynomial Ring. The
generator matrix of an (n0, k0)-QC code can be represented as an k0 × n0 matrix
over R. Similarly any parity check matrix can be viewed as an (n0 − k0) × n0
matrix over R. Respectively

G =

 g0,0 · · · g0,n0−1
...

...
gk0−1,0 · · · gk0−1,n0−1

 , H =

 h0,0 · · · h0,n0−1
...

...
hn0−k0−1,0 · · · hn0−k0−1,n0−1


with all gi,j and hi,j in R. In all respects, a binary (n0, k0)-QC code can be viewed
as an [n0, k0] code over the ring R = F2[X]/(Xr − 1).

1.3 QC-MDPC Codes
A binary MDPC (Moderate Density Parity Check) code is a binary linear code
which admits a somewhat sparse parity check matrix, with a typical density of
order O(1/

√
n). The existence of such a matrix allows the use of iterative decoders

similar to those used for LDPC (Low Density Parity Check) codes [17], widely
deployed for error correction in telecommunication.

1.3.1 Definition

Definition 4 (QC-MDPC codes). An (n0, k0, r, w)-QC-MDPC code is an (n0, k0)
quasi-cyclic code of length n = n0r, dimension k = k0r, order r (and thus index
n0) admitting a parity-check matrix with constant row weight w = O(

√
n).

Remark 1. Asymptotically, a QC-MDPC code could efficiently correct up to t =
O(
√
n log n) errors. This is a corollary of Theorem 1 given in paragraph “Asymp-

totic Analysis for MDPC Codes” that follows. In this work, the parity-check row
weight w and the error weight t will be chosen so that wt = O(n). This is precisely
the regime where the decryption failure rate is expected to decay exponentially in
the codelength n (see Theorem 1).

1.3.2 Decoding - The Bit Flipping Algorithm

The decoding of MDPC codes can be achieved by various iterative decoders.
Among those, the bit flipping algorithm is particularly interesting because of its
simplicity. In Algorithm 1 as it is given here the instruction to determine the
threshold τ is unspecified. We will always consider regular codes, where all columns
of h have the same weight d and we denote T = τd. There are several rules for
computing the threshold T :

6

Algorithm 1 Bit Flipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2

Ensure: eHT = s
1: e← 0
2: s′ ← s
3: while s′ 6= 0 do
4: τ ← threshold ∈ [0, 1], found according to some predefined rule
5: for j = 0, . . . , n− 1 do
6: if |hj ? s′| ≥ τ |hj | then
7: ej ← ej + 1 mod 2

8: s′ ← s− eHT

9: return e

hj denotes the j-th column of H, as a row vector, ′?′ denotes the component-
wise product of vectors, and |hj ? s| is the number of unchecked parity equations
involving j.

• the maximal value of |hj ? s| minus some δ (typically δ = 5), as in [32],

• precomputed values depending on the iteration depth, as in [12],

• variable, depending on the weight of the syndrome s′, as in [11].

The algorithm takes as input a parity check matrix H and a word s and, if it
stops, returns an error pattern e whose syndrome is s. If H is sparse enough and
there exists an error e of small enough weight such that s = eHT , then, with high
probability, the algorithm stops and returns e.

Asymptotic Analysis for MDPC Codes For a fixed code rate k/n, let us
denote w the weight of the rows of H and t the number of errors we are able to
decode. Both w and t are functions of n. For LDPC codes, w is a constant and t
will be a constant proportion of n, that is wt = Ω(n). For MDPC codes, we have
w = Ω(

√
n) and the amount of correctable errors will turn out to be a little bit

higher than t = Ω(
√
n).

To understand this point, let us first notice that experimental evidence seems
to indicate that the decryption failure rate is dominated by the probability that
the first round of the algorithm is unable to reduce significantly the number of
initial errors. What we call here “round” of the decoding algorithm is an execution
of for loop 5 in Algorithm 1. It also seems that at the first round of the decoding
algorithm the individual bits of the syndrome bits si can be approximated by

7

independent random variables. This independence assumption can also be made
for the vectors hj ? s = hj ? s

′ at the first round. In other words, we make the
following assumptions.

Assumption 1. Let Perr be the probability that the bit flipping algorithm fails to
decode. Let e1 be the value of error-vector e after executing for loop 5 once in
Algorithm 1 and let e0 be the true error vector. Let ∆e = e0 + e1 (addition is
performed in F2) be the error vector that would remain if we applied the correction
e1 to the true error vector e0.

• There exists a constant α in (0, 1) such that

Perr ≤ P(|∆e| ≥ αt).

• The syndrome bits si are independent random variables.

• For j = 0, . . . , n− 1, the hj ? s are independent random variables.

By making these assumptions we can prove that

Theorem 1. Under assumption 1, the probability Perr that the bit flipping algo-
rithm fails to decode with fixed threshold τ = 1

2 is upper-bounded by

Perr ≤
1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t),

where ε def
= e−

2wt
n .

This theorem is proved in Section A of the appendix. This theorem shows that
the decryption failure rate (DFR) decays exponentially in the codelength when
wt = O (n) and that the number of correctable errors is a little bit larger than
O (
√
n) when w = O (

√
n): it can be as large as some constant β

√
n lnn as the

upper-bound in this theorem is easily shown to converge to 0 for a small enough
constant β.

Decoding with a Noisy Syndrome Noisy syndrome decoding is a variation
of syndrome decoding in which, givenH and s, we look for e ∈ Fn2 such that s−eHT

and e are both of small weight. The bit flipping algorithm can be adapted to noisy
syndromes. Two things must be modified. First the stopping condition: we do
not require the quantity s− eHT to be null, only to have a small weight. Second,
since we need to quantify the weight in this stopping condition, we need to specify
a target weight u. For input (H, s, u) a pair e is returned such that s = e′ + eHT

8

Algorithm 2 Extended Bit Flipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , integer u ≥ 0

Ensure:
∣∣s− eHT

∣∣ ≤ u
1: e← 0
2: s′ ← s
3: while |s′| > u do
4: τ ← threshold ∈ [0, 1], found according to some predefined rule //

whatever that means
5: for j = 0, . . . , n− 1 do
6: if |hj ? s′| ≥ τ |hj | then
7: ej ← ej + 1 mod 2

8: s′ ← s− eHT

9: return e

for some e′ of weight at most u. If u = 0 we have the usual bit flipping algorithm.
Again if H is sparse enough and there exists a solution the algorithm will stop with
high probability. Note that if the algorithm stops, it returns a solution within the
prescribed weight, but this solution might not be unique. In the case of MDPC
codes, the column weight and the error weight are both of order

√
r and the solution

is unique with high probability.

Noisy Syndrome vs. Normal Bit Flipping Interestingly, for MDPC
codes, noisy syndromes affect only marginally the performance of the bit flipping
algorithm. In fact, if e is the solution of s = e′+eHT , then it is also the solution of
s = (e, 1)H ′T where H ′ is obtained by appending e′ as n+1-th column. For MDPC
codes, the error vector e′ has a density which is similar to that of H and thus H ′

is sparse and its last column is not remarkably more or less sparse. Thus applying
the bit flipping algorithm to (H ′, s) is going to produce e, except that we do not
allow the last position to be tested in the loop and control is modified to stop the
loop when the syndrome s′ is equal to the last column of H ′. Since we never test
the last position we don’t need to know the value of the last column of H ′ except
for the stopping condition which can be replaced by a test on the weight. Thus
we emulate (almost) the noisy syndrome bit flipping by running the bit flipping
algorithm on a code of length n + 1 instead of n, to correct |e| + 1 errors instead
of |e|.

9

QC-MDPC Decoding for Decryption Quasi-cyclicity does not change
the decoding algorithm. The above algorithm will be used for (2, 1)-QC MDPC
codes. It allows us to define the procedure specified as follows. For any triple
(s, h0, h1) ∈ R3 and any integer u

Decode(s, h0, h1, u) returns (e0, e1) ∈ R2 with |e0h0 + e1h1 + s| ≤ u.

The fourth argument u is an integer. If u = 0 the algorithm stops when e0h0 +
e1h1 = s, that is the noiseless syndrome decoding, else it stops when e0h0 +e1h1 =
s + e from some e of weight at most u, that is the noisy syndrome decoding. In
addition we will bound the running time (as a function of the block size r) and
stop with a failure when this bound is exceeded.

1.4 Key Encapsulation Mechanisms
A key encapsulation mechanism (KEM) is composed by three algorithms: Gen
which outputs a public encapsulation key pk and a private decapsulation key sk,
Encaps which takes as input an encapsulation key pk and outputs a ciphertext
c and a symmetric key K, and Decaps which takes as input a decapsulation key
sk and a cryptogram c and outputs a symmetric key K or a decapsulation failure
symbol ⊥. For more details on KEM definitions, we refer the reader to [14].

2 Algorithm Specification (2.B.1)
BIKE relies purely on ephemeral keys, meaning that a new key pair is generated at
each key exchange. In this way, the GJS attack [22], which depends on observing
a large number of decoding failures for a same private key, is not applicable.

In the following we will present three variants of BIKE, which we will simply
label BIKE-1, BIKE-2 and BIKE-3. All of the variants follow either the McEliece
or the Niederreiter framework, but each one has some important differences, which
we will discuss individually.

For a security level λ, let r be a prime such that (Xr − 1)/(X − 1) ∈ F2[X] is
irreducible, dv be an odd integer and t be an integer such that decoding t errors
with a uniformly chosen binary linear error-correcting code of length n = 2r and
dimension r, as well as recovering a base of column weight dv given an arbitrary
base of a code of the same length and dimension, both have a computational cost
in Ω(exp(λ)). See Section 5 for a detailed discussion on parameters selection.

10

We denote by K : {0, 1}n → {0, 1}`K the hash function used by encapsulation
and decapsulation, where `K is the desired symmetric key length (typically 256
bits).

2.1 BIKE-1
In this variant, we privilege a fast key generation by using a variation of McEliece.
A preliminary version of this approach appears in [4].

First, in contrast to QC-MDPC McEliece [32] (and any QC McEliece variant),
we do not compute the inversion of one of the private cyclic blocks and then
multiply it by the whole private matrix to get systematic form. Instead, we hide
the private code structure by simply multiplying its sparse private matrix by any
random, dense cyclic block. The price to pay is the doubled size for the public key
and the data since the public key will not feature an identity block anymore.

Secondly, we interpret McEliece encryption as having the message conveyed in
the error vector, rather than the codeword. This technique is not new, following
the lines of Micciancio’s work in [31] and having already been used in a code-based
scheme by Cayrel et al. in [9].

2.1.1 KeyGen

- Input: λ, the target quantum security level.
- Output: the sparse private key (h0, h1) and the dense public key (f0, f1).

0. Given λ, set the parameters r, w as described above.
1. Generate h0, h1

$←R both of (odd) weight |h0| = |h1| = w/2.
2. Generate g $←R of odd weight (so |g| ≈ r/2).
3. Compute (f0, f1)← (gh1, gh0).

2.1.2 Encaps

- Input: the dense public key (f0, f1).
- Output: the encapsulated key K and the cryptogram c.

1. Sample (e0, e1) ∈ R2 such that |e0|+ |e1| = t.
2. Generate m $←R.
3. Compute c = (c0, c1)← (mf0 + e0,mf1 + e1).
4. Compute K ← K(e0, e1).

11

2.1.3 Decaps

- Input: the sparse private key (h0, h1) and the cryptogram c.
- Output: the decapsulated key K or a failure symbol ⊥.

1. Compute the syndrome s← c0h0 + c1h1.
2. Try to decode s (noiseless) to recover an error vector (e′0, e

′
1).

3. If |(e′0, e′1)| 6= t or decoding fails, output ⊥ and halt.
4. Compute K ← K(e′0, e

′
1).

2.2 BIKE-2
In this variant, we follow Niederreiter’s framework with a systematic parity check
matrix. The main advantage is that this only requires a single block of length r for
all the objects involved in the scheme, and thus yields a very compact formulation.
On the other hand, this means that it is necessary to perform a polynomial inver-
sion. In this regard, it is worth mentioning that an inversion-based key generation
can be significantly slower than encryption (e.g., up to 21x as reported in [29]). A
possible solution is to use a batch key generation as described in Section 3.4.

2.2.1 KeyGen

- Input: λ, the target quantum security level.
- Output: the sparse private key (h0, h1) and the dense public key h.

0. Given λ, set the parameters r, w as described above.
1. Generate h0, h1

$←R both of (odd) weight |h0| = |h1| = w/2.
2. Compute h← h1h

−1
0 .

2.2.2 Encaps

- Input: the dense public key h.
- Output: the encapsulated key K and the cryptogram c.

1. Sample (e0, e1) ∈ R2 such that |e0|+ |e1| = t.
2. Compute c← e0 + e1h.
3. Compute K ← K(e0, e1).

12

2.2.3 Decaps

- Input: the sparse private key (h0, h1) and the cryptogram c.
- Output: the decapsulated key K or a failure symbol ⊥.

1. Compute the syndrome s← ch0.
2. Try to decode s (noiseless) to recover an error vector (e′0, e

′
1).

3. If |(e′0, e′1)| 6= t or decoding fails, output ⊥ and halt.
4. Compute K ← K(e′0, e

′
1).

2.3 BIKE-3
This variant follows the work of Ouroboros [15]. Looking at the algorithms descrip-
tion, the variant resembles BIKE-1, featuring fast, inversion-less key generation and
two blocks for public key and data. The main difference is that the decapsulation
invokes the decoding algorithm on a “noisy" syndrome. This also means that BIKE-
3 is fundamentally distinct from BIKE-1 and BIKE-2, mainly in terms of security
and security-related aspects like choice of parameters. We will discuss this in the
appropriate section.

2.3.1 KeyGen

- Input: λ, the target quantum security level.
- Output: the sparse private key (h0, h1) and the dense public key (f0, f1).

0. Given λ, set the parameters r, w as described above.
1. Generate h0, h1

$←R both of (odd) weight |h0| = |h1| = w/2.
2. Generate g $←R of odd weight (so |g| ≈ r/2).
3. Compute (f0, f1)← (h1 + gh0, g).

2.3.2 Encaps

- Input: the dense public key (f0, f1).
- Output: the encapsulated key K and the cryptogram c.

1. Sample (e, e0, e1) ∈ R3 with |e| = t/2 and |e0|+ |e1| = t.
2. Compute c = (c0, c1)← (e+ e1f0, e0 + e1f1).
3. Compute K ← K(e0, e1).

13

2.3.3 Decaps

- Input: the sparse private key (h0, h1) and the cryptogram c.
- Output: the decapsulated key K or a failure symbol ⊥.

1. Compute the syndrome s← c0 + c1h0.
2. Try to decode s (with noise at most t/2) to recover error vector (e′0, e

′
1).

3. If |(e′0, e′1)| 6= t or decoding fails, output ⊥ and halt.
4. Compute K ← K(e′0, e

′
1).

Comparison between BIKE versions. For ease of comparison, we provide
a summary of the three schemes in Table 2 below.

BIKE-1 BIKE-2 BIKE-3
SK (h0, h1) with |h0| = |h1| = w/2

PK (f0, f1)← (gh1, gh0) (f0, f1)← (1, h1h
−1
0) (f0, f1)← (h1 + gh0, g)

Enc (c0, c1)← (mf0 + e0,mf1 + e1) c← e0 + e1f1 (c0, c1)← (e+ e1f0, e0 + e1f1)

K ← K(e0, e1)

Dec s← c0h0 + c1h1 ; u← 0 s← ch0 ; u← 0 s← c0 + c1h0 ; u← t/2

(e′0, e
′
1)← Decode(s, h0, h1, u)

K ← K(e′0, e
′
1)

Table 2: Algorithm Comparison

We remark that e can be represented with only dlog2
(
n
t

)
e bits and such a com-

pact representation can be used if memory is the preferred metric of optimization
(the hash function K would need to be changed as well to receive dlog2

(
n
t

)
e bits

instead of n).

2.4 Suggested Parameters
The parameters suggested in this section refer to the security levels indicated by
NIST’s call for papers, which relate to the hardness of a key search attack on a
block cipher, like AES. More precisely, we indicate parameters for Levels 1, 3 and
5, corresponding to the security of AES-128, AES-192 and AES-256 respectively.

In addition, the block size r is chosen so that the MDPC decoder described
in Section 2.5 has a failure rate not exceeding 10−7 (validated through exhaustive
simulation). Table 3 summarizes these three parameter suggestions.

14

BIKE-1 and BIKE-2

Security n r w t

Level 1 20,326 10,163 142 134

Level 3 39,706 19,853 206 199

Level 5 65,498 32,749 274 264

BIKE-3

n r w t

22,054 11,027 134 154

43,366 21,683 198 226

72,262 36,131 266 300

Table 3: Suggested Parameters.

2.5 Decoding
In all variants of BIKE, we will consider the decoding as a black box running in
bounded time and which either returns a valid error pattern or fails. It takes as
arguments a (sparse) parity check matrix H ∈ F(n−k)×n

2 , a syndrome s ∈ Fn−k2 ,
and an integer u ≥ 0. Any returned value e is such that the Hamming distance
between eHT and s is smaller than u.

For given BIKE parameters r, w, t and variant, the key features are going to be
the decoding time and the DFR (Decoding Failure Rate). Let R = F2[X]/(Xr−1),
the decoder input (H, s, u) is such that:

• the matrix H is block-circulant of index 2, that is a H = (hT0 hT1) ∈ R1×2

such that |h0| = |h1| = w/2

• the integer u is either 0 (noiseless syndrome decoding, BIKE-1 and BIKE-2)
or t/2 (noisy syndrome decoding, BIKE-3).

• the syndrome s is equal to e′ + e0h0 + e1h1 for some triple (e′, e0, e1) ∈ R3

such that |e′| = u and |e0|+ |e1| = t.

For each parameter set and each BIKE variant, the decoder input is entirely defined
by h0, h1, e′, e0, e1. The DFR is defined as the probability for the decoder to fail
when the input (h0, h1, e

′, e0, e1) is distributed uniformly such that |h0| = |h1| =
w/2, |e′| = u, and |e0|+ |e1| = t.

2.5.1 One-Round Decoding

We will use the decoder defined in Algorithm 3. As it is defined, this algorithm
returns a valid error pattern when it stops but it may not stop. In practice, A
maximum running time is set, when this maximum is reached the algorithm stops
with a failure. For given BIKE parameters r, w, and t, we have n = 2r and k = r.
In addition, we must (1) set values for S and δ and (2) provide a rule for computing
the threshold (instruction 1).

15

Algorithm 3 One-Round Bit Flipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , integer u ≥ 0

Ensure:
∣∣s− eHT

∣∣ ≤ u
1: T ← threshold(|s|)
2: for j = 0, . . . , n− 1 do
3: `← min(ctr(H, s, j), T)
4: J` ← J` ∪ {j} // all J` empty initially
5: e← JT

(∗∗)

6: s′ ← s− eHT

7: while |s′| > S do (∗∗∗)

8: for ` = 0, . . . , δ do (∗∗∗)

9: e′ ← check(H, s′, JT−`, d/2)
10: (e, s′)← (e+ e′, s′ − e′HT) // update error and syndrome
11: e′ ← check(H, s′, e, d/2) (∗∗)

12: (e, s′)← (e+ e′, s′ − e′HT) // update error and syndrome
13: while |s′| > u do
14: j ← guess_error_pos(H, s′, d/2)
15: (ej , s

′)← (ej + 1, s′ + hj)
(∗)

16: return e

check(H, s, J, T)
e← 0
for j ∈ J do

if ctr(H, s, j) ≥ T then
ej ← 1

return e

guess_error_pos(H, s, T)
loop // until success

i
$← s (∗∗)

for j ∈ eqi do (∗),(∗∗)

if ctr(H, s, j) ≥ T then
return j

ctr(H, s, j)
return |hj ∩ s| (∗),(∗∗)

threshold(S)
return function of r, w, t, and S

(∗) hj the j-th column of H (as a row vector), eqi the i-th row of H
(∗∗) we identify binary vectors with the set of their non zero positions
(∗∗∗) the algorithm uses two parameters S and δ which depend of r, w, and t

16

Threshold Selection Rule. This rule derives from [10]. We use the nota-
tion of the algorithm, s = eHT is the input syndrome and e the corresponding
(unknown) error. We denote d = w/2 the column weight of H. Let

π1 =
|s|+X

td
and π0 =

w |s| −X
(n− t)d

where X =
∑
` odd

(`− 1)
r
(
w
`

)(
n−w
t−`
)(

n
t

) .

The counter value |hj ∩ d| follows a distribution very close to a binomial distribu-
tion1 B(d, π1) and B(d, π0) respectively if ej = 1 or ej = 0. From that it follows
that the best threshold is the smallest integer T such that

t

(
d

T

)
πT1 (1− π1)d−T ≥ (n− t)

(
d

T

)
πT0 (1− π0)d−T ,

that is (note that π1 ≥ π0)

T =

⌈
log n−t

t + d log 1−π0
1−π1

log π1
π0

+ log 1−π0
1−π1

⌉
. (1)

This value depends only of n = 2r, w = 2d, t = |e| the error weight, and |s|
the syndrome weight. Details can be found in [10]. For any set of parameters
thresholds can be precomputed.

In practice for a given set of parameters the formula (1) is very accurately
approximated, in the relevant range for the syndrome weight, by an affine function:

• for BIKE-1 and BIKE-2

– security level 1: T = d13.530 + 0.0069722 |s|e,
– security level 3: T = d15.932 + 0.0052936 |s|e,
– security level 5: T = d17.489 + 0.0043536 |s|e,

• for BIKE-3

– security level 1: T = d13.209 + 0.0060515 |s|e,
– security level 3: T = d15.561 + 0.0046692 |s|e,
– security level 5: T = d17.061 + 0.0038459 |s|e.

2.6 Auxiliary Functions
Possible realizations of the auxiliary functions required by BIKE are described
next. Other techniques can be used as long as they meet the target security level.

1B(n, p) the number of success out of n Bernouilli trials of probability p

17

2.6.1 Pseudorandom Random Generators

Three types of pseudorandom bits stream generation are considered: no constraints
on the output weight (Alg. 4), odd weight (Alg. 5), and specific weight w (Alg. 6).
The common building block for them is AES-CTR-PRF based on AES-256, in CTR
mode (following NIST SP800-90A guidelines [3]). For typical BIKE parameters the
number of calls to AES with a given key is way below the restrictions on using AES
in CTR mode. We remark that such AES-CTR-PRF generator is very efficient on
modern processors equipped with dedicated AES instructions (e.g., AES-NI).

Algorithm 4 GenPseudoRand(seed, len)
Require: seed (32 bytes)
Ensure: z̄ (len pseudo-random bits z embedded in array of bytes).
1: s = AES-CTR-INIT(seed, 0, 232 − 1)
2: z = truncatelen (AES-CTR-PRF (s, len))
3: return z̄

Algorithm 5 GenPseudoRandOddWeight(seed, len)
Require: seed (32 bytes), len
Ensure: z̄ (len pseudorandom bits z of odd weight, in a byte array).
1: z = GenPseudoRand(seed, len)
2: if weight(z) is even then z[0] = z[0] ⊕1
3: return z̄

Algorithm 6 WAES-CTR-PRF(s, wt, len)
Require: s (AES-CTR-PRF state), wt (32 bits), len
Ensure: A list (wlist) of wt bit-positions in [0, . . . , len− 1], updated s.
1: wlist= φ; valid_ctr = 0
2: while valid_ctr < wt do
3: (pos, s) = AES-CTR-PRF(s, 4)
4: if ((pos < len) AND (pos 6∈ wlist)) then
5: wlist = wlist ∪ {pos}; valid_ctr = valid_ctr + 1

6: return wlist, s

18

2.6.2 Efficient Hashing

In this section, we describe a parallelized hash technique (see [18, 19, 21]) that can
be used to accelerate the hashing process. We stress that a simple hash (e.g., SHA2
or SHA3 hash family) call can be used instead if (for interoperability reasons, for
instance) a standard hash function is preferred. Let hash be a hash function with
digest length of ld bytes that uses a compression function compress which consumes
a block of hbs bytes. The ParallelizedHash, with s slices, and pre-padding length
srem, is described in Alg. 7. In our accompanying implementations, we instantiated
hash with SHA-384.

Algorithm 7 ParallelizedHash
Require: an array of la bytes array[la− 1 : 0], such that la ≥ s > 0
Ensure: digest (ld bytes)
1: procedure ComputeSliceLen(la)
2: tmp := floor

(
la
s

)
− slicerem

3: α := floor
(tmp

hbs

)
4: return α× hbs + slicerem

5: procedure ParallelizedHash(array, la)
6: ls := ComputeSliceLen(la)
7: lrem := la - (ls× s)
8: for i := 0 to (s -1) do
9: slice[i] = array[(i+ 1)× ls− 1 : i× ls]

10: X[i] = hash(slice[i])

11: Y = array[la− 1: ls× s]
12: YX= Y ‖ X[s− 1] ‖ X[s− 2] . . . ‖ X[0]
13: return hash(YX)

3 Performance Analysis (2.B.2)
In this section, we discuss the performance of BIKE with respect to both latency
and communication bandwidth. The performance numbers presented in sections
3.1, 3.2 and 3.3 refer to our reference code implementation, while section 3.4 refers
to optimizations and their corresponding latency gains.

The platform used in the experiments was equipped with an Intel® CoreTM

i5-6260U CPU running at 1.80GHz. This platform has 32 GB RAM, 32K L1d and
L1i cache, 256K L2 cache, and 4,096K L3 cache. Intel® Turbo Boost and Intel®

19

Hyper-Threading technologies were all disabled. For each benchmark, the process
was executed 25 times to warm-up the caches, followed by 100 iterations that were
clocked (using the RDTSC instruction) and averaged. To minimize the effect of
background tasks running on the system, each such experiment was repeated 10
times, and averaged. Our code was compiled using gcc/g++ 5.4.0 (build 20160609)
with OpenSSL library (v1.0.2g, 1 Mar 2016) and NTL library (v6.2.1-1).

Regarding memory requirements, we remark that BIKE private keys are com-
posed by (h0, h1) ∈ R with |h0| = |h1| = w/2. Each element can either be
represented by (r) bits or, in a more compact way, by the w/2 non-zero positions,
yielding a (w2 · dlog2(r)e)-bits representation.

3.1 Performance of BIKE-1
3.1.1 Memory Cost

Table 4 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key w · dlog2(r)e 2, 130 2, 296 4, 384

Public key n 20, 326 43, 786 65, 498

Ciphertext n 20, 326 43, 786 65, 498

Table 4: Private Key, Public Key and Ciphertext Size in Bits.

3.1.2 Communication Bandwidth

Table 5 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. (f0, f1) n 20, 326 43, 786 65, 498

Resp. → Init. (c0, c1) n 20, 326 43, 786 65, 498

Table 5: Communication Bandwidth in Bits.

20

3.1.3 Latency

Operation Level 1 Level 3 Level 5

Key Generation 730, 025 1, 709, 921 2, 986, 647

Encapsulation 689, 193 1, 850, 425 3, 023, 816

Decapsulation 2, 901, 203 7, 666, 855 17, 483, 906

Table 6: Latency Performance in Number of Cycles.

3.2 Performance of BIKE-2
3.2.1 Memory Cost

Table 7 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key w · dlog2(r)e 2, 130 3, 296 4, 384

Public key r 10, 163 21, 893 32, 749

Ciphertext r 10, 163 21, 893 32, 749

Table 7: Private Key, Public Key and Ciphertext Size in Bits.

3.2.2 Communication Bandwidth

Table 8 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. f1 r 10, 163 21, 893 32, 749

Resp. → Init. c r 10, 163 21, 893 32, 749

Table 8: Communication Bandwidth in Bits.

21

3.2.3 Latency

Operation Level 1 Level 3 Level 5

Key Generation 6, 383, 408 22, 205, 901 58, 806, 046

Encapsulation 281, 755 710, 970 1, 201, 161

Decapsulation 2, 674, 115 7, 114, 241 16, 385, 956

Table 9: Latency Performance in Number of Cycles.

3.3 Performance of BIKE-3
3.3.1 Memory Cost

Table 10 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key w · dlog2(r)e 2, 010 3, 168 4, 522

Public key n 22, 054 43, 366 72, 262

Ciphertext n 22, 054 43, 366 72, 262

Table 10: Private Key, Public Key and Ciphertext Size in Bits.

3.3.2 Communication Bandwidth

Table 11 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. (f0, f1) n 22,054 43,366 72,262

Resp. → Init. (c0, c1) n 22,054 43,366 72,262

Table 11: Communication Bandwidth in Bits.

22

3.3.3 Latency

Operation Level 1 Level 3 Level 5

Key Generation 433, 258 1, 100, 372 2, 300, 332

Encapsulation 575, 237 1, 460, 866 3, 257, 675

Decapsulation 3, 437, 956 7, 732, 167 18, 047, 493

Table 12: Latency Performance in Number of Cycles.

3.4 Optimizations and Performance Gains
Optimizations for BIKE and corresponding performance gains are discussed next.

3.4.1 BIKE-2 Batch Key Generation

BIKE-2 key generation needs to compute a (costly) polynomial inversion, as de-
scribed in Section 2.2. To reduce the impact of this costly operation and still
benefit from the lower communication bandwidth offered by BIKE-2, we propose a
batch version of BIKE-2 key generation. The main benefit of this approach is that
only one polynomial inversion is computed for every N key generations, assuming
a predefined N ∈ N, instead of one inversion per key generation.

This technique is based on Montgomery’s trick [33] and assumes that multi-
plication is fairly less expensive than inversion. As a toy example, suppose that
one needs to invert two polynomials x, y ∈ R. Instead of computing the inverse of
each one separately, it is possible to compute them with one inversion and three
multiplications: set tmp = x · y, inv = tmp−1 and then recover x−1 = y · inv and
y−1 = x · inv. This can be easily generalized to N > 2 polynomials: in this case,
2N multiplications are needed and inverses need to be recovered one at a time
and in order. Because of this, our implementation requires the maintenance of a
global variable 0 ≤ keyindex < N that must be accessible only to the legitimate
party willing to generate BIKE-2 keys and increased after each key generation.
Algorithm 8 describes this optimization. Most of the work is done in the first
key generation (keyindex = 0). In this way, the amortized cost of BIKE-2 key
generation is reduced significantly as illustrated in Table 13.

23

Algorithm 8 BIKE-2 Batch Key Generation
Require: keyindex, N ∈ N, code parameters (n, k, w)
Ensure: (h0,0, . . . , h0,N−1, h1) ∈ RN+1, |h0,i|0≤i<N = |h1| = w

1: Sample h1
$←R such that |h1| = w

2: if keyindex = 0 then
3: Sample h0,i

$←R such that |h0,i| = w for 0 < i < N
4: prod0,0 = h0,0
5: prod0,i = prod0,i−1 · h0,i, for 1 ≤ i < N

6: prod1,N−1 = prod−10,N−1
7: prod1,i = prod1,i+1 · h0,i+1, for N − 2 ≥ i > 0
8: inv = prod1,1 · h0,1
9: else

10: inv = prod1,keyindex · prod0,keyindex−1
11: h← h1 · inv
12: keyindex← keyindex + 1

13: return (h0,keyindex, h1, h)

Operation Reference Batch Gain (%)

Level 1 6, 383, 408 1, 647, 843 74.18%

Level 3 22, 205, 901 4, 590, 452 79.32%

Level 5 58, 806, 046 9, 296, 144 84.19%

Table 13: Reference Versus Batch Key Generation (in cycles, for N = 100).

We stress that an implementer interested in the benefits offered by BIKE-2
batch key generation will need to meet the additional security requirements of
protecting from adversaries and securely updating the variables keyindex, prod0
and prod1. It is also important to stress that the keys generated through this batch
process are not related to each other. Finally, we remark that the use (or not) of
the batch optimization does not impact on the encapsulation and decapsulation
processes described in Section 2.2.

3.5 Additional Implementation
To illustrate the potential performance that BIKE code may achieve when running
on modern platforms, we report some results of an additional implementation.

24

These preliminary BIKE-1 and BIKE-2 results can be expected to be further im-
proved.

The performance is reported in processor cycles (lower is better), reflecting the
performance per a single core. The results were obtained with the same measure-
ment methodology declared in Section 3. The results are reported in Tables 14,
15, and 16 for BIKE-1, and in Tables 17, 18, and 19 for BIKE-2.

The additional implementation code. The core functionality was written
in x86 assembly, and wrapped by assisting C code. The implementations use
the PCLMULQDQ, AES−NI and the AVX2 and AVX512 architecture extensions.
The code was compiled with gcc (version 5.4.0) in 64-bit mode, using the "O3"
Optimization level, and run on a Linux (Ubuntu 16.04.3 LTS) OS. Details on the
implementation and optimized components are provided in [16], and the underlying
primitives are available in [20].

The benchmarking platform. The experiments were carried out on a plat-
form equipped with the latest 8th Generation Intel® CoreTM processor ("Kaby
Lake") - Intel® Xeon® Platinum 8124M CPU at 3.00 GHz Core® i5− 750. The
platform has 70 GB RAM, 32K L1d and L1i cache, 1, 024K L2 cache, and 25, 344K
L3 cache. It was configured to disable the Intel® Turbo Boost Technology, and
the Enhanced Intel Speedstep® Technology.

— Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 0.09 0.11 1.13 0.20 0.15 5.30

AVX512 0.09 0.11 1.02 0.19 0.13 4.86

Table 14: Performance (in millions of cycles) of BIKE-1 Level 1.

— Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 11.99 0.27 2.70 12.45 0.39 10.74

AVX512 11.99 0.25 2.14 12.34 0.34 8.93

Table 19: Performance (in millions of cycles) of BIKE-2 Level 5.

25

— Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 0.25 0.28 3.57 0.45 0.36 16.74

AVX512 0.25 0.27 2.99 0.45 0.33 15.26

Table 15: Performance (in millions of cycles) of BIKE-1 Level 3.

— Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 0.25 0.29 2.75 0.67 0.42 9.84

AVX512 0.25 0.27 2.24 0.69 0.36 8.27

Table 16: Performance (in millions of cycles) of BIKE-1 Level 5.

4 Known Answer Values – KAT (2.B.3)

4.1 KAT for BIKE-1
The KAT files of BIKE-1 are available in:

• req file: KAT/PQCkemKAT_BIKE1-Level1_2542.req

• rsp file: KAT/PQCkemKAT_BIKE1-Level1_2542.rsp

• req file: KAT/PQCkemKAT_BIKE1-Level3_4964.req

• rsp file: KAT/PQCkemKAT_BIKE1-Level3_4964.rsp

• req file: KAT/PQCkemKAT_BIKE1-Level5_8188.req

• rsp file: KAT/PQCkemKAT_BIKE1-Level5_8188.rsp

4.2 KAT for BIKE-2
The KAT files of BIKE-2 are available in:

• req file: KAT/PQCkemKAT_BIKE2-Level1_2542.req

26

— Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 4.38 0.09 1.12 4.46 0.12 5.55

AVX512 4.38 0.08 0.86 4.45 0.11 5.12

Table 17: Performance (in millions of cycles) of BIKE-2 Level 1.

— Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 7.77 0.17 2.88 8.04 0.27 17.36

AVX512 7.79 0.18 3.48 8.05 0.23 15.63

Table 18: Performance (in millions of cycles) of BIKE-2 Level 3.

• rsp file: KAT/PQCkemKAT_BIKE2-Level1_2542.rsp

• req file: KAT/PQCkemKAT_BIKE2-Level3_4964.req

• rsp file: KAT/PQCkemKAT_BIKE2-Level3_4964.rsp

• req file: KAT/PQCkemKAT_BIKE2-Level5_8188.req

• rsp file: KAT/PQCkemKAT_BIKE2-Level5_8188.rsp

4.3 KAT for BIKE-3
The KAT files of BIKE-3 are available in:

• req file: KAT/PQCkemKAT_BIKE3-Level1_2758.req

• rsp file: KAT/PQCkemKAT_BIKE3-Level1_2758.rsp

• req file: KAT/PQCkemKAT_BIKE3-Level3_5422.req

• rsp file: KAT/PQCkemKAT_BIKE3-Level3_5422.rsp

• req file: KAT/PQCkemKAT_BIKE3-Level5_9034.req

• rsp file: KAT/PQCkemKAT_BIKE3-Level5_9034.rsp

27

5 Known Attacks (2.B.5)
This section discusses the practical security aspects of our proposal.

5.1 Hard Problems and Security Reduction
In the generic (i.e. non quasi-cyclic) case, the two following problems were proven
NP-complete in [6].

Problem 1 (Syndrome Decoding – SD).
Instance: H ∈ F(n−k)×n

2 , s ∈ Fn−k2 , an integer t > 0.
Property: There exists e ∈ Fn2 such that |e| ≤ t and eHT = s.

Problem 2 (Codeword Finding – CF).
Instance: H ∈ F(n−k)×n

2 , an integer t > 0.
Property: There exists c ∈ Fn2 such that |c| = t and cHT = 0.

In both problems the matrix H is the parity check matrix of a binary linear
[n, k] code. Problem 1 corresponds to the decoding of an error of weight t and
Problem 2 to the existence of a codeword of weight t. Both are also conjectured to
be hard on average. This is argued in [1], together with results which indicate that
the above problems remain hard even when the weight is very small, i.e. t = nε,
for any ε > 0. Note that all known solvers for one of the two problems also solve
the other and have a cost exponential in t.

5.1.1 Hardness for QC codes.

Coding problems (SD and CF) in a QC-code are NP-complete, but the result does
not hold for when the index is fixed. In particular, for (2, 1)-QC codes or (3, 1)-QC
codes, which are of interest to us, we do not know whether or not SD and CF are
NP-complete.

Nevertheless, they are believed to be hard on average (when r grows) and the
best solvers in the quasi-cyclic case have the same cost as in the generic case up
to a small factor which never exceeds the order r of quasi-cyclicity. The problems
below are written in the QC setting, moreover we assume that the parity check
matrix H is in systematic form, that is the first (n0 − k0) × (n0 − k0) block of H
is the identity matrix. For instance, for (2, 1)-QC and (3, 1)-QC codes codes, the
parity check matrix (over R) respectively have the form

(
1 h

)
with h ∈ R, and

 1 0 h0

0 1 h1

 with h0, h1 ∈ R.

28

In our case, we are interested only by those two types of QC codes and to the three
related hard problems below:

Problem 3 ((2, 1)-QC Syndrome Decoding – (2, 1)-QCSD).
Instance: s, h in R, an integer t > 0.
Property: There exists e0, e1 in R such that |e0|+ |e1| ≤ t and e0 + e1h = s.

Problem 4 ((2, 1)-QC Codeword Finding – (2, 1)-QCCF).
Instance: h in R, an integer t > 0.
Property: There exists c0, c1 in R such that |c0|+ |c1| = t and c0 + c1h = 0.

Problem 5 ((3, 1)-QC Syndrome Decoding – (3, 1)-QCSD).
Instance: s0, s1, h0, h1 in R, an integer t > 0.
Property: There exists e0, e1, e2 in R such that |e0|+ |e1|+ |e2| ≤ t, e0 + e2h0 = s0
and e1 + e2h1 = s1.

As they are presented, those problems have the appearance of sparse polyno-
mials problem, but in fact they are equivalent to generic quasi-cyclic decoding and
codeword finding problems.

In the current state of the art, the best known techniques for solving those
problems are variants of Prange’s Information Set Decoding (ISD) [34]. We remark
that, though the best attacks consist in solving one of the search problems, the
security reduction of our scheme requires the decision version of Problem 2.

5.2 Information Set Decoding
The best asymptotic variant of ISD is due to May and Ozerov [30], but it has a
polynomial overhead which is difficult to estimate precisely. In practice, the BJMM
variant [5] is probably the best for relevant cryptographic parameters. The work
factor for classical (i.e. non quantum) computing of any variant A of ISD for
decoding t errors (or finding a word of weight t) in a binary code of length n and
dimension k can be written

WFA(n, k, t) = 2ct(1+o(1))

where c depends on the algorithm, on the code rate R = k/n and on the error rate
t/N . It has been proven in [36] that, asymptotically, for sublinear weight t = o(n)
(which is the case here as w ≈ t ≈

√
n), we have c = log2

1
1−R for all variants of

ISD.
In practice, when t is small, using 2ct with c = log2

1
1−R gives a remarkably

good estimate for the complexity. For instance, non asymptotic estimates derived

29

from [23] gives WFBJMM(65542, 32771, 264) = 2263.3 “column operations” which is
rather close to 2264. This closeness is expected asymptotically, but is circumstantial
for fixed parameters. It only holds because various factors compensate, but it holds
for most MDPC parameters of interest.

5.2.1 Exploiting the Quasi-Cyclic Structure.

Both codeword finding and decoding are a bit easier (by a polynomial factor) when
the target code is quasi-cyclic. If there is a word of weight w in a QC code then
its r quasi-cyclic shifts are in the code. In practice, this gives a factor r speedup
compared to a random code. Similarly, using Decoding One Out of Many (DOOM)
[35] it is possible to produce r equivalent instances of the decoding problem. Solving
those r instances together saves a factor

√
r in the workload.

5.2.2 Exploiting Quantum Computations.

Recall first that the NIST proposes to evaluate the quantum security as follows:

1. A quantum computer can only perform quantum computations of limited
depth. They introduce a parameter, MAXDEPTH, which can range from 240

to 296. This accounts for the practical difficulty of building a full quantum
computer.

2. The amount (or bits) of security is not measured in terms of absolute time
but in the time required to perform a specific task.

Regarding the second point, the NIST presents 6 security categories which
correspond to performing a specific task. For example Task 1, related to Category
1, consists of finding the 128 bit key of a block cipher that uses AES-128. The
security is then (informally) defined as follows:

Definition 5. A cryptographic scheme is secure with respect to Category k iff. any
attack on the scheme requires computational resources comparable to or greater than
those needed to solve Task k.

In what follows we will estimate that our scheme reaches a certain security
level according to the NIST metric and show that the attack takes more quan-
tum resources than a quantum attack on AES. We will use for this the following
proposition.

Proposition 1. Let f be a Boolean function which is equal to 1 on a fraction α of
inputs which can be implemented by a quantum circuit of depth Df and whose gate
complexity is Cf . Using Grover’s algorithm for finding an input x of f for which

30

f(x) = 1 can not take less quantum resources than a Grover’s attack on AES-N as
soon as

Df · Cf
α

≥ 2NDAES−N · CAES−N

where DAES−N and CAES−N are respectively the depth and the complexity of the
quantum circuit implementing AES-N.

This proposition is proved in Section B of the appendix. The point is that
(essentially) the best quantum attack on our scheme consists in using Grover’s
search on the information sets computed in Prange’s algorithm (this is Bernstein’s
algorithm [7]). Theoretically there is a slightly better algorithm consisting in quan-
tizing more sophisticated ISD algorithms [24], however the improvement is tiny and
the overhead in terms of circuit complexity make Grover’s algorithm used on top
of the Prange algorithm preferable in our case.

5.3 Defeating the GJS Reaction Attack
BIKE uses an ephemeral KEM key pair, i.e. a KEM key generation is performed
for each key exchange. As a result, the GJS reaction attack is inherently defeated:
a GJS adversary would have (at most) a single opportunity to observe decryption,
thus not being able to create statistics about different error patterns. We note that,
for efficiency purposes, an initiator may want to precompute KEM key pairs before
engaging in key exchange sessions. We remark that policies to securely store the
pregenerated KEM key pair must be in place, in order to avoid that an adversary
access a KEM key pair to be used in a future communication.

5.4 Choice of Parameters
We denote WF(n, k, t) the workfactor of the best ISD variant for decoding t errors
in a binary code of length n and dimension k. In the following we will consider
only codes of transmission rate 0.5, that is length n = 2r and dimension r. In a
classical setting, the best solver for Problem 3 has a cost WF(2r, r, t)/

√
r, the best

solver for Problem 4 has a cost WF(2r, r, w)/r, and the best solver for Problem 5
has a cost WF(3r, r, 3t/2)/

√
r. As remarked above, with WF(n, k, `) ≈ 2` log2

n
n−k

we obtain a crude but surprisingly accurate, parameter selection rule. We target
security levels corresponding to AES λ with λ ∈ {128, 192, 256}. To reach λ bits
of classical security, we choose w, t and r such that

• for BIKE-1 and BIKE-2, Problem 3 with block size r and weight t and
Problem 4 with block size r and weight w must be hard enough, that is

λ ≈ t− 1

2
log2 r ≈ w − log2 r. (2)

31

• for BIKE-3, Problem 5 with block size r and weight 3t/2 and Problem 3 with
block size r and weight w must be hard enough, that is

λ ≈ 3t

2
log2

3

2
− 1

2
log2 r ≈ w −

1

2
log2 r. (3)

Those equation have to be solved in addition with the constraint that r must be
large enough to decode t errors in (2, 1, r, w)-QC-MDPC code with a negligible
failure rate. Finally, we choose r such that 2 is primitive modulo r. First, this will
force r to be prime, thwarting the so-called squaring attack [26]. Also, it implies
that (Xr − 1) only has two irreducible factors (one of them being X − 1). This is
an insurance against an adversary trying to exploit the structure of F2[X]/〈Xr−1〉
when (Xr−1) has small factors, other than (X−1). This produces the parameters
proposed in the document.

The quantum speedup is at best quadratic for the best solvers of the problems
on which our system, from the arguments of §5.2.2, it follows our set of parameters
correspond the security levels 1, 3, and 5 described in the NIST call for quantum
safe primitives.

6 Formal Security (2.B.4)

6.1 IND-CPA Security
We start with the following definition, where we denote by K the domain of the
exchanged symmetric keys and by λ the security level of the scheme.

Definition 6. A key-encapsulation mechanism is IND-CPA (passively) secure if
the outputs of the two following games are computationally indistinguishable.

Game Greal Game Gfake

(sk, pk)← Gen(λ) (sk, pk)← Gen(λ)

(c,K)← Encaps(pk) (c,K)← Encaps(pk)

K∗
$←− K

Output (pp, pk, c,K) Output (pp, pk, c,K∗)

Rather than analyzing all three variants of BIKE separately, we state a single
theorem, and highlight the differences in the proof.

32

Theorem 2. BIKE is IND-CPA secure in the Random Oracle Model under the
(2, 1)-QCCF, (2, 1)-QCSD and (3, 1)-QCSD assumptions.

Proof. To begin, note that we model the hash function K as a random oracle. The
goal of our proof is to prove that an adversary distinguishing one game from another
can be exploited to break one or more of the problems above in polynomial time
(see Section 5.1 for definitions). Let A be a probabilistic polynomial time adversary
against the IND-CPA of our scheme and consider the following games where we
consider that A receives the encapsulation at the end of each game.

Game G1: This corresponds to an honest run of the protocol, and is the same as
Game Greal. In particular, the simulator has access to all keys and random-
ness.

Game G2: In this game, the simulator picks uniformly at random the public key,
specifically (f0, f1) for BIKE-1 and BIKE-3, and h for BIKE-2. The rest of
the game then proceeds honestly.

An adversary distinguishing between these two games is therefore able to
distinguish between a well-formed public key and a randomly-generated one.
Note that the public key in G1 corresponds to a valid (2, 1)-QCCF instance
for BIKE-1 and BIKE-2, and to a (2, 1)-QCSD instance for BIKE-3, while it
is random in G2. Thus we have respectively

AdvG1−G2(A) ≤ Adv(2,1)-QCCF(A′)

and

AdvG1−G2(A) ≤ Adv(2,1)-QCSD(A′)

where A′ is a polynomial time adversary for the (2, 1)-QCCF/ (2, 1)-QCSD
problem.

Game G3: Now, the simulator also picks uniformly at random the ciphertext:
again, this is (c0, c1) for BIKE-1 and BIKE-3, and c for BIKE-2. The encap-
sulated key K is still generated honestly.

If an adversary is able to distinguish game G2 from game G3, then it can
solve one of the QCSD problems.
In fact, for BIKE-2, the ciphertext is exactly a syndrome that follows the
(2, 1)-QCSD distribution in game G2 and the uniform distribution in G3.
The same can be easily shown for BIKE-1. Thus for both variants we have

33

AdvG2−G3(A) ≤ Adv(2,1)-QCSD(A′′)

where A′′ is a polynomial time adversary for the (2, 1)-QCSD problem.

As we will see, a similar situation occurs for BIKE-3. In fact, the adversary
has access to: c0

c1

 =

1 0 f0

0 1 f1

 (e, e0, e1)
>

Here (c0, c1) follows the (3, 1)-QCSD distribution in game G2 and the uni-
form distribution over (Fn2)2 in G3. Hence

AdvG2−G3(A) ≤ Adv(3,1)-QCSD(A′′)

where A′′ is a polynomial time adversary for the (3, 1)-QCSD problem.

Game G4: Finally, we replace the value of K with a uniformly random value K∗.
Since K is modeled as a random oracle, its output is pseudorandom, and an
adversary only has negligible advantage ε, so for all three variants

AdvG3−G4(A) ≤ ε.

Thus in the end we have

AdvIND-CPA(A) ≤ Adv(2,1)-QCCF(A′) + Adv(2,1)-QCSD(A′′) + ε. (4)

or

AdvIND-CPA(A) ≤ Adv(2,1)-QCSD(A′) + Adv(3,1)-QCSD(A′′) + ε. (5)

respectively for BIKE-1/BIKE-2 and BIKE-3.

34

6.2 Public Keys and Subcodes
In this section, we prove that one can efficiently sample an invertible element from
F2[X]/〈Xr−1〉 by taking any polynomial h $←F2[X]/〈Xr−1〉 such that |h| is odd.
If this element was not invertible, the public code produced in BIKE-1 and BIKE-3
would be a subcode of the private one.

Lemma 1. Let h ∈ F2[X] have even weight. Then h is not invertible modulo
Xr − 1.

Proof. We show that (X−1) | h by induction on |h|. For |h| = 0 trivially (X−1) | h.
Assume that (X − 1) | h whenever |h| = 2k for some k > 0. Now consider any
h ∈ F2[X] with weight |h| = 2(k + 1), and take two distinct terms Xi, Xj of h
such that i < j. Define h′ = h−Xi −Xj , so that |h′| = 2k. Then (X − 1) | h′ by
induction, i.e. h′ = (X − 1)h′′ for some h′′ ∈ F2[X]. Hence h = h′ + Xi + Xj =
(X − 1)h′′ + Xi(Xj−i + 1) = (X − 1)h′′ + Xi(X − 1)(Xj−i−1 + · · · + 1) = (X −
1)(h′′ +Xi(Xj−i−1 + · · ·+ 1)), and therefore (X − 1) | h.

Theorem 3. Let r a prime such that (Xr−1)/(X−1) ∈ F2[X] is irreducible. Then
any h ∈ F2[X] with deg(h) < r is invertible modulo Xr − 1 iff h 6= Xr−1 + · · ·+ 1
and |h| is odd.

Proof. Take a term Xi of h. Then
∣∣h+Xi

∣∣ = |h| − 1 is even, and by Lemma 1
(X − 1) | (h+Xi). Hence h mod (X − 1) = Xi mod (X − 1) = 1, meaning that h
is invertible modulo X − 1.

Now, since (Xr − 1)/(X − 1) = Xr−1 + · · ·+ 1 is irreducible, if deg(h) < r− 1
then gcd(h,Xr−1+ · · ·+1) = 1, and if deg(h) = r−1, then gcd(h,Xr−1+ · · ·+1) =
gcd(h+Xr−1 + · · ·+ 1, Xr−1 + · · ·+ 1) = 1, since deg(h+Xr−1 + · · ·+ 1) < r− 1.
Hence h is invertible modulo Xr−1 + · · ·+ 1.

Therefore, the combination of the inverses of h modulo X − 1 and modulo
Xr−1 + · · ·+ 1 via the Chinese remainder theorem is well defined, and by construc-
tion it is the inverse of h modulo (X − 1)(Xr−1 + · · ·+ 1) = Xr − 1.

Corollary 1. One can efficiently sample an invertible element from F2[X]/〈Xr−1〉
by taking any polynomial h $←F2[X]/〈Xr − 1〉 such that |h| is odd.

7 Advantages and Limitations (2.B.6)
This document presents BIKE, a suite of IND-CPA secure key encapsulation mech-
anisms (KEM) composed by BIKE-1, BIKE-2 and BIKE-3. Each variant has its
own pros and cons.

35

In common, all BIKE variants are based on quasi-cyclic moderate density
parity-check (QC-MDPC codes), which can be efficiently decoded through bit flip-
ping decoding techniques. This kind of decoder is extremely simple: it estimates
what are the positions most likely in error, flip them and observes whether the re-
sult is better (smaller syndrome weight) than before or not. This process converges
very quickly; in particular, Section 2.5 presents a 1-iteration bit flipping decoder.

Another characteristic in common to all BIKE variants is the fact that they rely
on ephemeral keys. This leads to two things: at first, it inherently defeats the GJS
reaction attack mentioned in section 5, which is an attack that needs to observe
a large number of decodings for a same private key (something impossible when
ephemeral keys are used). The other aspect of this choice is that key generation
must be efficient since it is executed at every key encapsulation. Previous works
based on QC-MDPC codes compute a polynomial inversion operation in order to
obtain a QC-MDPC public key in systematic form. The polynomial inversion is
an expensive operation. BIKE-1 completely avoids the polynomial inversion by
not relying on public keys in systematic form. Instead, it hides the private sparse
structure by multiplying it by a dense polynomial of odd weight sampled uniformly
at random. This leads to an increased public key size but results in a very efficient
key generation process (it becomes the fastest process among key generation, en-
capsulation and decapsulation operations). BIKE-2 uses public keys in systematic
form, but thanks to our batch key generation technique discussed in Section 3.4,
the amortized cost can decrease up to 84%, becoming less expensive than the bit
flipping decoder. Besides the bit flipping algorithm and the eventual polynomial
inversion (restricted to BIKE-2), all other operations in the BIKE suite consist of
simple products of binary vectors, an operation that can be easily optimized for all
sorts of hardware and software applications.

Regarding communication bandwidth, in BIKE-1 and BIKE-3 all public keys,
private keys and cryptograms are n bits long, corresponding to the bandwidth
of the messages exchanged by the parties. BIKE-2 offers smaller public keys and
ciphertexts, r bits only, corresponding to the bandwidth of the messages exchanged
by the parties as well. Two messages are exchanged per key encapsulation of same
size (either n or r bits). In practice, these numbers range from 1.24 KB per message
in BIKE-2 security level 1, up to 8.82 KB per message in BIKE-3 security level 5.
These numbers seem fairly reasonable when compared to the the average size of a
page in the Internet (currently near 2MB [2]), just as an example.

Regarding security, all BIKE variants rely their security on very well-known
coding-theory problems: quasi-cyclic syndrome decoding and quasi-cyclic code-
word finding problems. The best strategies to solve these problems are based on

36

Information Set Decoding (ISD) techniques, a research field that has a very long
history (Prange’s seminal work dates back 1962) and which has seem very little
improvement along the years. Moreover, we show that in the quantum setting,
Grover’s algorithm used on top of the seminal Prange ISD algorithm is still the
most preferable choice in our case.

One point of attention in BIKE is the fact that, nowadays, the bit flipping
decoding techniques do not attain a negligible decoding failure rate. This makes it
challenge to achieve higher security notions such as IND-CCA. This may also limits
the usage of BIKE in certain applications such as, for instance, Hybrid Encryption,
where both KEM and DEM need to satisfy IND-CCA security to guarantee chosen-
ciphertext security for the hybrid encryption scheme. We stress however that it
seems possible (although not simple) to prove that certain decoding techniques can
in fact attain negligible decoding failure rates for QC-MDPC codes.

Regarding intellectual property, to the best of our knowledge, BIKE-1 and
BIKE-2 are not covered by any patent. BIKE-3 is covered by a patent whose
owners are willing to grant a non-exclusive license for the purpose of implementing
the standard without compensation and under reasonable terms and conditions that
are demonstrably free of any unfair discrimination, as denoted in the accompanying
signed statements. We emphasize that BIKE-1 and BIKE-2 are not covered by
the aforementioned patent, and that the BIKE team is willing to drop BIKE-3 if
this ever becomes a disadvantage when comparing our suite with other proposals.

Overall, taking all these considerations into account, we believe that BIKE is
a promising candidate for post-quantum key exchange standardization.

8 Acknowledgments
Shay Gueron, Tim Güneysu, Nicolas Sendrier and Jean-Pierre Tillich were sup-
ported in part by the Commission of the European Communities through the Hori-
zon 2020 program under project number 645622 (PQCRYPTO). Shay Gueron was
also partially supported by the Israel Science Foundation (grant No. 1018/16).
Paulo S. L. M. Barreto was partially supported by Intel and FAPESP through
the project “Efficient Post-Quantum Cryptography for Building Advanced Secu-
rity Applications” (grant No. 2015/50520-6). The logo presented in the cover page
was designed by Szilard Nagy. The reference code was developed by Nir Druker,
Shay Gueron, Rafael Misoczki, Tim Güneysu, Tobias Oder and Slim Bettaieb.

37

References
[1] Michael Alekhnovich. More on average case vs approximation complexity. In

FOCS 2003, pages 298–307. IEEE, 2003.

[2] HTTP Archive. Http archive report, 2017. http://httparchive.org/
trends.php.

[3] Elaine B Barker and John Michael Kelsey. Recommendation for random num-
ber generation using deterministic random bit generators (revised). US Depart-
ment of Commerce, Technology Administration, National Institute of Stan-
dards and Technology, Computer Security Division, Information Technology
Laboratory, 2012.

[4] Paulo S. L. M. Barreto, Shay Gueron, Tim Guneysu, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, and Jean-Pierre Tillich. CAKE: Code-based Al-
gorithm for Key Encapsulation. Cryptology ePrint Archive, Report 2017/757,
2017. https://eprint.iacr.org/2017/757.pdf. To appear in the 16th IMA
International Conference on Cryptography and Coding.

[5] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1+1=0 improves information set
decoding. In D. Pointcheval and T. Johansson, editors, Advances in Cryptology
- EUROCRYPT 2012, volume 7237 of LNCS, pages 520–536. Springer, 2012.

[6] Elwyn Berlekamp, Robert J. McEliece, and Henk van Tilborg. On the inherent
intractability of certain coding problems (corresp.). Information Theory, IEEE
Transactions on, 24(3):384 – 386, may 1978.

[7] Daniel J Bernstein. Grover vs. McEliece. In International Workshop on Post-
Quantum Cryptography, pages 73–80. Springer, 2010.

[8] Céline Blondeau, Benoît Gérard, and Jean-Pierre Tillich. Accurate estimates
of the data complexity and success probability for various cryptanalyses. Des.
Codes Cryptogr., 59(1-3):3–34, 2011.

[9] Pierre-Louis Cayrel, Gerhard Hoffmann, and Edoardo Persichetti. Efficient
implementation of a cca2-secure variant of McEliece using generalized Srivas-
tava codes. In Proceedings of PKC 2012, LNCS 7293, Springer-Verlag, pages
138–155, 2012.

[10] Julia Chaulet. Étude de cryptosystèmes à clé publique basés sur les codes
MDPC quasi-cycliques. Thèse de doctorat, University Pierre et Marie Curie,
March 2017.

38

http://httparchive.org/trends.php
http://httparchive.org/trends.php
https://eprint.iacr.org/2017/757.pdf

[11] Julia Chaulet and Nicolas Sendrier. Worst case QC-MDPC decoder for
McEliece cryptosystem. In Information Theory (ISIT), 2016 IEEE Inter-
national Symposium on, pages 1366–1370. IEEE, 2016.

[12] Tung Chou. Qcbits: Constant-time small-key code-based cryptography. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813
of LNCS, pages 280–300. Springer, 2016.

[13] Thomas M. Cover and Joy A. Thomas. Information Theory. Wiley Series in
Telecommunications. Wiley, 1991.

[14] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. SIAM
J. Comput., 33(1):167–226, January 2004.

[15] Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Ouroboros:
A simple, secure and efficient key exchange protocol based on coding theory.
In Tanja Lange and Tsuyoshi Takagi, editors, PQCrypto 2017, volume 10346
of LNCS, pages 18–34. Springer, 2017.

[16] Nir Drucker and Shay Gueron. A toolbox for software optimization of qc-
mdpc code-based cryptosystems. Cryptology ePrint Archive, December 2017.
http://eprint.iacr.org/.

[17] R. G. Gallager. Low-Density Parity-Check Codes. PhD thesis, M.I.T., 1963.

[18] Shay Gueron. A j-lanes tree hashing mode and j-lanes SHA-256. Journal of
Information Security, 4(01):7, 2013.

[19] Shay Gueron. Parallelized hashing via j-lanes and j-pointers tree modes, with
applications to SHA-256. Journal of Information Security, 5(03):91, 2014.

[20] Shay Gueron. A-toolbox-for-software-optimization-of-qc-mdpc-code-based-
cryptosystems, 2017. https://github.com/Shay-Gueron/A-toolbox-for-
software-optimization-of-QC-MDPC-code-based-cryptosystems.

[21] Shay Gueron and Vlad Krasnov. Simultaneous hashing of multiple messages.
Journal of Information Security, 3(04):319, 2012.

[22] Qian Guo, Thomas Johansson, and Paul Stankovski. A Key Recovery Attack
on MDPC with CCA Security Using Decoding Errors, pages 789–815. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

39

http://eprint.iacr.org/
https://github.com/Shay-Gueron/A-toolbox-for-software-optimization-of-QC-MDPC-code-based-cryptosystems
https://github.com/Shay-Gueron/A-toolbox-for-software-optimization-of-QC-MDPC-code-based-cryptosystems

[23] Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of infor-
mation set decoding. Cryptology ePrint Archive, Report 2013/162, 2013.
http://eprint.iacr.org/2013/162.

[24] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decoding
algorithms. In Tanja Lange and Tsuyoshi Takagi, editors, PQCrypto 2017,
volume 10346 of LNCS, pages 69–89. Springer, 2017.

[25] Gil Kalai and Nathan Linial. On the distance distribution of codes. IEEE
Trans. Inform. Theory, 41(5):1467–1472, September 1995.

[26] Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud
Ahmadian-Attari, and Mohammad Reza Aref. Squaring attacks on McEliece
public-key cryptosystems using quasi-cyclic codes of even dimension. Designs,
Codes and Cryptography, 80(2):359–377, 2016.

[27] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-
Correcting Codes. North–Holland, Amsterdam, fifth edition, 1986.

[28] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology - EUROCRYPT’93, volume 765 of LNCS, pages 386–397, Lofthus,
Norway, May 1993. Springer.

[29] Ingo Von Maurich, Tobias Oder, and Tim Güneysu. Implementing qc-mdpc
mceliece encryption. ACM Trans. Embed. Comput. Syst., 14(3):44:1–44:27,
April 2015.

[30] Alexander May and Ilya Ozerov. On computing nearest neighbors with ap-
plications to decoding of binary linear codes. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part I, vol-
ume 9056 of LNCS, pages 203–228. Springer, 2015.

[31] Daniele Micciancio. Improving lattice based cryptosystems using the hermite
normal form. Cryptography and lattices, pages 126–145, 2001.

[32] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. L.S.M. Barreto. MDPC-
McEliece: New McEliece variants from moderate density parity-check codes.
In IEEE International Symposium on Information Theory – ISIT’2013, pages
2069–2073, Istambul, Turkey, 2013. IEEE.

[33] Peter L Montgomery. Speeding the pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987.

[34] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions, IT-8:S5–S9, 1962.

40

http://eprint.iacr.org/2013/162

[35] Nicolas Sendrier. Decoding one out of many. In B.-Y. Yang, editor, PQCrypto
2011, volume 7071 of LNCS, pages 51–67. Springer, 2011.

[36] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set de-
coding for a sub-linear error weight. In Tsuyoshi Takagi, editor, PQCrypto
2016, volume 9606 of LNCS, pages 144–161. Springer, 2016.

[37] Christof Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev.
A, 60:2746–2751, October 1999.

41

A Proof of Theorem 1
Let us recall the theorem we want to prove.

Theorem 1. Under assumption 1, the probability Perr that the bit flipping algo-
rithm fails to decode with fixed threshold τ = 1

2 is upper-bounded by

Perr ≤
1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t),

where ε def
= e−

2wt
n .

We will denote in the whole section by h(x) the entropy (in nats) of a Bernoulli
random variable of parameter x, that is h(x)

def
= −x lnx− (1− x) ln(1− x).

A.1 Basic tools
A particular quantity will play a fundamental role here, the Kullback-Leibler di-
vergence (see for instance [13])

Definition 7. Kullback-Leibler divergence
Consider two discrete probability distributions p and q defined over a same discrete
space X . The Kullback-Leibler divergence between p and q is defined by

D(p||q) =
∑
x∈X

p(x) ln
p(x)

q(x)
.

We overload this notation by defining for two Bernoulli distributions B(p) and B(q)
of respective parameters p and q

D(p||q) def
= D(B(p)||B(q)) = p ln

(
p

q

)
+ (1− p) ln

(
1− p
1− q

)
.

We use the convention (based on continuity arguments) that 0 ln 0
p = 0 and p ln p

0 =
∞.

We will need the following approximations/results of the Kullback-Leibler di-
vergence

Lemma 2. For any δ ∈ (−1/2, 1/2) we have

D

(
1

2

∣∣∣∣∣∣∣∣12 + δ

)
= −1

2
ln(1− 4δ2). (6)

42

For constant α ∈ (0, 1) and δ going to 0 by staying positive, we have

D(α||δ) = −h(α)− α ln δ +O(δ). (7)

For 0 < y < x and x going to 0 we have

D(x||y) = x ln
x

y
+ x− y +O

(
x2
)
. (8)

Proof. Let us first prove (6).

D

(
1

2

∣∣∣∣∣∣∣∣12 + δ

)
=

1

2
ln

1/2

1/2 + δ
+

1

2
ln

1/2

1/2− δ

P = −1

2
ln(1 + 2δ)− 1

2
ln(1− 2δ)

= −1

2
ln(1− 4δ2).

To prove (7) we observe that

D(α||δ) = α ln
(α
δ

)
+ (1− α) ln

(
1− α
1− δ

)
= −h(α)− α ln δ − (1− α) ln(1− δ)
= −h(α)− α ln δ +O(δ).

For the last estimate we proceed as follows

D(x||y) = x ln
x

y
+ (1− x) ln

1− x
1− y

= x ln
x

y
− (1− x)

(
−x+ y +O

(
x2
))

= x ln
x

y
+ x− y +O

(
x2
)
.

The Kullback-Leibler appears in the computation of large deviation exponents.
In our case, we will use the following estimate which is well known and which can
be found for instance in [8]

Lemma 3. Let p be a real number in (0, 1) and X1, . . . Xn be n independent
Bernoulli random variables of parameter p. Then, as n tends to infinity:

P(X1 + . . . Xn ≥ τn) =
(1− p)

√
τ

(τ − p)
√

2πn(1− τ)
e−nD(τ ||p)(1 + o(1)) for p < τ < 1,(9)

P(X1 + . . . Xn ≤ τn) =
p
√

1− τ
(p− τ)

√
2πnτ

e−nD(τ ||p)(1 + o(1)) for 0 < τ < p. (10)

43

A.2 Estimation of the probability that a parity-check
equation of weight w gives an incorrect information

A.2.1 Main result

We start our computation by computing the probability that a parity-check equa-
tion gives an incorrect information about a bit. We say here that a parity-check
equation h (viewed as a binary word) gives an incorrect information about an error
bit ei that is involved in h if 〈h, e〉 6= ei, where e is the error. This is obtained
through the following lemma.

Lemma 4. Consider a word h ∈ Fn2 of weight w and an error e ∈ Fn2 of weight
t chosen uniformly at random. Assume that both w and t are of order

√
n: w =

Θ(
√
n) and t = Θ(

√
n). We have

Pe(〈h, e〉 = 1) =
1

2
− 1

2
e−

2wt
n

(
1 +O

(
1√
n

))
.

Remark 2. Note that this probability is in this case of the same order as the
probability taken over errors e whose coordinates are drawn independently from a
Bernoulli distribution of parameter t/n. In such a case, from the piling-up lemma
[28] we have

Pe(〈h, e〉 = 1) =
1−

(
1− 2t

n

)w
2

=
1

2
− 1

2
ew ln(1−2t/n)

=
1

2
− 1

2
e−

2wt
n

(
1 +O

(
1√
n

))
.

Let us bring now the following fundamental quantities for b ∈ {0, 1}

pb
def
= P(〈h, e〉 = 1|e1 = b) (11)

where without loss of generality we assume that h1 = 1 and e is an error of weight
t and length n chosen uniformly at random.

The proof of this lemma will be done in the following subsection. From this
lemma it follows directly that

Corollary 2. Assume that w = Θ(
√
n) and t = Θ(

√
n). Then

pb =
1

2
− (−1)bε

(
1

2
+O

(
1√
n

))
, (12)

where ε def
= e−

2wt
n .

44

A.2.2 Proof of Lemma 4

The proof involves properties of the Krawtchouk polynomials. We recall that the
(binary) Krawtchouk polynomial of degree i and order n (which is an integer),
Pni (X) is defined for i ∈ {0, · · · , n} by:

Pni (X)
def
=

(−1)i

2i

i∑
j=0

(−1)j
(
X

j

)(
n−X
i− j

)
where

(
X

j

)
def
=

1

j!
X(X−1) · · · (X−j+1).

(13)
Notice that it follows on the spot from the definition of a Krawtchouk polynomial
that

Pnk (0) =
(−1)k

(
n
k

)
2k

. (14)

Let us define the bias δ by

δ
def
= 1− 2Pe(〈h, e〉 = 1).

In other words Pe(〈h, e〉 = 1) = 1
2(1 − δ). These Krawtchouk polynomials are

readily related to δ. We first observe that

Pe(〈h, e〉 = 1) =

∑w
j=1
j odd

(
t
j

)(
n−t
w−j
)

(
n
w

) .

Moreover by observing that
∑w

j=0

(
t
j

)(
n−t
w−j
)

=
(
n
w

)
we can recast the following

evaluation of a Krawtchouk polynomial as

(−2)w(
n
w

) Pnw(t) =

∑w
j=0(−1)j

(
t
j

)(
n−t
w−j
)(

n
w

)
=

∑w
j=0
j even

(
t
j

)(
n−t
w−j
)
−
∑w

j=1
j odd

(
t
j

)(
n−t
w−j
)

(
n
w

)
=

(
n
w

)
− 2

∑w
j=1
j odd

(
t
j

)(
n−t
w−j
)

(
n
w

)
= 1− 2Pe(〈h, e〉 = 1)

= δ. (15)

To simplify notation we will drop the superscript n in the Krawtchouk polynomial
notation. It will be chosen as the length of the MDPC code when will use it in our
case. An important lemma that we will need is the following one.

45

Lemma 5. For all x in {1, . . . , t}, we have

Pw(x)

Pw(x− 1)
=

(
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)
.

Proof. This follows essentially from arguments taken in the proof of [27][Lemma
36, §7, Ch. 17]. The result we use appears however more explicitly in [25][Sec. IV]
where it is proved that if x is in an interval of the form

[
0, (1− α)

(
n/2−

√
w(n− w)

)]
for some constant α ∈ [0, 1) independent of x, n and w, then

Pw(x+ 1)

Pw(x)
=

(
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)
.

For our choice of t this condition is met for x and the lemma follows immediately.

We are ready now to prove Lemma 4.

Proof of Lemma 4. We start the proof by using (15) which says that

δ =
(−2)w(

n
w

) Pnw(t).

We then observe that
(−2)w(

n
w

) Pnw(t) =
(−2)w(

n
w

) Pnw(t)

Pnw(t− 1)

Pnw(t− 1)

Pnw(t− 2)
. . .

Pnw(1)

Pnw(0)
Pnw(0)

=
(−2)w(

n
w

) ((
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)

)t
Pnw(0) (by Lemma 5)

=

(
1 +O

(
1

n

))t(n− 2w +
√

(n− 2w)2 − 4w(n− w)

2(n− w)

)t
(by (14))

= e
t ln

(
1−2ω+

√
(1−2ω)2−4ω(1−ω)
2(1−ω)

)(
1 +O

(
t

n

))
where ω def

=
w

n

= e
t ln

(
1−2ω+1−4ω+O(ω2)

2(1−ω)

)(
1 +O

(
t

n

))

= e
t ln

(
1−3ω+O(ω2)

1−ω

)(
1 +O

(
t

n

))
= e

−2tω+O
(
tw2

n2

)(
1 +O

(
t

n

))
= e−

2wt
n

(
1 +O

(
1√
n

))
,

46

where we used at the last equation that t = θ(
√
n) and w = θ(

√
n).

A.3 Estimation of the probability that a bit is incor-
rectly estimated by the first step of the bit flipping
algorithm

We are here in the model where every bit is involved in w/2 parity-check equations
and each parity-check equation is of weight w. We assume that the bit-flipping
algorithm consists in computing for each bit i the syndrome bits corresponding
to the parity-checks involving i and taking the majority vote of these syndrome
bits. We model each vote of a parity-check by a Bernoulli variable equal to 1 if the
information coming from this random variable says that the bit should be flipped.
The parameter of this Bernoulli random variable depends on whether or not i is
incorrect. When i is correct, then the Bernoulli random variable is of parameter
p0. When i is incorrect, then the Bernoulli random variable is of parameter p1. We
bring in the quantities

q0
def
= P(flip the bit|bit was correct) (16)

q1
def
= P(stay with the same value|bit was incorrect) (17)

Lemma 6. For b ∈ {0, 1}, we have

qb = O

(
(1− ε2)w/4√

πwε

)
.

Proof. For b ∈ {0, 1}, we let Xb
1, Xb

2, . . . , X
b
w/2 be independent random variables

of parameter pb. We obviously have

q0 ≤ P(

w/2∑
i=1

X0
i ≥ w/4)

q1 ≤ P(

w/2∑
i=1

X1
i ≤ w/4).

47

By using Lemma 3 we obtain for q0

q0 ≤
(1− p0)

√
1
2

(12 − p0)
√

2πw2 (1− 1
2)
e−w/2D(1

2 ||p0)

≤ (1− p0)√
πwε

e−w/2D(1
2 || 12− 1

2
ε(1+O(1/w))) (18)

≤ (1− p0)√
πwε

e
w(ln(1−ε2)+O(1

w))
4 (19)

≤ O

(
(1− ε2)w/4√

πwε

)
(20)

Whereas for q1 we also obtain

q1 ≤
p1

√
1
2

(p1 − 1
2)
√

2πw2
1
2

e−w/2D(1
2 ||p1) (21)

≤ O

(
(1− ε2)w/4√

πwε

)
(22)

A.4 Proof of Theorem 1
We are ready now to prove Theorem 1. We use here the notation of Assumption
1. Recall that e0 denotes the true error vector. e1 is the value of vector e after one
round of iterative decoding in Algorithm 1. We let ∆e

def
= e0+e1. CallX0

1 , . . . , X
0
n−t

the values after one round of iterative decoding of the n−t bits which were without
error initially (that is the bits i such that e0i = 0) . Similarly let X1

1 , . . . , X
1
t be

the values after one round of iterative decoding of the t bits which were initially in
error (i.e. for which e0i = 1). We let

S0
def
= X0

1 + · · ·+X0
n−t

S1
def
= X1

1 + · · ·+X1
t

S0 is the number of errors that were introduced after one round of iterative decoding
coming from flipping the n− t bits that were initially correct, that is the number
of i’s for which e0i = 0 and e1i = 1. Similarly S1 is the number of errors that are
left after one round of iterative decoding coming from not flipping the t bits that
were initially incorrect, that is the number of i’s for which e0i = 1 and e1i = 0.

48

Let S be the weight of ∆e. By assumption 1 we have

Perr ≤ P(|∆e| ≥ αt) = P(S ≥ αt),

for some α in (0, 1). We have

P(S ≥ αt) ≤ P(S0 ≥ αt/2 ∪ S1 ≥ αt/2)

≤ P(S0 ≥ αt/2) + P(S1 ≥ αt/2)

By Assumption 1, S0 is the sum of n − t Bernoulli variables of parameter q0. By
applying Lemma 3 we obtain

P(S0 ≥ αt/2) ≤
(1− q0)

√
αt

2(n−t)

(αt
2(n−t) − q0)

√
2π(n− t)(1− αt

2(n−t))
e
−(n−t)D

(
αt

2(n−t)

∣∣∣∣∣∣q0)

≤ 1√
απt

e
−(n−t)D

(
αt

2(n−t)

∣∣∣∣∣∣q0) (23)

We observe now that

D

(
αt

2(n− t)

∣∣∣∣∣∣∣∣q0) ≥ D
(

αt

2(n− t)

∣∣∣∣∣
∣∣∣∣∣O
(

(1− ε2)w/4√
πwε

))
(24)

where we used the upper-bound on q0 coming from Lemma 6 and the fact that
D(x||y) ≥ D(x||y′) for 0 < y < y′ < x < 1. By using this and Lemma 2, we deduce

D

(
αt

2(n− t)

∣∣∣∣∣∣∣∣q0) ≥ αt

2(n− t)
ln

(
αt

2(n− t)

)
− αt

2(n− t)
ln

(
O

(
(1− ε2)w/4

ε
√
w

))
+O

(
αt

2(n− t)

)
≥ αt

2(n− t)
ln

(
t
√
w

n

)
− αtw

8(n− t)
ln
(
1− ε2

)
+O

(
t

n

)
≥ − αt

8(n− t)
lnn− αtw

8(n− t)
ln
(
1− ε2

)
+O

(
t

n

)
.

By plugging in this expression in (23) we obtain

P(S0 ≥ αt/2) ≤ 1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t)

On the other hand we have

P(S1 ≥ αt/2) ≤
(1− q1)

√
α
2

(α2 − q1)
√

2πt(1− α
2)
e−tD(α2 ||q1)

≤ 1√
απt

e−tD(α2 ||q1) (25)

49

Similarly to what we did above, by using the upper-bound on q1 of Lemma 6 and
D(x||y) ≥ D(x||y′) for 0 < y < y′ < x < 1, we deduce that

D
(α

2

∣∣∣∣∣∣q1) ≥ D(α
2

∣∣∣∣∣
∣∣∣∣∣O
(

(1− ε2)w/4

ε
√
w

))

By using together with Lemma 2 we obtain

D
(α

2

∣∣∣∣∣∣q1) ≥ −h(α/2)− α

2
ln

(
O

(
(1− ε2)w/4

ε
√
w

))
+O

(
(1− 4ε2)w/4

ε
√
w

)
≥ −αw

8
ln
(
1− ε2

)
+
α

8
lnn+O (1) .

By using this lower-bound in (25), we deduce

P(S1 ≥ αt/2) ≤ 1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t).

B Proof of Proposition 1
Let us first recall the proposition we want to prove

Proposition 1. Let f be a Boolean function which is equal to 1 on a fraction α of
inputs which can be implemented by a quantum circuit of depth Df and whose gate
complexity is Cf . Using Grover’s algorithm for finding an input x of f for which
f(x) = 1 can not take less quantum resources than a Grover’s attack on AES-N as
soon as

Df · Cf
α

≥ 2NDAES−N · CAES−N

where DAES−N and CAES−N are respectively the depth and the complexity of the
quantum circuit implementing AES-N.

Proof. Following Zalka[37], the best way is to perform Grover’s algorithm sequen-
tially with the maximum allowed number of iterations in order not to go beyond
MAXDEPTH. Grover’s algorithm consists of iterations of the following procedure:

• Apply U : |0〉|0〉 →
∑

x∈{0,1}n
1

2n/2
|x〉|f(x)〉.

• Apply a phase flip on the second register to get
∑

x∈{0,1}n
1

2n/2
(−1)f(x)|x〉|f(x)〉.

• Apply U †.

50

If we perform I iterations of the above for I ≤ 1√
α
then the winning probability is

upper bounded by αI2. In our setting, we can perform I = MAXDEPTH
Df

sequentially
before measuring, and each iteration costs time Cf . At each iteration, we succeed
with probability αI2 and we need to repeat this procedure 1

αI2
times to get a result

with constant probability. From there, we conclude that the total complexity Q is:

Q =
1

αI2
· I · Cf =

Df · Cf
αMAXDEPTH

. (26)

A similar reasoning performed on using Grover’s search on AES-N leads to a quan-
tum complexity

QAES−N =
2NDAES−N · CAES−N

MAXDEPTH
. (27)

The proposition follows by comparing (26) with (27).

51

	Introduction
	Notation and Preliminaries
	Quasi-Cyclic Codes
	Definition
	Representation of QC Codes

	QC-MDPC Codes
	Definition
	Decoding - The Bit Flipping Algorithm

	Key Encapsulation Mechanisms

	Algorithm Specification (2.B.1)
	BIKE-1
	KeyGen
	Encaps
	Decaps

	BIKE-2
	KeyGen
	Encaps
	Decaps

	BIKE-3
	KeyGen
	Encaps
	Decaps

	Suggested Parameters
	Decoding
	One-Round Decoding

	Auxiliary Functions
	Pseudorandom Random Generators
	Efficient Hashing

	Performance Analysis (2.B.2)
	Performance of BIKE-1
	Memory Cost
	Communication Bandwidth
	Latency

	Performance of BIKE-2
	Memory Cost
	Communication Bandwidth
	Latency

	Performance of BIKE-3
	Memory Cost
	Communication Bandwidth
	Latency

	Optimizations and Performance Gains
	BIKE-2 Batch Key Generation

	Additional Implementation

	Known Answer Values – KAT (2.B.3)
	KAT for BIKE-1
	KAT for BIKE-2
	KAT for BIKE-3

	Known Attacks (2.B.5)
	Hard Problems and Security Reduction
	Hardness for QC codes.

	Information Set Decoding
	Exploiting the Quasi-Cyclic Structure.
	Exploiting Quantum Computations.

	Defeating the GJS Reaction Attack
	Choice of Parameters

	Formal Security (2.B.4)
	IND-CPA Security
	Public Keys and Subcodes

	Advantages and Limitations (2.B.6)
	Acknowledgments
	Proof of Theorem 1
	Basic tools
	Estimation of the probability that a parity-check equation of weight w gives an incorrect information
	Main result
	Proof of Lemma 4

	Estimation of the probability that a bit is incorrectly estimated by the first step of the bit flipping algorithm
	Proof of Theorem 1

	Proof of Proposition 1

