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Abstract

Optical flow computation consists in recovering the ap-
parent motion field between two images with overlapping
fields of view. This paper focuses on a subset of optical flow
problems, called epipolar flow, where the camera moves in-
side a scene containing no moving objects. Accurate solu-
tions exist but their high computational complexities make
them non suitable for a large panel of real-time applica-
tions.

We propose a new epipolar flow approach with low com-
putational complexity achieving the best error rate on the
non dense KITTI optical flow 2012 benchmark and running
1000x faster than the second ranked approach. On a 4core
3GHz processor, our multi-core implementation computes
a semi dense optical flow field of a 450k pixels image in
260ms. It is a significant advance in reducing the running
time of accurate optical flow computation.

To achieve such results we rely on the epipolar con-
straints and the local coherence of the optical flow not only
to increase accuracy but also to reduce computational com-
plexity.

Our contribution is twofold. It is first, the acceleration
and the accuracy increase of current RANSAC based visual
odometry algorithms via the estimation of a robust sparse
flow field, well distributed over the image domain. And then,
the estimation of a semi dense flow field leveraging epipo-
lar constraints and a propagation scheme to speedup the
estimation and reduce error rates.

1. Introduction

With the raise of augmented reality, virtual reality and
robotics, capturing the geometry of a real-world 3d environ-
ment has attracted considerable research efforts in academic
and industrial laboratories.

The problem consists in computing the 3d localization
of objects observed using an on-board sensor. The ultimate
goal of this challenge is to achieve the best accuracy while
reducing the manufacturing cost and power consumption

[13].

As of the year 2016, the most precise sensors are LI-
DARs. They measure the depth of neighboring object by
timing the round trip of a light pulse. Their main disadvan-
tage is their high price tag and high power consumption.

Much cheaper than LIDARs, active structured-light 3D
scanners are well-spread: the Microsoft Kinect V1 [20],
and other portable devices such as Google Tango [6]. They
work well in indoor and small range environments but their
accuracy drop under the sunlight and large distances. This
makes them unsuitable for autonomous driving applications
for example. The second problem of these sensors is their
high power consumption due to the emission of the struc-
tured light.

The cheapest sensors are the RGB cameras. However,
they do not provide depth information, then different meth-
ods to recover it were proposed. They usually involve one
or two steps: First, if they are not already known, the esti-
mation of the relative camera poses (also known as visual
odometry), and the optical flow computation. The power
consumption of such systems is smaller than LIDAR and
structured-light scanners but their accuracy highly depends
on the texture of the scene. Furthermore, the higher com-
plexity of the problem makes it harder to build fast and ac-
curate applications, especially for the non-calibrated case
and where the relative poses of the different points of view
are unknown.

In this paper, we focus on epipolar flow. In this paper,
we focus on epipolar flow. It consists in the estimation of
a disparity map from an image pair captured by a camera
moving inside a static scene. Despite its inability to capture
the depth of moving objects, it is useful in applications like
3D scene reconstruction. It also has two advantages over
stereo-vision done with a pair of aligned cameras: First, it
only uses one camera and second, it is more flexible with
respect to the viewpoint variation.

We propose a novel approach to compute the optical flow
between two images. It is faster and more precise than the
current state of the art algorithms in the static scene/moving
camera case. According to the KITTI optical flow bench-



mark [5] 98.3% of the estimated flow vectors have a Eu-
clidean distance to the ground truth inferior to 3 pixels and,
in average, it covers 50% of the image pixels. It is ranked
first for the partial estimation in this benchmark, while be-
ing 1000x faster than the second. Our following three con-
tributions span over the different stages of the epipolar flow
pipeline:

e A well distributed and accurate sparse flow vector
field estimation that increases robustness and reduces
runtime of RANSAC based fundamental matrix esti-
mation.

e A fast and almost error free estimation of a semi-
dense optical flow, narrowing the search to the epipo-
lar lines.

e An error filter relying on the Lucas-Kanade optical
flow [8] and a simple local coherence criterion that fil-
ters most of the erroneous flow vectors.

e A fast open-source C++ implementation optimized
for multi-core CPU and processing a KITTI image pair
in 260 milliseconds on a 4-core 3GHz processor. We
are currently submitting the code to the open source
(under the MIT licence) C++ image processing library
Video++ [4].

The paper is organized as follows. In Section 2, we
present how our approach is related to the state of the art,
and also how it differs from it. Then in Section 3, we go
through the notation used in this paper. In Section 4, we
describe our improved fundamental matrix estimation and
in Section 5, we present the semi dense optical flow esti-
mation. Finally, we evaluate our approach with the KITTI
optical flow benchmark in Section 6.

2. Related Works

During the last years, many works were conducted to im-
proved the quality and/or reduce the computation time of
optical flow from an image pair. The KITTI optical flow
benchmark references and ranks 78 methods. Competing
algorithms can rely on 3 kinds of additional information:
First, they may estimate and make use of epipolar con-
straints, then they may use stereo image pairs, and finally
they may use a sequence of more than two images. On Fig-
ure 1, we draw the distribution of the algorithms competing
on the partial estimation section of this benchmark. We ob-
serve that a high proportion of algorithms have running time
ranging from 10s to 1000s, and error rates ranging from 4%
to 10%. Accurate and fast running algorithms are fewer,
with only 5, including ours, running under 1s and with
error rate lower than 10%.

The best approaches often make hypothesis about the 3D
structure of the scene: In [1, 16, 17, 19, 15], it is considered
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Figure 1. Error rates vs running time of the algorithms referenced
by the KITTI optical flow section “partial estimation”, on a loga-
rithmic scale. Colors encode the density of the computed optical
flow. Only 5 competitors have both a running time under 1s, and
an error rate lower than 10%.

as a union of slanted 3D plane portions (facets). This al-
lows to shift the problem from the pixel scale to the super-
pixel (projected facet) scale, significantly reducing the num-
ber of unknowns. These approaches formulate a global en-
ergy function based on the brightness constancy and other
data, with regularization terms. To find a solution close
to the global minimum, they rely on an energy minimiza-
tion technique like particle convex belief propagation [9],
graph cuts [15], or customized iterative algorithms [17] to
jointly estimate the super-pixel segmentation and the asso-
ciated slanted facets. These techniques have the advantage
of providing an accurate dense optical flow but their com-
putation time remains high: from 10s to several minutes
per image.

While these solutions focus on accuracy rather than run-
ning time, accelerating the estimation of optical flow to real
time (> 10fps) processing also drew much research in-
terest. In [10], the authors present eFOLKI, derived from
the multi-scale iterative Lucas Kanade [8] algorithm. To
speedup the computation, they reduce the number of pixel
interpolations by wrapping the whole image after each it-
eration of the gradient descent. To increase accuracy, they
use a dynamic integration window size, to avoid over-
smoothing the optical flow field. Running on the GPU, this
is one of the fastest optical flow computation of the KITTI
optical flow benchmark, but it is ranked 60th in terms of
accuracy.

As shown in Figure 1, our proposal is distinguished by a
low running time and the lowest error rate. To achieve this,
it first combines several ideas from the state of the art:

e It constraints the estimation of optical flow to the



epipolar lines as in [17, 18].

e It uses a fast local gradient descent minimizing an
SSD distance between two patches to compute each
optical flow vector, similarly to Lucas Kanade [8].

e Its parallel implementation takes advantage of a
multi-core CPU architecture as in [10] which compute
the optical flow on a GPU.

The low running time of our approach is also partly due
to the region growing algorithm that propagates and refines
optical flow vectors. Unlike the leading algorithms of the
KITTI benchmark, this step leverages local coherence not to
build an expensive global energy minimization but to reduce
running time and errors.

Another particularity of our solution is the use of the
Lucas-Kanade algorithm not to compute actual optical flow
vectors, but to help filtering the errors.

3. Notations
In the following, we will use the following notations:
e [; and I, are the two input images.

e A 3D point X is projected on images I; and I5 at the
2D pixel coordinates x; and x5 respectively.

e 1 is the 3D homogeneous coordinates of a 2D vector
x.

e Fisthe 3 x 3 fundamental matrix, relating £, and Z5.

4. Fundamental Matrix Estimation

Generic optical flow algorithms have to estimate, for
each pixel, two unknowns: the displacement along the two
dimensions of the image. They always face two major chal-
lenges: repetitive texture causing erroneous matches, and
the large dimension of the search space increasing the run-
ning time.

However, in a static scene captured by a moving camera,
the optical flow projected on the focal plane is only related
to the distance of the objects and the camera motion. If
the camera rotation and translation are known, only the 1D
disparity of each pixel remains to be estimated. The search
space is then reduced from a 2D domain to a line, called the
epipolar line.

This greatly simplifies the computation of the optical
flow. First, because the probability that more than one sim-
ilar pixels appear is lower in a smaller space, thus reducing
the number of errors. And second, it reduces the number of
comparisons required to find the best match, thus speeding
up the search.

The camera motion (as well as its intrinsic parameters)
is usually encoded as the fundamental matrix F', with the

following property: if z; and T are the homogeneous co-
ordinates of the projection of the same 3D point X in the
first and second image respectively, we have:

P FE =0 (1)

In other words, it means that X, its two projections and
the two optical centers lie on the same 3D plane. When x
and F' are known and x5 is unknown, the coefficients of the
line where x5 lies can be computed as follows: if 5 = 5:1TF,
we get l2T Zo9 = 0 which defines a line in the I coordinate
space, and allows us to reduce the matching of a 2D point
to a search along a single 1D line.

The fundamental matrix also provides the common point
of all epipolar lines, which is usually called epipole and de-
noted e; (resp. eg) for the first (resp. second) image :

—

EEF =0 )
Fé, =0 (3)

The estimation of the fundamental matrix F' usually relies
on a set of correspondences between pixels of I3 and Is.
Theoretically, only seven correspondences are needed to es-
timate F', but it is common to rely on few hundreds to in-
crease the robustness to matching errors.

There are existing solutions [7, 11] to estimate F' from a
set of correspondences. Their accuracy and runtime depend
on two criteria:

e The precision of the 2D/2D correspondences.

e The uniform distribution of the correspondences over
the image domain.

We propose in this section a method to extract the sparse
set of correspondences maximizing these two criteria. It has
four advantages:

1. It minimizes the number of iterations of RANSAC
schemes by prefiltering outliers, speeding up the es-
timation of the fundamental matrix.

2. It estimates small displacements as well as large ones.

3. It ensures a good distribution of 2D/2D correspon-
dences over the image domain, increasing the accuracy
of the estimation

4. Tt realizes a good trade-off between accuracy and run-
ning time on a multi-core processor.

In the remaining of this section, we first give an overview
of the algorithm, then go through each part into deeper de-
tails, and finally benchmark its accuracy and speed on the
KITTI optical flow benchmark.



4.1. Overview

The Fundamental matrix estimation pipeline begins with
the matching of two FAST [12] keypoint sets, extracted
from the two images. Grid indexing on the keypoint sets
speeds up the search. Then, the displacement vectors are
refined using a pyramidal Lucas-Kanade [8] scheme. A fil-
ter is applied on the set of resulting matches to reduce the
number of errors. The fundamental matrix is finally esti-
mated with a classical method [7, 11].

4.2. Evaluation

To evaluate the precision of the fundamental matrix as-
sociated to an image pair, we estimate the deviation of the
epipolar lines from the ground truth optical flow.

Using the set of pixels with ground truth vectors GT pro-
vided by the KITTI optical flow benchmark, we define the
fundamental matrix F error Er as the maximum distance
between the epipolar line associated to a pixel z; and its
ground truth match 5.

Ep= max 2l &)

(21,22)€GT /12 + 17

with:

la
I=Ft1=|0l]. )
le

In the following, we analyze the impact of several param-
eters on the fundamental matrix error and on the runtime of
the whole pipeline.

4.3. Sparse FAST to FAST keypoint matching

The first step of the fundamental matrix estimation is the
computation of a sparse optical flow vector field. Its role
is to feed the fundamental matrix estimation and to provide
seeds for the semi dense epipolar flow estimation (Section
5).

To compute a sparse optical flow vector field, lots of
methods rely on the fact that the displacement is small and
can be recovered by locally optimizing a SSD distance via
a gradient descent [8]. The quality of these methods highly
depends on the magnitude of the displacements, even in a
multi-scale framework [2]. In our work, to match large dis-
placement as well as small displacements, we preferred to
match the FAST keypoints of I; against the FAST keypoints
of the Is image. This way, we rely on the keypoint repeata-
bility instead of the small displacement assumption. For
each keypoint selected in the first image, we search for the
keypoint in the second image that has the smallest SSD dis-
tance to it (The SSD is computed using a 11 x 11 neighbor-
hood patch). Thanks to the keypoint detector repeatability,

it can be expected that most of the keypoints in the first im-
age will also be detected in the second image.

However, the FAST detector is not appropriate to feed a
fundamental matrix estimator: the distribution of the FAST
keypoints highly depends on the content of the image, as the
FAST detector is not designed to guarantee an even spatial
distribution, which is detrimental to the estimation of the
fundamental matrix.

In order to correct this distribution problem, we set up
the following blockwise selection strategy: in each image
block of a N¢ x Nec grid, we select the FAST keypoint with
the highest score, as long as it is higher than a threshold
keypointTh. This blockwise selection strategy ensures that
only one keypoint per block gets selected. This way, key-
points are more evenly distributed over the image domain
and capture more motion information, thus improving the
estimation of F'.

In spite of these advantages, such blockwise selection al-
ters the repeatability of the FAST detector and causes some
erroneous matches. A filtering strategy is proposed in Sec-
tion 4.4 to remove the errors of this matching step.

We tested the fundamental matrix estimator with all cou-
ples of parameters Nc and keypointTh, and averaged the
measures on the 50 first images of the KITTI dataset. The
results confirm our hypothesis: Figure 2 shows that thanks
to the better distribution induced by the blockwise strategy,
a smaller grid resolution Nc¢ can be used to reduce the run-
time by an order of magnitude, without increasing the error
on the estimation of F'.

4.4. Speeding up the F Estimator with Erroneous
Matches Filtering

Because the blockwise FAST keypoint strategy alters the
repeatability of the keypoints, some keypoints in the first
image may not be detected in the second image and some-
times matched with some other similar keypoints, leading
to erroneous matches.

These errors are usually detected and filtered out using
a RANSAC estimator of the fundamental matrix. However,
RANSAC iterations of the F' estimator are time-consuming,
so the fewer outliers we have, the faster the F' estimator.
Then, to save some of these expensive iterations, we filter
out matches diverging from their local median displacement
using the following filter:

A flow vector v is kept only if it respects the following
constraint:

[|lv — med|| < medTh, (6)

with med the median flow vector calculated within the
image block containing v in the Rf x Rf partition grid.
Figure 3 shows the performances of a set of runs of the
full F' estimation pipeline with varying medT h parame-
ters. Lower runtimes correspond to smaller medT h values.
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Figure 2. Impact of the keypoint grid resolution on the run-
time of the fundamental matrix estimator. We used a linear
interpolation to generate a dense mapping from our set of ex-
periments.

It can be observed that our filter is able to reduce running
time by approximately 30% without impacting the error on
F'. The variance along the F' error is due to fluctuations in
the RANSAC precision.
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Figure 3. Efficiency of the Erroneous Matches Filtering

4.5. Matching refinement with a two Scale Lucas-
Kanade Scheme

Because the sparse keypoint matching computes corre-
spondences between FAST keypoints, their precision is not
subpixelic. This reduces the precision of the fundamental
matrix estimation. To overcome this problem, we refine the
matches with a two scale Lucas-Kanade gradient descent

(2].

4.6. Fundamental matrix estimation

From the set of refined matches, the fundamental matrix
can be estimated with one of the state of the art estimator
wrapped in a RANSAC scheme, to be robust to the remain-
ing outliers. Despite the fact that they all benefit from our
evenly distributed and error-filtered set of optical flow vec-
tors, the runtime and error of the RANSAC scheme is highly
dependent on the inlier acceptance threshold ransacTh.

On the presented experiments, the fundamen-
tal matrix was estimated using the 8-point algo-
rithm [7] with the RANSAC scheme thanks to the
cv::findFundamentalMat OpenCV function [3].
Figure 4 shows the influence of the RANSAC threshold
on the runtime and on the F' error. It can be observed that
up to the value 0.3, increasing this parameter reduces the
runtime without impacting the F' error.
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on the runtime of the F’ estimator



5. Guided Semi Dense Optical Flow Computa-
tion

We present in this section how, using the epipolar con-
straints, we guide the estimation of the optical flow to in-
crease robustness and decrease computation time.

5.1. Disparity estimation and propagation

The disparity D(z;) that we are looking for minimizes
for a given pixel z; the SSD distance between a patch cen-
tered on a pixel in I5 and the neighborhood patch of z; in
I;. Thanks to the epipolar constraint, the domain of this
minimization is reduced to the line /5, which can be param-
eterized as follows:

lg(l'l,d) :€2+d1} (7)

with d € R the disparity, v a direction vector of the
epipolar line and es the coordinates of the epipole in /5.

The computation of the disparity field D can be formu-
lated as the following minimization:

D(xq) = arg min Z

ue[—3,3]2

[Il(xl +u)

2
—]2(l2(l‘1,d) —|—u) ®)

To compute D, we propose the following algorithm:

Initialization. For all sparse 2D optical flow vectors pre-
viously (section 4.3) computed for the fundamental matrix
estimation, we save their corresponding disparities in the
2D disparity field at their location. We call them “’seed dis-
parities” in the following.

Disparity optimization and propagation. Once the dis-
parity field initialized, we refine and propagate the seed dis-
parities as follows: for each pixel on a propagation front,
we refine its disparity by a gradient descent on the epipolar
line locally minimizing the SSD distance (equation 8).

After processing a pixel we enqueue each one of its c8-
neighbors {y{}izl.@ if it meets the two following condi-
tions:

e The local gradient norm is superior to the
minGradient threshold.

e The disparity at point y¢ has not already been com-
puted or is too different from the disparity we
want to propagate (absolute difference greater than
dispPropTh).

The first criterion prevents the propagation on texture-
less regions while the second avoids searching twice for the
same local minimum.

Note that because there are several seeds, several propa-
gation fronts coexist, and then the same pixel may be exam-
ined several times. When re-examining a pixel, we save the
new disparity only if it reduces the SSD distance.

Speeding up the search on multi-core processors. The
advantage of this propagation scheme is that the processes
attached to different seeds are independent and can run in
separate threads, as long as they do not process simultane-
ously the same pixel. This allows a significant speedup on
multi-core processors.

5.2. Error detection and filtering

The optimization of the disparity field presented in the
previous section restricts its search domain to the epipolar
lines. To verify the validity of each optical flow vector es-
timated at this step, we propose to check if they actually
minimize the SSD distance in all the directions.

We do this by running one iteration of the Lucas-Kanade
optical flow algorithm [8] on each estimated vector. If the
computed optical flow vector does not correspond to a local
minimum in the 2D space, the Lucas-Kanade algorithm will
diverge from the epipolar line.

Errors are then detected when at least one of the follow-
ing conditions is met:

e Non local minimum: If the distance between the des-
tination of the optical flow vector and the epipolar line
is greater than eth.

e Local incoherence: If the distance between a vector
v and the vectors from its Nv x Nv neighborhood is
greater than dth for at least dp% of its neighbors, it is
considered incoherent. The best results were obtained
with Nv = 15 and dp = 60.

To evaluate the performance of our filter, we use the
following protocol: For each parameter pair {eth,dth},
we count the proportion of flow vectors that are rightly or
wrongly classified as an error, the “true” errors being de-
fined as the vectors which differs from the KITTI ground
truth of more than 3 pixels. Figure 5 shows the evolution
of these two proportions over the different filter configura-
tions. To reduce the parameter space of the evaluation, we
set a proportional relation between the two parameters as
follows: eth = dth/4.3.

Note that the use of Lucas-Kanade [8] here is novel: we
not only use it to refine the flow field, but also to decor-
relate the erroneous flow vectors, by spreading the wrongly
matched points (which stick to the epipolar line) in inconsis-
tent directions. This highly helps to better filter the errors,
and other optical flow methods could benefit from it.
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Figure 5. Accuracy of the proposed error filter.

5.3. Second propagation

Error filtering creates holes in the optical flow field. And
while large holes are hard to fill, optical flow in small holes
can be recovered with satisfying precision from neighboring
flow vectors. We therefore replace missing vectors by the
average of the vectors located in the 7 x 7 neighborhood.
In our experiments on the KITTI dataset, this method could
recover 15% of the image pixels with a negligible error rate
increase.

6. Results and comparison with the state of the
art

We evaluate our approach on the KITTI Optical Flow
2012 benchmark. This base contains a collection of image
pairs acquired from a forward looking camera embedded
on a car and their ground truth optical flow computed from
LIDAR data. The dataset features several types of camera
motion like forward translations, or rotations.

The table 1 presents the ranking of the leading algo-
rithms of the benchmark with respect to the error rates,
for the non-dense optical flow computation. Our approach
ranks first, provides error rates 1.5x smaller and running
time 1000x smaller than the second ranked one [15]. It is
worth noting that the latter covers 100% of the image pix-
els while ours covers 50%. The best method having simi-
lar running time [14] uses a GPU, covers only 15.26% of
the pixels and has error rates two times higher. Figure 6
presents the optical flow on a KITTI image pair and Figure
7 shows the errors according to the ground truth.

7. Conclusion and future works

We proposed in this paper an algorithm to compute the
camera motion and the optical flow in the case of a mov-

Table 1. KITTI optical flow 2012 ranking of the seven best algo-
rithms with respect to the error rate (where the errors correspond to
estimated vectors whose difference with the ground truth is greater
than 3 pixels). The error rate is averaged on the estimated pixels.
Our approach (FSDEF) computes an optical flow field with fewer
errors and has a running time which is three orders of magnitude
lower than the second ranked approach. The only algorithm with
lower (-11%) computation time is BERLOF [14], which uses a
GPU and covers only 15% of the pixels. For each algorithm, Out-
Noc represents the error rates of the non occluded pixels, Density
is the proportion of estimated pixels and Runtime the processing
time in seconds for one image pair.

Method Out-Noc Density | Runtime
FSDEF 1.539 % 50.57 % 0.26 s
PRSM 2.46 % 100.00 % 300s
GME-IM-RLOF | 2.48 % 11.84 % 37s
VC-SF 2.72 % 100.00 % 300 s
SPS-StF1 2.82 % 100.00 % 35s
RLOF 3.14 % 14.76 % 0.488 s
BERLOF 331 % 15.26 % 0.231s

ing camera and a static scene. Our approach provides a
semi dense flow field, covering in average 50% of the im-
age pixels, with an error rate smaller than the previously
first ranked approach on the KITTI optical flow benchmark,
while running 1000 x faster.

To obtain such results we optimized each steps of the
pipeline with two goals in mind: low running time and when
possible, better accuracy. First, by ensuring a good spa-
tial distribution of keypoints and by prefiltering outliers, we
could accelerate visual odometry by an order of magnitude
while keeping the best accuracy for the fundamental matrix
estimation. Then, by leveraging the epipolar geometry and
local coherence, we proposed a fast computation of the op-
tical flow and a filter able to filter out 95% of its errors.

Even if it achieves the best error rate on the KITTI op-
tical flow benchmark, our approach leaves room for many
improvements using ideas from the state of the art. For ex-
ample, a facet model of the scene could be used as in [17],
or a priori knowledge about the 3D structure of the scene
as in [15]. However, these techniques often rely on expen-
sive global energy minimization and it remains a challenge
to leverage them without impacting the running time.
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