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ABSTRACT: Accurate modeling of heterogeneous catalysis
requires the availability of highly accurate potential energy
surfaces. Within density functional theory, these can
unfortunatelydepend heavily on the exchange-correlation
functional. High-level ab initio calculations, on the other hand,
are challenging due to the system size and the metallic
character of the metal slab. Here, we present a quantum Monte
Carlo (QMC) study for the benchmark system H2 + Cu(111),
focusing on the dissociative chemisorption barrier height.
These computationally extremely challenging ab initio
calculations agree to within 1.6 ± 1.0 kcal/mol with a chemically accurate semiempirical value. Remaining errors, such as
time-step errors and locality errors, are analyzed in detail in order to assess the reliability of the results. The benchmark studies
presented here are at the cutting edge of what is computationally feasible at the present time. Illustrating not only the achievable
accuracy but also the challenges arising within QMC in such a calculation, our study presents a clear picture of where we stand at
the moment and which approaches might allow for even more accurate results in the future.

1. INTRODUCTION

Accurate calculations of reaction barrier heights, Eb, for
elementary reactions of molecules with metal surfaces are
crucial in allowing for predictive modeling of elementary
surface reactions1−3 and heterogeneous catalysis.4−7 In spite of
the importance of heterogeneous catalysis, a first-principles
method capable of predicting Eb with chemical accuracy (errors
≤1 kcal/mol) has not yet been demonstrated. Currently, most
calculations targeting such systems use density functional
theory (DFT) at the generalized gradient and meta-generalized
gradient approximation levels (GGA and meta-GGA, respec-
tively) to compute electronic energies. As a result of the
inaccuracy of present day GGA and meta-GGA functionals,5

reaction probabilities computed for elementary surface
reactions with different functionals may show major discrep-
ancies,3,8 resulting in order(s) of magnitude differences in the
reaction rates.4

At present, the only DFT approach that has been
demonstrated to provide chemically accurate values of Eb for
reactions of molecules with metal surfaces, is a novel
implementation9 of the specific reaction parameter approach
to DFT (SRP-DFT).3 This approach has yielded accurate Eb
values for the dissociative chemisorption of H2 on Cu(111),3

Cu(100),10 and Pt(111)11 and of CHD3 on Ni(111).12

Nevertheless, the current state of affairs is unsatisfactory for
at least two reasons. First, SRP-DFT is semiempirical: an
adjustable parameter in the density functional is fitted such that
supersonic molecular beam experiments on the system of

interest are reproduced.3 Second, DFT energies cannot be
compared to molecular beam experiments directly. Instead,
intermediate dynamics simulations are necessary. This makes
the fitting procedure indirect and can introduce uncertainties
due to (the simplified description of) phonon and electron−
hole pair excitations in the surface and the (lack of) quantum-
classical correspondences. Although calorimetric measurements
and temperature-programmed desorption allow nowadays a
good determination of reaction energies13 (final state minus
initial state), this experimental data can still only provide very
limited information on the potential landscape and would likely
be insufficient to devise an SRP-DFT functional that accurately
describes intermediate barrier heights. It is thus desirable to
find an ab initio method that provides chemically accurate
values for (selected) points on the potential landscape,
including the reaction barrier height Eb.
Modern embedding theories, in which a (small) cluster is

described at a high level of accuracy and the environment is
taken into account via an embedding potential, constitute such
an alternative.14−16 These methods have provided valuable
insight into several interesting problems in surface science, but,
with these methods, it is still hard to converge the energy with
respect to cluster size. Furthermore, due to the (limited) basis
set in the correlated wave function calculation of the cluster,
they can suffer from significant basis set errors. Also, their
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accuracy has not yet been benchmarked for molecule−metal
surface reactions by rigorous comparison of molecular beam
experiments with dynamics results on the basis of potential
surfaces obtained with this method. A second alternative is
presented by modern stochastic electronic structure theories,
whose emergence has opened the possibility to tackle larger
and larger systems and thus also solids and surfaces directly.17,18

Several different types of these so-called quantum Monte Carlo
(QMC) methods have been applied to problems in solid-state
physics in recent years, including AFQMC19 and i-FCIQMC.20

Nevertheless, one of the most established QMC methods for
solids remains diffusion Monte Carlo (DMC). The favorable
scaling of DMC with system size,21,22 the fact that the
computational effort involved in a DMC calculation does not
scale with the size of the basis set used to express the trial wave
function if it is recast in a set of B-splines,23 the possibility to
reduce single-particle finite-size effects by twist averaging24 and
the quality of results previously achieved, make DMC a highly
promising candidate for providing accurate ab initio interaction
energies for molecule−metal surface interactions. It is our goal
here to establish its accuracy for H2 dissociating on Cu(111).
DMC has already been applied to molecule−metal surface

reactions in the past: Pozzo and Alfe ̀ studied the dissociation of
H2 on Mg(0001) in 2008.25 While this study gives much
interesting insight, for example into finite-size effects, there are
currently no experimental data available that allow benchmark-
ing the accuracy of these calculations. Additionally, many
industrially relevant catalysts are based on transition metals
rather than on alkali or earth-alkali metals. It is therefore our
goal to tackle the computationally much more challenging
problem of H2 dissociating on Cu(111) for which accurate
semiempirical benchmarks are also available.
Very preliminary DMC calculations for H2 dissociating on

Cu(111) have been published on arXiv by one of us.26

However, this earlier work showed severe shortcomings in the
methodology and the pseudopotentials used and the good
agreement with benchmark data may be due to fortuitous error
cancellation.
It is the goal of this paper to present a benchmark result for

the reaction barrier height of H2 dissociatively chemisorbing on
Cu(111) through state-of-the-art DMC calculations. We will
address in detail the setup of the geometric structure, the use of
pseudopotentials and the errors resulting thereof, residual
corrections to the QMC results and finite-size effects. Finally,
we will discuss what accuracy we can reach, how reliable the
QMC results really are and which approaches could be used in
the future to improve further on our results. The paper is
organized as follows: In section 2, we give a brief introduction
to diffusion Monte Carlo. In section 3, the computational setup
and schemes for corrections of systematic errors are explained.
Thereafter, we present our results and the discussion in section
4, and the conclusion and outlook in section 5.

2. DIFFUSION MONTE CARLO IN A NUTSHELL
Diffusion Monte Carlo (DMC) is a projector method that takes
advantage of the imaginary time Schrödinger equation to
project the electronic ground-state from an initial trial wave
function. Excellent reviews on this method have been written
elsewhere.17,18 We will therefore only summarize the method
very briefly.
In DMC, the imaginary time Schrödinger equation is recast

into a drift-diffusion and branching equation of a set of particle
configurations (“walkers”) in imaginary time via a stochastic

implementation. After the average walker population has been
equilibrated to represent the ground-state wave function, the
walkers can be further propagated in imaginary time to
accumulate statistics and to determine properties such as the
electronic ground-state energy.
In principle, DMC is an exact method. For electronic

structures, to avoid an exponential scaling of its computational
cost with system size, however, the fixed-node approximation
has to be applied, in which the wave function nodes are fixed to
the nodes of a trial wave function. The trial wave function
typically has the form of a Slater−Jastrow function, i.e., a Slater
wave function (from CAS, DFT, ...) multiplied by a Jastrow
factor that can introduce additional correlation into the wave
function. The Jastrow factor is usually parametrized in terms of
electron−electron correlations, electron−nucleus correlations,
and electron−electron−nucleus three-body correlations and is
optimized in a preceding variational Monte Carlo (VMC)
calculation.
The propagation of walkers in DMC is not constrained in

real space by any basis set limitations. Errors resulting from the
use of finite-basis sets and basis-set superposition errors can
only enter indirectly via the trial wave function due to the fixed-
node constraint and the locality approximation.27,28 Such basis-
set related errors can be kept negligibly small by using highly
converged plane wave calculations for the trial wave function
generation without significant additional cost.23 Furthermore,
when using the fixed-node approximation, DMC scales as

N( )3 + c N( )4 , where c is a small constant and N is the
number of particles, if a constant statistical error bar in the total
energy is sought and localized basis functions are used to
express the trial wave function.21,22 Both of these properties
make DMC a particularly interesting method for studying
metallic systems.

3. COMPUTATIONAL SETUP

3.1. The Geometry. Since our goal is to predict the true
barrier height Eb of the dissociation reaction of H2 on Cu(111)
as accurately as possible, it is crucial to describe the true barrier
geometry as exactly as possible. In DFT calculations, the
transition-state geometries are typically obtained by optimizing
the geometry to correspond to a stationary point in the
potential energy landscape. Although geometry optimizations
and the determination of minimum energy pathways are
nowadays possible within variational Monte Carlo,29−31

optimizing geometries for calculations of this size is currently
too costly at the QMC level. We therefore need to rely on
experimental or on DFT geometries.

3.1.1. The Copper Slab. DFT calculations with GGA
functionals that are suitable for calculating adsorption energies
of simple diatomics on transition metals generally overestimate
the lattice constant by a few percent.32 This is related to a
fundamental problem that exists for DFT with GGA func-
tionals: within the GGA, no functional has been found so far
that accurately describes both the adsorption of a molecule at a
metal surface and metallic lattice constants.33,34

Since QMC calculations are likely to be sensitive to an
expansion of the surface,35−37 they should not be based on
structures obtained from DFT employing GGA functionals that
are (reasonably) good for adsorption energies: If an expanded
GGA-DFT lattice geometry were used, QMC would be
expected to underestimate the H2 + Cu(111) reaction barrier
height.35,36 Therefore, for both the transition-state and the
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asymptotic geometries of the H2 + Cu(111) reaction, the
experimental geometry of the Cu(111) surface is adopted, with
an experimental room temperature bulk lattice constant38 a3D =
3.61 Å. For the (111) surface, this yields a surface lattice
constant of a2D = a3D/√2 = 2.553 Å. The bulk interlayer
distance can be computed as dn,n+1 = a3D/√3 = 2.084 Å. At the
surface, the interlayer distance is decreased: Medium Energy
Ion Scattering (MEIS) experiments39 show that the room
temperature distances d1,2 and d2,3 between the first and second
layers and between second and third layers are reduced by 1.0
± 0.4% and 0.2 ± 0.4%, respectively. We therefore take d1,2 =
2.063 Å and d2,3 = 2.080 Å, as shown in Figure 1.
Based on convergence tests, the Cu(111) surface is modeled

with a slab consisting of four layers. Residual systematic errors
resulting from this simplification are estimated based on DFT
calculations and included in a correction scheme as described
below.
As vacuum distance dv (i.e., as distance between the upper

layer of copper atoms and the lowest layer of copper atoms in
the next periodic image) we use dv = 13.0 Å, which allows for
converged DFT results. Errors that may result from this limited
value are also discussed below.
3.1.2. The Transition-State Geometry. Having defined the

copper surface geometry, the coordinates of H2 relative to the
Cu(111) surface still need to be defined for the transition state
and the asymptotic state. Although specific observables from
reactive scattering experiments are sensitive to certain aspects
of the reaction barrier geometry,3,40 reaction barrier geometries
can usually not be determined unambiguously from experi-
ments and have to be determined via electronic structure
calculations.41 We base the reaction barrier geometry of H2
relative to the surface on previous SRP-DFT calculations.3

Within the DFT approach, the lowest barrier to dissociation
corresponds to the bridge-to-hollow dissociation geometry,
with H2 parallel to the surface, its molecular center of mass
positioned above a bridge site and the dissociating H-atoms
moving to the nearby hcp and fcc hollow sites (see also Figure
1, top views). This geometry is also physically plausible as it
represents the shortest route of the H-atoms to the
energetically most favorable 3-fold hollow sites.42−44 In the
SRP-DFT barrier geometry,3 the H−H distance at the barrier is
given by rb = 1.032 Å and the molecule−surface distance is
given by Zb = 1.164 Å as shown in Figure 1. We believe the
SRP-DFT estimate for rb to be accurate: The value of rb is
intimately connected to the dependence of the effective barrier
height E0(ν) on the vibrational quantum number ν. This
dependence can be extracted from associative desorption

experiments45,46 and is well reproduced by theoretical
calculations based on potential energies from the SRP-DFT
approach for both D2 and H2 on Cu(111),

40,47 thus establishing
the reliability of rb. To estimate the influence of possible
inaccuracies in the values of Zb (and rb), we performed DFT
calculations with the SRP48 functional,48 which was designed
to reproduce the SRP-DFT minimum barrier height.
Simultaneously varying r and Z according to rb − δ < r <
rb + δ, and Zb − δ < Z < Zb + δ, with δ = 0.05 Å, we obtained
barrier heights which differed from the SRP-DFT value by less
than 0.47 kcal/mol, clearly demonstrating the robustness of our
calculations toward possible inaccuracies in rb and Zb. The
limited vacuum distance will have no effect on the DMC
calculations of the transition-state geometry, since the DMC
calculations are performed using 2D periodicity only (i.e., the
slab is not periodically repeated in the direction orthogonal to
the surface).

3.1.3. The Asymptotic Geometry. For the asymptotic
geometry, the value of the H−H distance is taken equal to
the experimental value49 in H2: ra = 0.741 Å (see Figure 1a).
Due to the limited vacuum distance dv, the H2−surface distance
is limited to Za = dv/2 = 6.5 Å. Larger vacuum distances are not
necessary to converge the DFT results and would lead to wave
function files too large to deal with for our purpose. This
limited value of Za may not be sufficiently large to allow the
true interaction energy between the molecule and the surface to
become negligible (as intended in the asymptotic geometry).
Since SRP-DFT and PBE do not account for van der Waals
interaction, this limited value will not introduce an error in
these DFT cases. In DMC, however, van der Waals interactions
are included and the residual interaction may introduce a
systematic error. Fortunately, as discussed below, the associated
error is both small and fairly well known, so that it can be
corrected for (see section 3.5).
An alternative route would have been to split the

determination of the electronic energy corresponding to the
asymptotic geometry into two calculations: one for the
molecule and one for the slab. It has been shown, however,
that error cancellation in DMC will be better if the system size
is not changed within one calculation.50 We therefore prefer the
former approach that leads to readily assessable errors.

3.1.4. The Coverage. Instead of modeling an isolated H2
molecule on a surface, we use a finite H2 coverage of 1/4 of a
monolayer (i.e., in DFT, we use a 2×2 repetition of the
primitive Cu(111) cell covered by one H2 molecule). This is
necessary for computational reasons: In DFT, it will reduce the
number of electrons and of plane waves, thus also limiting the

Figure 1. Geometry used for the barrier height calculation of H2 dissociating on Cu(111). Left: asymptotic geometry; right: transition-state
geometry. Note that the DMC calculations are performed using 2D periodicity (i.e., the super cell is not repeated in the direction normal to the
surface).
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size of the wave function file to fit into the memory of standard
computing nodes (note that we need a fairly high plane wave
cutoff for our pseudopotentials). In QMC, there is no saving in
terms of number of electrons compared to a coverage of 1/16
(one molecule on a 4×4 primitive cell), since we need to use k-
point unfolding to a 4×4 unit cell to avoid extensive finite-size
errors in the QMC calculations. (The larger supercell obtained
via k-point unfolding will reduce both many-body finite-size
effects and single-particle finite-size effects.) The higher
coverage nevertheless allows for a considerable saving in
computational cost: For each QMC calculation in the 4×4
supercell, there are four molecules interacting with the metal
surface. To obtain the same statistical error bar per molecule,
the total error bar ΔE can thus be 4 times larger, reducing the
computational cost, which scales as C ∝ 1/ΔE2, by a factor of
roughly 16. Errors incurred due to the high coverage are
corrected for via DFT calculations (see section 3.5).
3.2. The Pseudopotentials. For highly accurate results,

the choice of pseudopotential (PPs) is very important. While
the use of Ar-core PPs for Cu is often sufficient in DFT
calculations, this will in general not be true for high-level
quantum chemistry methods such as DMC. Furthermore, since
DMC can suffer from locality errorsespecially when heavy
atoms are present51−53special care has to be taken in the
choice of PPs applied and in the way the Jastrow function is
optimized. In principle, it would be desirable to perform the
calculations using Ne-core PPs for copper throughout the slab.
For a 4×4 unit cell with four layers, however, this would involve
the description of more than a thousand electrons. To avoid
this, we use Ne-core PPs in the first layer and Ar-core PPs in
the second to fourth layer. This approach and the specific
choice of PPs is scrutinized in the following.
A traditional choice for a small-core PP for Cu that can be

used in QMC would be the Mg-core PP by Trail and
Needs.54,55 For this PP, however, the CuH binding energy has
been shown in previous work51 to deviate from the
experimental result by more than 6 kcal/mol. More recently,
Burkatzki, Filippi, and Dolg have developed Ne-core PPs for 3d
transition metals for QMC calculations with Gaussian basis-set
based trial wave functions.56 Their PPs, however, cannot easily
be used in plane wave codes since they would require too high
energy cutoffs. In 2016, Krogel et al. have developed a new
database of comparably soft Ne-core PPs for 3d metals in
QMC.57 Their Cu PP suffers, however, from comparably large
locality errors if the local channel is left at l = 1, as suggested for
their PP (a problem that can be alleviated if changing the local
channel in the QMC calculations). Furthermore, these PPs
were developed based on LDA, which would be inconsistent
with our GGA based calculations. Using the Opium code and a
similar approach as that described by Krogel et al.,57 we have
therefore developed a new Ne-core Rappe−Rabe−Kaxiras−
Joannopoulos (RRKJ) PP.58 This PP has angular momentum
channels s, p, andd, and uses lloc = 0 as local channel, which
showed the smallest errors when transforming to the fully
nonlocal (Kleinman-Bylander) representation. The cutoffs are
set to 0.8 au for the 3s, 3p, and 3d orbitals and 2 au for the 4s
and 4p orbitals. In DFT, this PP gives excellent bulk parameters
for Cu and shows excellent agreement for the barrier height of
the dissociation of H2 on Cu(111) with all electron results (see
Tables 1 and 2). For the DMC calculations, the local channel
was set to lloc = 2, to avoid unnecessary errors arising from the
angular integration. Applying this PP, we find good agreement
with the experimental binding energy of CuH and acceptable

locality errors (see Figure 2). (Note that the case of CuH
dissociation can be viewed as “worst case” scenario in terms of

locality errors since the wave function at the Cu core is
expected to change much more drastically in this reaction than
from asymptotic geometry to transition-state geometry in the
present case.)
As large-core Cu PP, we use an in-house Troullier−Martins

Ar-core PP created using the fhi98PP code.65 This PP has
comparably small cutoffs in the pseudoization radius especially
for the s-channel (1.67, 2.29, 2.08, and 2.08 au for the s, p, d,
and f channels, respectively; lloc = 3) and has previously been
shown to exhibit somewhat smaller locality errors in QMC than
the standard PP from the Fritz-Haber Institute using the

Table 1. DFT Tests for the Small-Core Cu PP: Bulk
Parametersa

lattice
constant (Å)

bulk modulus
(GPa)

cohesive energy
(kcal/mol)

all-electron PBE59 3.629 143 
all-electron PBE32 3.632  
experiment32,38 3.596 144 80
small-core Cu PP,
PBE

3.628 144 82

aThe experimental value for the lattice constant is corrected for zero-
point anharmonic expansion. For the PP tests, the PBE functional60

was used. Lattice constant and bulk modulus are obtained from a fit to
a Birch−Murnaghan equation of state. Due to the influence of the
approximate xc-functional on the lattice constant, lattice constants
obtained in this work should be compared with all-electron PBE
results.

Table 2. DFT Tests for the Small-Core Cu PP: Barrier
Height for the Dissociation Energy of H2 on Cu(111)
Calculated Using the PBE Exchange Correlation
Functional60a

barrier height (kcal/mol)

PAW12hpv 10.8
all-electron 10.3
small-core Cu PP 10.4

aPAW12hpv = projector augmented wave (PAW) potentials61

released by VASP62 in 2012, with a hard H PAW and a Cu PAW
with the semi-core p-electrons treated as valence electrons.

Figure 2. DMC tests on the CuH binding energy using the small-core
Cu PP, dependent on the number of parameters used in the
parametrization of the Jastrow function: blue, using T-moves;28,63

green, using the locality approximation;27 red line, experimental
value.64
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Troullier−Martins scheme.66 Since we only use this PP from
the second layer onward, the accurate reproduction of the CuH
binding energy is considerably less important than for the Ne-
core PP used in the first layer. The H-atom is also represented
by an in-house Troullier−Martins PP67 (s channel only; cutoff
radius = 0.6 au).
Having chosen a set of PPs that can be expected to give

reliable results, we also ascertain the reliability of the mixing of
small- and large-core Cu PPs by performing several tests. First,
to ensure that the mixing of PPs does not lead to excessive
charge transfer between Cu-atoms described by different PPs,
we performed DFT calculations of the charge distribution in
Cu2. Using a Bader charge analysis we found only minimal
charge transfer (see Table 3). Additionally, we computed the

DFT barrier height for the dissociation energy of H2 on
Cu(111) using our Ne-core PP only and using the mixed-core
PP approach and found negligible changes of 0.02 kcal/mol.
Due to the positive results of these test calculations and since
the largest changes in density are confined to the uppermost Cu
layer (see Figure 3), we expect our mixed-core PP approach to
yield negligible errors.

3.3. Setup of the DFT Calculations. DFT calculations are
used to provide the Slater wave functions subsequently used in
QMC. These calculations are performed with the pwscf code
from the quantum espresso suite68 (version 5.1 with minor
modifications that enable the correct CASINO-type output for
wave functions using different pseudopotentials for the same
atom type and that account for an error in the original
implementation of the plane wave to CASINO converter
present in version 5.1 of the quantum espresso suite). All

calculations use the PBE exchange-correlation functional60 and
a high plane wave cutoff of 350 Ry to ensure convergence for
the very hard PPs used in this calculation. To facilitate
convergence, we use a Marzari−Vanderbilt smearing with a
smearing value of 0.0074 Ry. For k-point converged DFT
results, a 16×16×1 Γ-centered k-point grid is used in the 2×2
supercell. To obtain the Slater part of the DMC trial wave
function at each twist (see QMC setup in section 3.4), separate,
self-consistent calculations are performed in DFT: For the
QMC calculations performed on the 2×2 supercell, we use a
self-consistent calculation at the k-point corresponding to the
twist in question. For the QMC calculations on the 4×4
supercell, we employ a 2×2×1 k-point grid in the DFT
calculations that is shifted by the k-value of the twist and then
use k-point unfolding to the 4×4 supercell.

3.4. Setup of the QMC Calculations. The subsequent
DMC calculations are performed with the CASINO69 software
package (version 2016-04-28 (beta)) with minor modifications
to correctly include two different pseudopotentials for the same
atom type.
To obtain a trial wave function for DMC, the Slater wave

function for the Γ-point transition-state geometry is multiplied
by a Jastrow function. This function is chosen to contain
electron−electron terms u, electron−nucleus terms χ, and
electron−electron−nucleus three-body terms f. These terms are
parametrized by polynomials of degree N multiplied by a
smooth cutoff-function. For the electron−electron term, we use
a polynomial of degree Nu = 5 and one function each for same-
spin and opposite-spin electron pairs. In the electron−nucleus
terms, we use Nχ = 5, again with spin-dependent functions. In
the three-body terms, the expansion in electron−electron
distances Nf

ee and electron−nucleus distances Nf
en is of degree 2

with no spin dependence. These parameters, as well as the
cutoff radii, are initially optimized in a VMC calculation at the
transition-state geometry (at the Γ-point) by minimizing the
variance of the local energies70 for samples of 22 000
configurations. The cutoff radii are then fixed, and the
remaining preoptimized parameters are optimized for the
transition-state geometry and the asymptotic geometry
separately (Γ-point only), this time with respect to energy.71

The sample size for these optimization runs was 50 000
configurations, and we used four converged iteration cycles
with changing configurations to allow the configurations to
adapt to the optimized wave function. Optimizing with respect
to energy has proven beneficial in minimizing locality errors in
the DMC calculations.51 Furthermore, using the same
preoptimized parameters for both the transition-state geometry
and the asymptotic geometry will ensure the best possible error
cancellation of locality errors when taking energy differences.
The influence of residual locality errors will be discussed later.
To minimize single-particle finite-size effect in the DMC

calculations, we use twist averaging:24 Since we use periodic
boundary conditions to emulate the macroscopic properties of
the slab, the Hamiltonian is symmetric with respect to the
translation of any electron by a multiple of the supercell’s in-
plane lattice vectors a. In effective single-particle theories, this
leads to Bloch’s theorem, and the k-point dependence of the
single-particle energies is taken into account by integrating over
a k-point grid. In many-particle theories such as DMC, this
symmetry translates into a many-body generalization of Bloch’s
theorem. The wave function is periodic with respect to a
translation of an electron along a:

Table 3. Bader Charge Analysis of the Charges in Cu2, When
Describing One Cu-atom by an Ar-Core PP and One by a
Ne-Core PP

charge (e)

large-core Cu small-core Cu

nominal 11 19
obtained 10.96 19.04

Figure 3. Change in electronic density between the asymptotic
geometry and the transition-state geometry based on DFT calculations
using the small-core Cu PP. The inset on the left shows the position of
the 2D cuts shown on the right: dark blue atoms, first layer; medium
blue, second layer; light blue, third layer.
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ψ ψ+ =r a r r r r r( , , ..., ) e ( , , ..., )K N
i

K N
Ka

1 2 1 2 (1)

and

ψ = ∑e ur r r r( , ..., ) ( , ..., )K N
i

K N
K r

1 1
i i (2)

where the twist K can be assumed to lie within the supercell’s
Brillouin zone and uK is periodic under a supercell lattice
translation.72 In analogy to k-point averaging in DFT, in DMC,
one can average over results that are solutions to trial wave
functions with different twist-angles in order to approach the
thermodynamic limit faster (i.e., with smaller supercell sizes).
We generate these trial wave functions by multiplying the Slater
wave functions corresponding to each twist by the optimized
Jastrow function. For the DMC calculations in the 2×2
supercell, we use 12 randomly chosen twists to average over
and to extract the single-particle finite-size corrections. For the
DMC calculations on the 4×4 supercell, we use a slightly
different approach and use twists corresponding to a 4×4×1 Γ-
centered k-point grid. This grid results in seven symmetry-
independent twists with weights ranging between 1 and 4. The
weights are taken into account in the twist averaging procedure
(see eq 5, below), while the residual single-particle finite-size
effects are computed in the same way as for the 2×2 supercell
(see below). All DMC calculations use a time step of 0.005 au
and a configuration size of more than 6000 walkers.
Convergence tests and the possible influence of residual
finite-time-step errors and single-particle finite-size effects will
be discussed later. The PPs are treated using the T-move
scheme28,63 that has been proven to be beneficial in terms of
the size of locality errors.51

3.5. Correction of Systematic Errors. The final QMC
energy barrier Eb

DMC is given by

Δ ̅ = Δ ̅ +‐
‐E E Dsp fs

DMC DMC sp fs
(3a)

= Δ ̅ +‐
‐E E Db

DMC
sp fs
DMC mb fs

(3b)

where ΔE̅DMC is the twist-averaged energy difference between
transition-state and asymptotic geometry. Dsp‑fs and Dmb‑fs are
corrections accounting for single-particle finite-size effects and
finite-size effects arising from long-range correlations, often
referred to as many-body finite-size effects, respectively.
Adding a correction for systematic errors, Dsys, gives a

corrected DMC barrier height,

= +E E Db,corr
DMC

b
DMC sys

(4)

All quantities used above are detailed in the following.
3.5.1. The Twist-Averaged Energy. The twist-averaged

energy difference is given by

∑Δ ̅ =
∑

−
= =

E
w

w E E
1

( )
i
M

i i

M

i i i
DMC

1 1

DMC,ts DMC,asy

(5)

where M is the number of symmetry-independent twists (i.e.,
wave vectors73,74), wi is the weight of the ith twist (wi = 1 for
the stochastically chosen k-points of the 2×2 supercell and wi is
the number of symmetry-equivalent k-points for the 4×4 k-
point grid used for the 4×4 supercell). The DMC results for the
transition-state geometry and the asymptotic geometry at twist i
are given by Ei

DMC,ts and Ei
DMC,asy, respectively.

3.5.2. Single-Particle Finite-Size Corrections. Single-particle
finite-size effects are very efficiently reduced by averaging over
several twists,24 as described in eq 5. For metallic systems,

however, the number of twists needed to reach convergence is
larger than what can be reasonably afforded computationally for
the system under consideration: the more twists used, the
higher the relative influence of the equilibration phase in the
computational cost. Additionally, a minimum number of DMC
steps is necessary at each twist to allow an accurate
determination of error bars. Therefore, instead of using more
and more twists, we correct for the remaining difference via the
relation

α= Δ ̅ − Δ ̅‐
‐D E E( )k

sp fs
point conv.

DFT
twists
DFT

(6)

where ΔE̅k‑point conv.DFT is the k-point converged DFT barrier height
and ΔE̅twists

DFT is the DFT barrier height obtained in the same way
as ΔE̅DMC in eq 5, simply replacing QMC results by DFT
results. The scaling factor α results from a linear regression
model of the relation of (Ei

DMC,ts − Ei
DMC,asy) with respect to

(Ei
DFT,ts − Ei

DFT,asy) .
3.5.3. Many-Body Finite-Size Effects. Explicitly correlated

methods such as DMC suffer from a second type of finite-size
error, Dmb‑fs. This type of error results from the contribution of
long-range interactions to the kinetic energy and the interaction
energy. Such an error is not present in DFT, where these
contributions are implicitly taken care of by the exchange-
correlation functional. Several correction schemes exist for
these errors (see, e.g., ref 75 for an overview), but many of
them are not strictly speaking applicable to 2D periodic
systems.75,76 A simpler and maybe more robust way to correct
for these errors is by increasing stepwise the size of the
supercell and extrapolating to infinite system size. For 2D
periodic systems, the dependence of Dmb‑fs on the system size N
is suggested to scale as75

∝‐ −D N N( ) ( )mb fs 5/4
(7)

The residual finite-size correction can thus be obtained from

Δ ̅ = +‐
−

− ‐

E N E cN( )
D N

sp fs
DMC

b
DMC 5/4

( )mb fs (8)

where c and Eb
DMC follow from linear regression. We use the

results of ΔE̅sp‑fs
DMC for the 2×2 supercell and the 4×4 supercell to

extrapolate to infinite system size using the above scaling law.
Since we are only using two system sizes, the linear regression
suggested in eq 8 thus breaks down to

=
Δ ̅ × − Δ ̅ ×

−
‐ ‐

×
−

×
−c

E E

N N

(2 2) (4 4)

( ) ( )
sp fs
DMC

sp fs
DMC

2 2
5/4

4 4
5/4

(9)

= Δ ̅ × −‐ ×
−E E c N(4 4) ( )b

DMC
sp fs
DMC

4 4
5/4

(10)

where (Ni) is proportional to the number of particles in the
system.

3.5.4. Systematic Effects. During the description of the
computational setup, we have mentioned three possible sources
of systematic errors:

• errors due to the limited number of layers used in the
calculation, dl,

• errors due to the finite coverage, dc, and
• errors due to the limited distance from the H2 molecule

to the surface in the asymptotic geometry, dasy.

The total systematic error in our calculations is given by the
sum of all these contributions:
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= + +D d d dsys
l c asy (11)

3.5.5. Correction for the Finite Number of Layers. We
estimate the systematic error resulting from using only four
layers by testing the convergence of the DFT reaction barrier
height of H2 + Cu(111) with the number of layers nl. To allow
for the highest possible accuracy in these calculations, the
computational setup differs from the DFT setup used to
generate the Slater part of the wave functions used in DMC
(see Supporting Information). For 11 ≤ nl ≤ 16, we find a
slightly oscillatory behavior with energies fluctuating by about
0.1 kcal/mol. Based on the results, we estimate the finite layer
correction as

∑= Δ ̅ − Δ ̅ = ≈
=

d E n E n
1
6

( ) ( 4) 0.2 kcal/mol
n

l
11

16
DFT

l
DFT

l

l

(12)

See the Supporting Information for more details.
3.5.6. Correction for the Finite Coverage. The coverage

correction is estimated from DFT calculations on the reaction
barrier height of H2 on Cu(111), with coverage values ranging
from 1/4 to 1/25 of a monolayer and using a large number of
layers. The van der Waals interaction is taken into account via
the optPBE-vdW-DF functional. This ensures that not only
directly surface mediated coverage effects are taken into
account but also the possible influence of substrate-mediated
van der Waals interactions77 and residual molecule−molecule
interactions. From these data, we estimate the coverage
correction to be

= −d 0.2 kcal/molc (13)

See the Supporting Information for details on the computa-
tional setup and the results.
3.5.7. Correction for the Limited Molecule−Surface

Distance. As mentioned above, the limited molecule−surface
distance of 6.5 Å may be insufficient to allow for the van der
Waals interaction between the molecule and the surface to be
negligible. Any correction resulting thereof can be expected to
be negative (i.e., the barrier height is overestimated) since the
van der Waals interaction will spuriously lower the energy at
the asymptotic geometry. Estimating the size of the residual
interaction using van der Waals corrections in DFT, however, is
difficult. In ref 78, Lee et al. found van der Waals well depths of
0.9, 1.2, and 2 kcal/mol, depending on whether vdW-DF2,
vdW-DF, or DFT-D3(PBE) was used. Extrapolating exper-
imental resonance data, Anderson and Peterson found a well
depth of 0.7 kcal/mol. Given these numbers, we can expect the
van der Waals correction at 6.5 Å from the surface (i.e., at a
distance that is expected to be much larger than the location of
the minimum of the well) to be rather small. Due to the strong
dependence of the DFT results on the exact van der Waals
functional, we prefer to use experimentally motivated values for
the correction. We thus use a fit of a (theoretically motivated)
function for van der Waals potential to the resonance data78 to
evaluate the van der Waals interaction at 6.5 Å:

≈ −d 0.1 kcal/molasy (14)

The total systematic correction, given by the sum of eqs
12−14, is therefore

= + +

≈ − −

≈ −

D d d d

(0.2 0.2 0.1) kcal/mol

0.1 kcal/mol

sys
l c asy

(15)

Fortunately, this value is small.

4. RESULTS AND DISCUSSION
With the setup described above, the calculation involves the
description of 64 Cu-atoms and thus the description of 840
correlated electrons. As discussed in detail above, the present
setup has been chosen with great care, with the aim to obtain
the best possible DMC description of the problem achievable at
the moment. Even with a method scaling as well as DMC,
however, these calculations are computationally extremely
expensive, requiring a total computational time of more than
5 million core hours on Cartesius, the Dutch National
supercomputer.79 On the one hand, this seems to be a very
high cost. On the other hand, the results presented here are
thus also at the forefront of what is computationally achievable
at the moment with a pure DMC approach. The results and the
following discussion are therefore valuable in order to see
where we stand at the moment, to assess the accuracy we can
expect from such a calculation at the present time and to
investigate the issues that are still open and how we may want
to address them in the future.

4.1. DMC Results for the 2×2 Supercell. We start our
discussion with the small supercell. Ultimately, the results of the
2×2 cell will “only” be used for the finite-size extrapolation.
Figure 4 shows the DMC barrier height obtained in the 2×2

supercell for different twists in comparison with the
corresponding DFT barrier (shifted by the k-point converged
DFT solution). Averaging over these results and correcting for
residual single-particle finite-size correction Dsp‑fs (see eqs 6 and
3a), we obtain the results stated in Table 4 with ΔE̅sp‑fsDMC(2×2) =
14.8 ± 0.7 kcal/mol. The scaling factor α entering eq 6 is
thereby determined from a linear regression to the data
obtained for the 2×2 supercell, as illustrated in Figure 4. For

Figure 4. DMC vs DFT barrier height for the set of randomly chosen
k-points for the 2×2 supercell. The linear regression curve is given by y
= αx + β, with α = 1.1 ± 0.3 kcal/mol and β = 14.4 ± 1.8 kcal/mol.

Table 4. DMC Results for the 2×2 Supercell

ΔE̅DMC(2×2) 12.4 ± 0.4 kcal/mol
α2×2 1.1 ± 0.3
ΔE̅k‑point conv.DFT − ΔE̅twistsDFT (2×2) 2.2 ± 0.0 kcal/mol
α2×2(ΔE̅k‑point conv.DFT − ΔE̅twistsDFT (2×2)) 2.4 ± 0.6 kcal/mol
ΔEsp‑fsDMC(2×2) 14.8 ± 0.7 kcal/mol
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the 2×2 supercell, the error in ΔE̅sp‑fsDMC is dominated by the
statistical uncertainty in α resulting from the goodness (or
badness) of the linear fit between DFT and DMC values for the
individual twists.
4.2. DMC Results for the 4×4 Supercell. The results for

the 4×4 supercell at different twist are shown in Figure 5.

Averaging and applying the single-particle finite-size correction
Dsp‑fs, we obtain ΔE̅sp‑fs

DMC(4×4) = 13.3(8)kcal/mol (see Table 5

and Figure 6). For the larger supercell, both the relative error of
α and the DFT correction (ΔE̅k‑point conv.

DFT − ΔE̅twistsDFT ) are smaller
than in the 2×2 case. The resulting uncertainty in the single-
particle finite-size error is also much smaller in the 4×4
supercell than it was in the 2×2 supercell and, for the 4×4 cell,
the statistical uncertainty in ΔE̅DMC dominates the total
uncertainty of the single-particle finite-size corrected barrier
height ΔE̅sp‑fs

DMC.

4.3. DMC Results Including Finite-Size and Systematic
Corrections. Taken together, the data from the 2×2 supercell
and the 4×4 supercell can be used to extrapolate to infinite
system size ΔE̅sp‑fs

DMC(N→∞) = Eb
DMC via eq 8:

= ±E 13.0 1.0 kcal/molb
DMC

as shown in Table 6 and Figure 6. We note parenthetically that
changing the exponential scaling from N−5/4, as suggested in ref

75, to N−3/2, as suggested in ref 80, changes the finite-size-
extrapolated result by only 0.1 kcal/mol, clearly demonstrating
the robustness of the result with respect to the exact choice of
scaling factor.
Adding the corrections for systematic errors Dsys given in eq

15 leads to the corrected DMC barrier height (see also Figure
6):

= ±E 12.9 1.0 kcal/molb,corr
DMC

4.4. Comparison with Chemically Accurate Data. We
can now compare the resulting value for Eb

DMC and Eb,corr
DMC with

the available benchmark data from a potential energy surface
using an SRP-DFT functional. This functional was obtained by
requiring that dynamics calculations using this SRP-DFT
functional in the construction of the potential energy surface
reproduce measured sticking probabilities3 for H2 on Cu(111)
as well as other observables for this system. The resulting
benchmark value is given by 14.5 kcal/mol (see supporting
information of ref 3.). Our DMC values for Eb

DMC and Eb,corr
DMC

differ by 1.5 and 1.6 kcal/mol, respectively, from this reference
value. In view of the targeted error margin of 1 kcal/mol this
result seems discouraging at first sight, but it should be kept in
mind that QMC inherently comes with error bars and that the
benchmark value of 14.5 kcal/mol lies within 1.5 times the
error bar obtained for Eb

DMC (i.e., the benchmark value lies
within an 87% confidence interval). Furthermore, the DMC
calculations are clearly in better agreement with the SRP
reference value than DFT calculations using the PBE functional
(PBE also being the functional used in the trial wave function
generation for the DMC calculations). This positive result,
however, should not stop us from asking critical questions on
the expected accuracy of the DMC results presented.
The setup and possible errors resulting from it have been

assessed in detail in section 3. We therefore now turn to DMC
related errors. While DMC is formally exact, several important
approximations are made. First, the nodes of the DMC wave
function are fixed to the nodes obtained in the corresponding
DFT calculation for a particular twist. Second, as mentioned
before, the nonlocal energy contributions resulting from the use
of pseudopotentials are treated approximately, giving rise to
locality errors. Third, the propagation in imaginary time is done
in discrete steps, leading to time-step errors and the population
size is finite, leading to population errors. While care has been
taken in the computational setup to keep these errors small,
they may still influence the results on the order of a few kcal/
mol. Assessing these errors is already challenging in small
systems. In a system as large as H2 dissociating on Cu(111),

Figure 5. DMC vs DFT barrier height for the 4×4 supercell. Dots
represent the seven symmetry-inequivalent k-points in the 2×2×1 Γ-
centered k-point grid used for twist averaging. The linear regression
curve is given by y = αx + β, with α = 2.7 ± 0.3 kcal/mol and β = 12.9
± 1.2 kcal/mol.

Table 5. DMC Results for the 4×4 Supercell

ΔE̅DMC(4×4) 10.8 ± 0.7 kcal/mol
α4×4 2.7 ± 0.3
ΔE̅k‑point conv.

DFT − ΔE̅twists
DFT (4×4) 0.9 ± 0.0 kcal/mol

α4×4(ΔE̅k‑point conv.
DFT − ΔE̅twists

DFT (4×4)) 2.5 ± 0.3 kcal/mol
ΔEsp‑fs

DMC(4×4) 13.3 ± 0.8 kcal/mol

Figure 6. DMC results with various corrections compared to the
semiempirical reference value obtained from SRP-DFT in ref 3. Gray
shaded region indicates ±1 kcal/mol from the reference value. For
reference, the all-electron PBE barrier height is also shown.

Table 6. Many-Body Finite-Size Correction

cell N (1/N)−5/4 value (kcal/mol)

ΔE̅sp‑fs
DMC(2×2) 1/4 5.657 14.8 ± 0.7

E̅sp‑fs
DMC(4×4) 1 1.000 13.3 ± 0.8

Eb
DMC ∞ 0 13.0 ± 1.0
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where the present calculations take several million core hours in
computational time, this becomes all the more complicated due
to the computational restrictions we face.
To assess the fixed node and the locality errors, we would

have to increase the accuracy of our trial wave function,
meaning that we would have to either enhance the quality of
the DFT result (by adjusting the exchange-correlation func-
tional), or go beyond DFT−Slater−Jastrow trial wave functions
(e.g., by using backflow or embedded wave function methods).
Due to the use of PPs, however, backflow would most likely
increase the computational cost beyond reasonable bounds.81

Similarly, the use of multideterminant wave functions in DMC
would be computationally prohibitive for the system studied. In
order to get an estimate of the locality errors, we thus retreat to
a different approach that will not eliminate the locality errors
but that may give us a feeling of the size of the errors. To this
end, we repeated our calculations for the 2×2 supercell using a
simpler form of the Jastrow function without three-body terms.
We thus strongly decrease the quality of our trial wave function
since the presence of these terms has previously been shown to
reduce the locality errors, especially for large-core Cu PPs.
Specifically, for the case of CuH and the large-core PP used in
this work, the three-body terms have been shown to account
for about half the total locality error in the absolute energy that
is incurred without three-body terms.51 For the dissociation
reaction of H2 on Cu(111), total energy changes with Jastrow
parametrization of 11.7 ± 0.4 and 13.0 ± 0.4 kcal/mol are
observed for the transition-state geometry and the asymptotic
geometry, respectively (averaged over k-points). Most of this
error can be expected to cancel out when taking energy
differences. However, as already becomes clear from the
numbers above, the change of Jastrow-parametrization does
have an residual influence on the barrier height, increasing
ΔE̅DMC by 1.2 ± 0.6 kcal/mol when going from the small to the
large parametrization. This number cannot be taken as hard
limit for the locality error incurred due to the comparatively
large error bar and the fact that we only compare the results for
different trial wave functions here but do not strictly converge
the locality error to zero. Nevertheless, the 1.2 ± 0.6 kcal/mol
difference between the small and the large Jastrow para-
metrization does indicate that residual effects of the locality
approximation still play a role on the very small energy scales
we are interested in.
An additional source of error may be the time-step error.

Time-step errors can in principle easily be eliminated by going
to smaller and smaller time steps. For the system under
investigation, however, this approach is not feasible since the
computational cost scales inversely with the time step used.
The time step of τ = 0.005 au was estimated from preliminary
calculations on the CuH molecule using similar Jastrow factors
and the same PPs as in this work, and ultimately by requiring
the acceptance probability in the DMC propagation to be well
above 99%. Specifically, for the large supercell calculations, the
acceptance ratio is ∼99.2%. While this is a good estimate to find
a reasonable time step, it is worth checking the dependence of
the results on the time step. To this end, we again used the 2×2
cell for convergence tests and found that ΔE̅DMC barely
changed (by less than 0.2 kcal/mol and well below statistical
error bars) when going from τ = 0.005 au to τ = 0.002 au. This
excellent result, however, may be due to fortuitous error
cancellation: Looking at individual k-points, changes up to 5 ±
2 kcal/mol are observed in some cases and the standard
deviation is 3 kcal/mol. Additionally, while a normal probability

plot82 of the changes at different k-points (i.e., a plot of the
ordered values of the changes in the DMC barrier height at
different k-points versus quantiles of a normal distribution)
points to a normal distribution of the changes at different k-
points, the width of the distribution is about 1.5 times larger
than what one may expect from the statistical uncertainty in the
data, which is around 2.3 kcal/mol. Nevertheless, due to the
Gaussian distribution of the errors, we may expect this error to
be significantly reduced in twist-averaged calculations. Due to
the large weight of some k-points in the k-point grid of the 4×4
supercell, however, we may still expect a potential influence on
the order of 1 kcal/mol.
Further sources of error are finite-size-related errors.

Although we reduced single-particle finite-size effects and
finite-size effects stemming from long-range interactions via
twist averaging and extrapolating to infinite system size, these
corrections may still be insufficient. Especially for the twist
averaging, we note that the relationship between DFT results at
a particular twist and the corresponding DMC result is not
ideally linear (especially for the 2×2 k-point grid, which enters
the final result via the finite-size extrapolation). Using more k-
points to reduce the DFT based correction would therefore be
desirable. In the present calculations this was not possible for
computational reasons: In principle, increasing the number of
twists comes at no additional cost in the DMC statistics
accumulation. In practice, this is not true for two reasons. First,
when the number of k-points becomes larger, the relative time
spent in equilibrating the walkers increases, and second, the
individual twist calculations were run a minimum amount of
time to allow decorrelating the error bars with sufficient
reliability (error in the error smaller than 9%).
Having considered all possible sources of error in DMC

calculations, we should also consider possible errors in the
benchmark result of 14.5 kcal/mol. The potential energy
surface produced within the SRP approach has allowed several
experimental observables to be reproduced, which is certainly in
favor of the benchmark value. Nevertheless, there is some
uncertainty related to the fitting procedure. For example, in
exploratory research investigating the influence of van der
Waals interactions on reaction probabilities of H2 at metal
surfaces, it has been found that certain experimental
observables are equally well reproduced using the optPBE-
vdW-DF functional, which, however, gives a significantly higher
reaction barrier for the bridge-to-hollow dissociation of H2 on
Cu(111) of Eb = 16.4 kcal/mol.83 This functional, however, has
not yet been as extensively tested on reactive and nonreactive
scattering of H2 and D2 on Cu(111) as the reference functional
cited above.3,48,84 Therefore, for the time being, the SRP value
of 14.5 kcal/mol should be considered the benchmark value.

5. CONCLUSION AND OUTLOOK
In conclusion, we have presented DMC calculations of the
barrier-height of the bridge-to-hollow dissociation of H2 on
Cu(111). The calculations are highly challenging, both in terms
of the setup, and in the computational effort. We have
presented a detailed discussion of the pseudopotentials used,
the systematic sources of error and the choice of the geometries
that should allow the most accurate possible prediction of the
barrier height. Our single-determinant trial wave function based
DMC barrier height lies within 1.6 kcal/mol from a
semiempirical benchmark value that is fitted against experi-
ments. This is within 1.6 times the statistical error bars of our
final results. Further investigation of possible sources of errors
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strongly point toward a possible influence of residual locality
errors and the influence of time-step errors, both of which may
influence the result on the order of 1 kcal/mol, while at the
same time fixed-node errors cannot be excluded. Other errors
one should aim to reduce in future calculations are errors
resulting from the finite number of twists.
The calculations presented here thus clearly show the future

potential, but also the present weaknesses of DMC for
describing molecular reactions on transition metal surfaces. In
view of the computational restrictions we already faced in this
study, it is a pressing question of how we can improve on these
results in the future and whether QMC may indeed offer a
route to chemically accurate ab initio benchmarks for
molecule−metal surface reactions in the not too distant future.
While the ever increasing computational power will trivially
solve the computational restrictions leading to time-step errors
(DMC scales linearly with the inverse time step) and finite-size
errors, more computational power alone will not reduce the
possible influence of the locality approximation. On the whole,
the sources of error discussed (locality error, finite-size error,
and time-step error) may be addressed by combining
embedding methods with QMC methods. This will allow the
number of layers included in the calculation to be reduced, thus
limiting the influence of locality errors of (large-core) PPs used
in those remote layers and at the same time the computational
cost. Replacing the fourth layer only by an embedding potential
would already reduce the computational cost by more than a
factor of 2, thus allowing for smaller time steps and more
extensive twist averaging. By combining these two state-of-the-
art methods, we can thus expect to push the limit of achievable
accuracy toward the chemical accuracy needed for accurate
first-principle calculations and predictions of catalytic reactions
and rates. A combination of embedding theory with quantum
Monte Carlo methods might thereby bypass important
computational restrictions (very limited cluster size, basis set
superposition errors, etc.) faced in standard embedded
quantum chemistry approaches. Our results, which already
bring QMC within close reach of chemical accuracy and which
clearly point to the current deficiencies of the approach,
provide an important milestone on the way to this goal and
suggest a roadmap to achieve it.
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D. C.; Schröder, E.; Lundqvist, B. I.; Hyldgaard, P. Evaluation of a
Density Functional with Account of van Der Waals Forces Using
Experimental Data of H2 Physisorption on Cu(111). Phys. Rev. B:
Condens. Matter Mater. Phys. 2011, 84, 193408.
(79) Description of the Cartesius System, https://userinfo.surfsara.
nl/systems/cartesius/description (accessed Mar 30, 2017).
(80) Ceperley, D. Ground State of the Fermion One-Component
Plasma: A Monte Carlo Study in Two and Three Dimensions. Phys.
Rev. B: Condens. Matter Mater. Phys. 1978, 18, 3126−3138.
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