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Abstract

The zigzag process is a Piecewise Deterministic Markov Process which can be used in a
MCMC framework to sample from a given target distribution. We prove the convergence of
this process to its target under very weak assumptions, and establish a central limit theorem
for empirical averages under stronger assumptions on the decay of the target measure. We
use the classical “Meyn-Tweedie” approach [MT93b; MT09]. The main difficulty turns out
to be the proof that the process can indeed reach all the points in the space, even if we
consider the minimal switching rates.

MSC 2010 subject classifications: Primary 60F05; secondary 65C05.
Keywords: piecewise deterministic Markov process, irreducibility, ergodicity, exponential er-
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1 Introduction
1.1 Motivation
In recent years there has been a growing interest in the use of Piecewise Deterministic Markov
Process (PDMPs) within the field of Markov Chain Monte Carlo (MCMC). In MCMC the ob-
jective is to simulate from a ‘target’ probability distribution π by designing a Markov chain (or
process) which is ergodic and has stationary distribution π. Although in principle MCMC, e.g.
in the form of the Metropolis-Hastings algorithm [Met+53], can be used to sample from almost
any probability distribution of interest, it can suffer from slow convergence as well as heavy
computational cost per iteration.

It is for exactly these two reasons that PDMPs are so promising. Firstly, PDMPs are nonre-
versible, and it is known that nonreversible Markov processes may offer faster convergence relative
to reversible Markov processes (see e.g. [Bie15; DHN00; DLP16; HHS93; LNP13; Ma+16; RS15;
TCV11]) Secondly, a remarkable feature of the simulation procedure of some PDMPs is that
we can choose to use unbiased estimates of the ‘canonical’ switching rate without affecting the
stationarity of π. In settings in Bayesian statistics with large data sets (consisting of n observa-
tions, say), this offers significant benefits [BFR16], reducing computational effort per iteration
from O(n) to O(1). Similar computational benefits can be obtained in systems in statistical
physics consisting of many particles [MKK14]. The use of PDMPs in sampling is a very active
area of current research and (although it is not possible to give a complete list of references) we
point the interested reader to [BD17; BVD17; MKK14; Mon16; Pak+16; Pak17; PD12; ST17;
Van+17; WR17].

The zigzag process (ZZP) is an example of such a Piecewise Deterministic Markov Process. As
the name suggests, PDMPs follow deterministic dynamics, inbetween random times where they
may jump or change to another deterministic dynamics (see [Mal15; Aza+14] for examples and
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additional references). For example, in the ZZP in Rd, trajectories Xt have a piecewise constant
velocity Θt belonging to the finite set {−1, 1}d, with components of the direction changing
at random times [BFR16]. These random times are generated from inhomogeneous Poisson
processes which have a space and direction dependent switching rate λi(Xt,Θt), for switching
the i-th component of Θt. Viewed as process in the state space E := Rd × {−1, 1}d, (Xt,Θt)t≥0
is a Markov process. The switching intensities λi can be chosen in such a way that the marginal
density on Rd of the stationary probability distribution of (Xt,Θt) is equal to a prescribed
density function π. Other variants of PDMPs with similar properties exist, for example the
Bouncy Particle Sampler (BPS, [BVD17]) which selects its direction from Rd or the unit sphere
in Rd.

In order for a Markov process to be useful in MCMC, it should have the prescribed stationary
distribution and furthermore the process should be ergodic: the empirical time averages of a test
function f along a trajectory should converge to the space average

∫
fdπ, a property that usually

follows from some kind of irreducibility, meaning roughly speaking that the process should be
able to reach any point starting from any other point. The first requirement, stationarity, is
relatively easy to satisfy. However the second requirement is certainly non-trivial in the case
of PDMPs. For example, it is known that without ‘refreshments’ of the velocity, the BPS can
be non-ergodic, for instance for any elliptically symmetric distribution such as a multivariate
Gaussian [BVD17]. In contrast, it is known that the ZZP is ergodic in certain cases in which the
BPS is not ergodic [BFR16], and computer experiments have suggested that in fact the ZZP is
ergodic under only minimal assumptions. The main result of this paper is a proof of ergodicity
for the ZZP under very mild and reasonable conditions, giving theoretical justification for its
use in MCMC. This gives the ZZP a possible advantage over the BPS: the practitioner can be
confident of the validity of the ZZP as MCMC algorithm and does not need to worry about
tuning a refreshment parameter, which may slow down convergence to equilibrium if chosen
suboptimally. However other aspects are also influential in determining speed of convergence
and computational efficiency, and the relative merits of the ZZP versus the BPS is an area of
challenging current and future research.

Once ergodicity is established, one may look for estimates of rates of convergence to the
invariant measure, in various senses. One of the possible approaches to establish such results
is to find a Lyapunov function. For nonreversible processes with small noise, it is often very
difficult to guess the form of a suitable Lyapunov function, and quite technical to prove that
it indeed works: see for example the upcoming work [DGM], and the related papers [Fet17;
DBD17]. In the zigzag case, it turns out that under a reasonable assumption on the decay of
the target measure π at infinity, we are able to find a Lyapunov function in a quite simple form.
Leveraging well known results on long time convergence of processes, this proves in particular
that the convergence towards the target measure π occurs exponentially fast, and we also get a
central limit theorem for ergodic averages.
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ropean Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement num-
ber 614492, the French National Research Agency under the grant ANR-12-JS01-0006 (PIECE)
and the EPSRC grants EP/D002060/1 (CRiSM) and EP/K014463/1 (ilike). We thank Tony
Lelièvre, Paul Fearnhead and Eva Löcherbach for stimulating discussions, Pierre Monmarché for
many exchanges on the merits of various Lyapunov functions, and Nikolas Nuesken and Julien
Roussel for discussions on alternative approaches.
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1.2 Preliminaries
We briefly recall the construction of the zigzag process in E = Rd × {−1, 1}d. For details we
refer to [BFR16].

We equip E with its natural product topology, so that a function (x, θ) 7→ f(x, θ) is continuous
if and only if x 7→ f(x, θ) is continuous for every θ. Similarly f is Lebesgue measurable if
x 7→ f(x, θ) is measurable for every θ.

For i = 1, . . . , d introduce the mapping Fi : {−1, 1}d → {−1, 1}d which flips the i-th compo-
nent: For j = 1, . . . , d and θ ∈ {−1, 1}d,

(Fiθ)j =
{
θj j 6= i,

−θj j = i.

Let U : Rd → R be a continuously differentiable potential function. We introduce continuous
switching intensities (also referred to as switching rates) λi : E → [0,∞), i = 1, . . . , d, and
assume that they are linked with the potential through the relation

λi(x, θ)− λi(x, Fiθ) = θi∂iU(x), (x, θ) ∈ E, i = 1, . . . , d. (1)

An equivalent condition on the switching rates is the existence of a continuous function
γ : E → [0,∞)d whose i-th component does not depend on θi,

γi(x, Fiθ) = γi(x, θ), (x, θ) ∈ E, i = 1, . . . , d, (2)

and which is related to the switching rate through

λi(x, θ) = (θi∂iU(x))+ + γi(x, θ), (x, θ) ∈ E, i = 1, . . . , d. (3)

Here (a)+ := max(0, a) is the positive part of a ∈ R. We call γ the excess switching intensity
and λ satisfying (3) with γ ≡ 0 the canonical switching intensity.

For (x, θ) ∈ E, we construct a trajectory of (X,Θ) of the zigzag process with initial condition
(x, θ) as follows. First we construct a finite or infinite sequence of skeleton points (T k, Xk,Θk)
in R+ × E by the following iterative procedure.

• Let (T 0, X0,Θ0) := (0, x, θ).

• For k = 1, 2, . . .

– Let xk(t) := Xk−1 + Θk−1t, t ≥ 0
– For i = 1, . . . , d, let τki be distributed according to

P(τki ≥ t) = exp
(
−
∫ t

0
λi(xk(s),Θk−1) ds

)
.

– Let i0 := argmini∈{1,...,d} τki and let T k := T k−1 + τki0 . In principle, it is possible that
τki =∞ for all i in which case the value of i0 will turn out to be irrelevant and we set
T k :=∞.

– If T k < ∞ let Xk := xk(T k) and Θk = FiΘk−1 and repeat the steps. If T k = ∞,
terminate the algorithm.
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The piecewise deterministic trajectories (Xt,Θt) are now obtained as

(Xt,Θt) := (Xk + Θk(t− T k),Θk), t ∈ [T k, T k+1), k = 0, 1, 2, . . . ,

defining a process in E with the strong Markov property.
Informally, the process moves in straight lines, only changing velocities at the times T k. In

the case of canonical switching rates λi(x, θ) = (θi∂iU(x))+, a change in the ith component
θi of the velocity may only happen when in this direction, the process is going “uphill”, that
is, if θi∂iU(x) > 0. Note in particular that if following the current velocity increases U , then
〈θ,∇U(x)〉 > 0 and at least one of the components has a positive rate of jump.

We further impose an integrability condition on the potential function:

Z :=
∫
Rd

exp(−U(x)) dx <∞. (4)

Under this condition the zigzag process has a stationary probability distribution given by

π(A× {θ}) = 1
2dZ

∫
A

exp(−U(x)) dx, A Lebesgue measurable and θ ∈ {−1, 1}d.

We will use the notation π(·) for the marginal density function on Rd, i.e. π(x) = exp(−U(x))/Z,
x ∈ Rd.

1.3 Why ergodicity of the ZZP is non-trivial
First consider a simple non-problematic case, where at every point in space all switching rates λi
are positive. This can be achieved by letting λi(x, θ) = max(0, θi∂iU(x))+γ(x) where the excess
switching rate γ : Rd → (0,∞) assumes only positive values. At an intuitive level, it is reasonable
that such a process can reach any point in the state space, since by making a certain number of
switches we can change direction to any direction in {−1, 1}d. These directions span Rd. After
reaching an arbitrary point in Rd we can switch to any desired final direction. Although we can
not change direction instantaneously but only over a time interval of positive length, the method
above enables us to reach any point in Rd × {−1, 1}d to arbitrary precision (and in fact, as will
turn out, exactly).

However, having non-zero values for γ(x, θ) is not beneficial for efficiency: the zigzag process
becomes more diffusive as γi increases which results in higher computational costs, see e.g. [BD17]
for a detailed investigation of this phenomenon in the one-dimensional case. Therefore we are
mainly interested in the question of ergodicity for the case in which γi(x, θ) = 0 for all i, x and
θ, i.e. for the canonical switching rates.

The expression for the canonical switching rates immediately tells us that one or more of the
components of λ are zero in large parts of the state space. If the switching rate is zero on a
set, it means that while the trajectory moves within this set, there is no freedom to switch the
components of the direction vector. As a consequence it is far from obvious how to construct
trajectories between any two given points (x, θ) and (y, η) in the state space, which could be a
realization of a canonical ZZP trajectory.

To illustrate the difficulties, let us discuss three examples highlighting what could go wrong
with the zigzag process.
Example 1 (A non-smooth example). As an example of what can go wrong, consider the potential
function U : R2 → R given by U(x) = max(|x1|, |x2|). Having only a weak derivative, this
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R1

R2

R3

R4

(a) Contour lines, the regions R1, R2, R3 and
R4, and a typical trajectory for the potential
function U(x) = max(|x1|, |x2|). From the dis-
played starting position it is impossible to reach
a point in R1 with direction (−1,−1).

(b) Once we ‘smoothen’ the potential function
slightly, it becomes possible to switch the sec-
ond coordinate of the direction vector, making
the process irreducible.

Figure 1: The canonical zigzag process for U(x) = max(|x1|, |x2|) and a smoothed version of U .

example falls just outside the assumptions we will make in the formulation of the main results.
Ignoring the diagonals x2 = x1 and x2 = −x1, divide the plane into four regions:

R1 = {(x1, x2) : x1 > |x2|}, R2 = {(x1, x2) : x2 > |x1|},
R3 = {(x1, x2) : x1 < −|x2|}, R4 = {(x1, x2) : x2 < −|x1|}.

The potential U is almost everywhere differentiable, with

∂1U(x1, x2) =


1 in R1,

−1 in R3,

0 in R2 ∪R4,

and ∂2U(x1, x2) =


1 in R2,

−1 in R4,

0 in R1 ∪R3,

and except for pathological initial values (along the diagonals), the switching rates are well defined
(albeit discontinuous) and we can construct a zigzag process with these switching rates. Suppose
we start a trajectory with initial condition (x1, x2) ∈ R1 and initial direction θ = (+1,+1). The
trajectory will remain in R1 at least until one of the components is switched. The only component
which has a positive switching rate is the first component: λ1(x, θ) = 1 and λ2(x, θ) = 0 for
x ∈ R1 and θ = (+1,+1). Therefore we will switch at some point to the direction (−1,+1),
after which we will eventually reach the region R2. We can repeat this argument to find that,
with full probability, we will subsequently enter the regions R3, R4 and R1 with directions
(−1,−1), (+1,−1) and (+1,+1), respectively. In particular, from the given initial condition it
is impossible to reach a point in R1 with a direction θ for which θ2 = −1, and we conclude that
the zigzag process is not irreducible. If we consider a slightly smoothed version of the potential
function the associated zigzag process is irreducible on the combined position-momentum space
E = R2 × {−1, 1}2. See Figure 1 for an illustration of this example.
Example 2 (Gaussian distributions). In this example we consider what may go wrong in the
fundamental case of a Gaussian target distribution. Consider first the standard normal case,
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(a) The gradient vector field ∇U (b) The constant vector field (+1,−1)

An example in the setting of Example 2 in which the switching rate in the second coordinate drops to zero
after being non-zero initially. Consider a two-dimensional Gaussian target distribution, with potential
function U(x) = 1

2x
>V x, where V =

(
6 3; 3 2

)
(which is positive definite, but not diagonally

dominant). In Figure (a) the gradient field of U is drawn. The region where ∂2U > 0 is shaded blue. In
Figure (b) the constant vector field θ = (+1,−1) is superimposed over the division between regions. If a
trajectory follows this vectorfield, coming from the yellow region where ∂2U < 0, at some point it enters
the blue region. At this point the switching rate for θ2, i.e. λ2(x, θ) = max(0,−∂2U(x)), drops to zero.
The conclusion is that switching rates of individual components are not necessarily strictly increasing
along the piecewise linear segments of the trajectory, contrary to what intuition may suggest.

Figure 2: A non diagonally dominant Gaussian case

U(x) = 1
2‖x‖

2, so that ∇U(x) = x and λi(x, θ) = max(0, θixi). As a result, starting from (x, θ),

λi(x+ θt, θ) = θi(xi + θit))+ = (θixi + t)+.

We see that in this situation, as t increases, eventually the switching rate in any component
becomes positive. This means that after travelling in a certain direction, we may switch any
component of the direction vector. The same holds for Gaussian distributions with a diagonally
dominant inverse covariance matrix. In our first attempts to prove irreducibility this provided
us with a concrete way of building trajectories between any two points.

However, we should be careful since it is not always the case that, for large enough t, we can
switch any component of the direction vector, even in ideal situations (e.g. with a strictly convex
potential). For example in a two dimensional Gaussian case, it may happen that the switching
rate in a certain component may drop from being positive to zero as time increases. See Figure 2
for an illustration of this phenomenon.
Example 3 (Ridge). Consider a two-dimensional case in which U(x1, x2) = |x1 − x2|2α(1 +
|x1 + x2|2), where 1

2 < α < 1. Note that U(x1, x2) is continuously differentiable and it can be
seen that

∫
R
∫
R exp(−U(x1, x2)) dx1 dx2 < ∞, so that U is (after normalization) the potential

of a probability distribution on R2. However a simple computation yields that the gradient
∇U vanishes along the diagonal x2 = x1, which is oriented with the directions ±(1, 1). As a
consequence, starting from some initial condition (x1, x2) satisfying x2 = x1 in the direction
±(1, 1), it will be impossible to switch any component of the direction vector and inevitably
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A continuously differentiable probability
density function in two dimensions which
has the property that along a narrow ridge
the slope vanishes.

Figure 3: The “ridge” example

we will drift off to infinity. The function exp(−U(x1, x2)) corresponds to a narrow ridge, along
which the derivative of U vanishes; see Figure 3. As we will see, it is essentially the fact that
U(x1, x2) 6→ ∞ as (x1, x2) → ∞ which results in this evanescent behaviour. The lack of a
nondegenerate local minimum (our other fundamental assumption to prove irreducibility) is less
problematic. This is because the shape of U can be modified smoothly around the origin to have
a local nondegenerate minimum, without removing the possibility of drifting away to infinity.

1.4 Main results
We introduce three ‘growth conditions’, i.e. conditions on the tail behaviour of the potential
function.

Growth Condition 1. U ∈ C2 and lim|x|→∞ U(x) =∞.

Growth Condition 2. U ∈ C2 and for some constants c > d, c′ ∈ R, U(x) ≥ c ln(|x|)− c′ for
all x ∈ Rd.

Growth Condition 3. U ∈ C2,

lim
|x|→∞

max(1, ‖HessU(x)‖)
|∇U(x)| = 0, and lim

|x|→∞

|∇U(x)|
U(x) = 0.

The following theorems are the main results of this paper.

Theorem 1 (Ergodicity). Suppose the potential function is C3, has a nondegenerate local mini-
mum and satisfies Growth Condition 2. Then the zigzag process is ergodic, in the sense that

lim
t→∞

‖P(x,θ) [(Xt,Θt) ∈ ·]− π‖TV = 0 for all (x, θ) ∈ E.

The proof of Theorem 1 also establishes that the process is positively Harris recurrent (see
Section 3 below for a precise definition), so that the Law of Large Numbers holds (see e.g.
[ADR69]): for all g ∈ L1(π) and all initial conditions (x, θ) ∈ E,

lim
T→∞

1
T

∫ T

0
g(Xs,Θs) ds = π(g), almost surely.
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Theorem 2 (Exponential ergodicity). Suppose U ∈ C3, U has a nondegenerate local minimum
and Growth Condition 3 is satisfied. Suppose the excess switching rates (γi)di=1 are bounded.
Then the zigzag process is exponentially ergodic, that is, there exists a function M : E → R+
and a constant c > 0 such that

‖P(x,θ) [(Xt,Θt) ∈ ·]− π‖TV ≤M(x, θ)e−ct for all (x, θ) ∈ E and t ≥ 0.

Remark 1. Many target distributions which do not satisfy GC3 can be transformed by a suitable
change of variables after which GC3 will be satisfied and exponential ergodicity can be obtained
for the transformed distribution. The trajectories of the transformed process can then be used to
compute ergodic averages approximating the intended target distribution. We refer to [DBD17;
JG12] for details of this approach.
Remark 2. Theorem 2 establishes exponential ergodicity under reasonable conditions (i.e. com-
parable to other sufficient conditions for establishing exponential ergodicity of other processes
[DBD17; R+96; ST99]) on the tails of the target distribution. For heavier tails, it is not yet clear
what would be a suitable Lyapunov function and this remains a topic of current research.
Remark 3. Although GC3 does not seem to imply GC2, it does imply non-evanescence through
a Lyapunov argument [MT93a, Theorem 3.1].

In particular, this includes the case of canonical switching rates, i.e. γ ≡ 0.
Under essentially the same conditions, we can also establish a Functional Central Limit

Theorem. In the following theorem, we write D[0, 1] for the Skorohod space of cadlag functions
on [0, 1].

Theorem 3 (Functional Central Limit Theorem). Suppose that U ∈ C3, U has a nondegener-
ate local minimum, Growth Condition 3 is satisfied, and U satisfies the integrability condition∫
Rd exp(−ηU(x)) dx < ∞ for some 0 < η < 1. Suppose the excess switching rates (γi)di=1 are

bounded.
Let g : E → R satisfy |g(·)| ≤ k exp(βU(·)) on E for some k > 0 and 0 ≤ β < (1− η)/2.
Define Zn(t) := 1√

n

∫ nt
0 (g(Xs,Θs)− π(g)) ds, t ≥ 0.

There exists a 0 ≤ σg <∞ such that for any starting distribution, Zn converges in distribution
in D[0, 1] to σgB, where B is a standard brownian motion.

In particular, under the conditions of Theorem 3 the Central Limit Theorem of ergodic
averages holds:

1√
T

∫ T

0
(g(Xs,Θs)− π(g)) ds d→ N(0, σ2

g) as T →∞.

Remark 4. If U grows faster than a positive power of |x|, then the integrability condition will
be satisfied for η arbitrarily small, and the CLT applies as soon as |g(·)| ≤ k exp(βU) for some
β < 1/2. In other words it applies for “almost” all functions g ∈ L2(π).
Remark 5. A CLT for the one-dimensional Zig-Zag process was obtained earlier in [BD17].

1.5 Strategy
The diagram in Figure 4 illustrates how the different Growth Conditions of Section 1.4 are related
to key properties of the zigzag process, which are crucial to establish the main results. As seen
in the diagram, it is possible to distinguish between ‘deterministic’ results and ‘probabilistic’
results.

The ‘deterministic’ results, discussed in Section 2 concern the control theoretic aspects of
zigzag trajectories. Here we are concerned with reachability: the existence of zigzag trajectories

8



GC1: U →∞ GC2: U ≥ c ln

Local min. Full flippability

Reachability

GC3
ψ-irreducibility,

aperiodicity T -process Non evanescence

Exp. ergodicity Positive Harris
recurrence; ergodicity

Prop. 4

Prop. 2

Th. 5

Th. 5

Th. 4

Th.2 Th. 5

Schematic overview of key properties of the zigzag process in relation to the Growth Conditions 1, 2
and 3. The grey nodes represent conditions on the potential U , the red nodes refer to deterministic
‘reachability’ properties of trajectories, discussed in Section 2, and the blue nodes represent probabilistic
properties discussed in Section 3.

Figure 4: The key properties
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between any points in the state space such that, for a given potential function U , the trajectories
are admissible: the switching intensities should be positive at the times at which the trajectory
changes direction, even in the case of canonical switching rates. As a weaker notion, we are also
interested in full flippability: can we, starting from any point in the state space, be certain that
eventually all components of the direction vectors are switched at least once? This will all be
made more precise in Section 2.

Next, in the ‘probabilistic’ section, Section 3, the results of Section 2 are employed in order
to establish several key properties (ψ-irreducibility, aperiodicity, the T -process property, non-
evanescence and (positive) Harris recurrence) of the zigzag process as a Markov process, which
finally result in proofs of the main theorems. The definitions of these probabilistic notions, which
are standard in the Markov process literature [MT93b; MT09], are recalled in the introduction
of Section 3. We conclude with proofs of the main results, located in Section 3.5.

2 Reachability
2.1 Admissible control sequences
We define a control sequence to be a tuple u = (t, i), where t = (t0, . . . , tm) ∈ (0,∞)m+1 and
i = (i1, . . . , im) ∈ {1, . . . , n}m for some m ∈ N. Starting from (x, θ) at time 0, this sequence
gives rise to a trajectory (x(t), θ(t)) by: following θ for a time t0, switching the i1th component
of θ, following the new velocity for a time t1, etc.

More formally, writing τk =
∑k−1
i=0 ti with the usual convention τ0 = 0, we define (x(t), θ(t))

on [0, τm+1] by

θ(t) = F(i1,...,ik)θ, when τk ≤ t < τk+1 for k = 0, . . . ,m,

x(t) = x+
∫ t

0
θ(s)ds.

Here F(i1,...,ik) = Fi1Fi2 . . . Fikθ, i.e. FIθ flips all components of θ listed in the tuple I =
(i1, . . . , ik). This defines a piecewise constant trajectory θ(t) such that at at time τk, the ikth com-
ponent of θ(t) changes sign. The final position (x(τm+1), θ(τm+1)) will be denoted by Φu(x, θ).

Definition 1 (Flippability). A component i of the velocity is flippable at a point (x, θ) ∈ E if
the corresponding switching rate λi(x, θ) is strictly positive.

Definition 2 (Admissible controls). Given a starting point (x, θ), a control sequence (t, i) is
admissible if ik is flippable at the point (x(τk), θ(τk)), that is, if

∀i ∈ {1, . . . ,m}, λik(x(τk), θ(τk)) > 0.

Definition 3 (Reachability). Given a starting point (x, θ) and an end point (x′, θ′), we say that
(x′, θ′) is reachable from (x, θ) and we write (x, θ) (x′, θ′) if there exists an admissible control
sequence u = (t, i) such that Φu(x, θ) = (x′, θ′).

We write (x, θ) # (x′, θ′) if in addition, every index in {1, ..., d} appears at least once in i,
that is, all the components of the velocity are flipped at least once during the trajectory.

Remark 6. It follows immediately that if (t, i) is an admissible control sequence for some initial
configuration, then by continuity of λ there exists an open environment U of t ∈ (0,∞)m+1 such
that (t̃, i) is admissible for the same initial configuration, for any t̃ ∈ U .
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Remark 7 (Reachability is transitive). Given two control sequences u = (s0, . . . , sp; i1, . . . , ip)
and v = (t0, . . . , tq; j1, . . . , jq), we can concatenate them into

w = (s0, . . . , sp−1, sp + t0, t1, . . . , tq; i1, . . . , ip, j1, . . . , jq).

If u is admissible starting from (x, θ) and v is admissible starting from Φu(x, θ), then w is
admissible starting from (x, θ) and Φw(x, θ) = Φv ◦ Φu(x, θ).
Remark 8 (Time reversal). If (x, θ)  (x′, θ′), then (x′,−θ′)  (x,−θ): indeed if λi(x, θ) > 0
then

λi(x,−Fi(θ)) = (θi∂iU(x))+ = λi(x, θ) > 0,

so if (t0, . . . , tm; i1, . . . , im) is an admissible control that sends (x, θ) to (x′, θ′), then the reversed
sequence (tm, . . . , t0; im, . . . , i1) is admissible and sends (x′, θ′) to (x, θ).

Our goal in this section is to prove that, under weak assumptions, any point is reachable from
any other point. It is clear that if (x, θ)  (y, η) using the canonical, minimal switching rates
λi(x, θ) = (∂iU(x)θi)+, then the same is true for any choice of the switching rates. Consequently,
We may and will assume in this section that the λi are the canonical switching rates.

We will first establish reachability for the case where the potential U is quadratic, so that the
target measure is Gaussian. We will use this in Section 2.3 to see that around a local minimum
of the potential, we can reach any velocity. We will then show that, under Growth Condition 1,
starting from any point, it is possible to switch all components of the velocity. All these results
will be put together in Section 2.5 to prove reachability in the general case.

2.2 Reachability for multivariate normal distributions
Proposition 1. Suppose that the target distribution is a nondegenerate Gaussian U(x) = 〈x,Ax〉,
where A is a positive definite symmetric matrix. Then for any (x, θ), (x′, θ′), (x, θ) (x′, θ′).

Even for this simple case, the fact that the jump rates may be zero and that the process may
be unable to jump for long stretches makes the proof quite involved. The main idea is to use the
fact that by going in a straight line for a sufficiently long time, the process will always reach a
region where it can switch some components of its velocity. Let us first define a useful notational
shortcut.

Definition 4 (Reachability for velocities). For any two velocities θ, θ′, we say that θ′ is reachable
from θ and we write θ  θ′ if for any x, there exists an x′ such that (x, θ) (x′, θ′).

Definition 5 (Asymptotic flippability). Let θ ∈ {−1, 1}d. If
∑
j θiAijθj > 0 we say that the ith

component of θ is asymptotically flippable. The velocity θ itself is called asymptotically flippable
if all its components are asymptotically flippable.

Lemma 1. If I is a sequence of asymptotically flippable components for θ, then θ  FI(θ). In
particular, if η is asymptotically flippable, then for any θ, η  θ.

Proof. Starting from x with velocity θ, after a large time t the components of A(x + tθ) will
have the signs of the components of Aθ, so the ith component for i ∈ I will all be flippable. The
control sequence (t, 0, . . . , 0; i1, . . . , im) will therefore bring (x, θ) to (x′, FIθ) for some x′. Since
the positivity of the jump rates is an open condition and the map t 7→ Φ(t,i(x, θ) is continuous,
this implies the existence of a t′ with positive coefficients such that (t′; i1, . . . , im) is admissible
starting from (x, θ), proving that θ  FI(θ).

The usefulness of this definition is readily seen through the following result.
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Lemma 2 (Reachability for asymptotically flippable velocities). If η is asymptotically flippable,
then for any x and x′, (x, η) (x′,−η).

Before proving this lemma, let us give a simple case where it is enough to conclude the
argument.

Corollary 1. If A is diagonally dominant, then every θ is asymptotically flippable, and (x, θ) 
(x′, θ′) for all pairs of states.

Proof. If A is diagonally dominant then
∑
j θiAijθj ≥ Aii −

∑
j,j 6=i |Aij | > 0 so all velocities are

asymptotically flippable. Given (x, θ) and (x′, θ′), we first use Lemma 1 to get the existence of
x′′ such that (x, θ) (x′′,−θ′). By Lemma 2 we can then reach (x′, θ′) from (x′′,−θ′), and we
are done by transitivity.

Proof of Lemma 2. Let η be an asymptotically flippable velocity, and x, x′ be two arbitrary
positions. To control the system from x to x′, the idea is to go very far in the direction of η, to
a region where all components of η are flippable, to flip them in a well chosen order and with
well chosen time intervals between flips, so that when the last component is flipped, the system
reaches x′ after a long run in the direction −η.

To do this rigorously, define di = (x′i − xi)/ηi, and suppose first that the di are increasing:
d1 < · · · < dn. For 1 ≤ i ≤ n− 1, let ti = (di+1 − di)/2, and choose t0 and tn positive numbers
such that t0 − tn = d1+dn

2 .
Now let t be a large time to be chosen later, and consider the control

(t, i) = (t+ t0, t1, . . . , tn−1, tn + t; 1, 2, . . . , n).

Starting from (x, η), the ith component of the position will follow ηi for a time t+ t0 + · · ·+ ti−1,
and −ηi for the remaining time ti+ · · ·+tn+t. Therefore, the ith component of the final position
is

xi + ηi(t+
i−1∑
j=0

tj)− ηi(t+
n∑
j=i

tj)

= xi + ηi(t0 − tn + 1
2

i−1∑
j=1

(dj+1 − dj)−
1
2

n−1∑
j=i

(dj+1 − dj))

= xi + ηi
2 (d1 + dn + di − d1 − dn + di)

= xi + x′i − xi = x′i.

If the di are not increasing but all distinct, we can reorder them by finding a permutation σ
such that the dσ(i) increase, and perform the same argument using the control sequence (t +
t0, t1, . . . , tn−1, tn + T ;σ(1), . . . , σ(n)) where ti = (dσ(i+1) − dσ(i)).

It remains to check that all the moves are admissible. By a computation similar to the one
just above, the position x(i) just before the ith flip in the control sequence is given by:

x
(i)
j = xj + ηj(t+

i−1∑
k=0

(1k≤j − 1k>j)tk).

Once the tk are fixed (by the given input of the starting and ending positions x and x′), one can
always take t large enough so that (Ax(i))i has the sign of ηi, which implies that the ith jump is
indeed admissible.
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Finally, if some of the di are equal, we may always introduce intermediary points y and y′

such that the differences (yi − xi)/ηi are distinct for all i, and likewise the differences (y′i −
yi)/(−ηi), and (x′i− yi)/ηi. Therefore (x, η) (y,−η) (y′, η) (x′,−η), and we are done by
transitivity.

We now tackle the general case, when A is not diagonally dominant.

Lemma 3 (All roads lead to an asymptotically flippable velocity). For all θ there exists an
asymptotically flippable velocity η such that θ  η.

Proof. To prove this result, it is useful to represent the matrix A as a Gramian matrix: as
can be seen by an LL> or a symmetric square root representation, there exists a family of
vectors (v1, . . . , vn) such that Aij = 〈vi, vj〉. For a velocity θ, let v(θ) =

∑
i θivi. Using this

representation, we have the equivalence:

i is asymptotically flippable for θ ⇐⇒ (Aθ)iθi > 0
⇐⇒ 〈θivi, v(θ)〉 > 0.

Let θ be an arbitrary velocity, and suppose that θ is not asymptotically flippable. Denote by I
the subset of asymptotically flippable indices:

i ∈ I ⇐⇒ 〈θivi, v(θ)〉 > 0.

Since
∑
i〈θivi, v(θ)〉 = |v(θ)|2 > 0, this set is non empty; by hypothesis it is not equal to

{1, . . . , n}. Let FI(θ) be the velocity obtained by flipping all asymptotically flippable components.
The key point is that this flip increases the norm of v:

|v(FI(θ))| > |v(θ)| .

Indeed, let v+ =
∑
i∈I θivi and v− =

∑
i/∈I θivi. Since v(θ) = v+ + v− and v(FIθ) = v− − v+,

|v(FIθ)|2 − |v(θ)|2 = −4〈v−, v+〉.

Now 〈v(θ), v−〉 must be non-positive by definition of v− and the set I, but this is |v−|2 +〈v−, v+〉.
The scalar product 〈v−, v+〉 is therefore negative, and

|v(FIθ)| > |v(θ)| .

Now starting from θ, apply the following ‘algorithm’:

• if θ is asymptotically flippable, stop.

• if it is not, move to FIθ where I is the set of asymptotically flippable indices.

The fact that θ is not asymptotically flippable implies that v− cannot be zero (because
I 6= {1, . . . , d} and the vi are linearly independent because A is positive definite), so the norm
will increase. Since along the algorithm, |v(θ)| is strictly increasing, it must stop at one time; at
this time it has (by definition) reached an asymptotically flippable velocity.

Now we have all the ingredients to prove the full reachability in the Gaussian case.

Proof of Proposition 1. Let (x, θ) and (x′, θ′) be two points. By Lemma 3, there exists an asymp-
totically flippable velocity η′ and a point y′ such that (x′,−θ′)  (y′, η′). By the time-reversal
property of Remark 8, (y′,−η′)  (x′, θ′). Now by Lemma 3 again, we get the existence an
asymptotically flippable velocity η and a point y such that (x, θ)  (y, η). Lemma 1 gives us a
point z such that (y, η)  (z, η′), and Lemma 2 tells us that (z, η′)  (y′,−η′), which finishes
the construction of an admissible trajectory.
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2.3 Reachability around a local minimum
As before U : Rd → R is the potential function of a probability density function π, i.e. π(x) ∝
exp(−U(x)). We suppose that U has at least one nondegenerate local minimum, which we assume
without loss of generality to be located in x = 0, i.e. ∇U(0) = 0 and V := HU (0) is positive
definite. We will use the fact that all points in Rd are reachable through zigzag trajectories for
the Gaussian density πV ∝ exp(− 1

2x
TV x), to conclude that the same holds in a neighbourhood

of 0 for the potential U .

Lemma 4. Suppose U ∈ C3(Rd), ∇U(0) = 0 and HU (0) is positive definite. There exists a
radius γ > 0 such that (x, θ)# (y, η) for every (x, θ) and (y, η) satisfying |x| < γ, |y| < γ.

Proof. Let the switching rates for the Gaussian density πV be denoted by (λVi ). For a given
control sequence (t, i) = (t0, . . . , tp; i1, . . . , ip) with associated switching points (x(τi), θ(τi))pi=1
and final point (x(τp+1), θ(τp+1)), define

λVmin(t, i) = min
j=1,...,p

λVij (x(τj), θ(τj)) and rmax(t, i) = max
j=0,...,p+1

|x(τj)|,

for the minimum switching rate at a switching point and maximum distance from the origin for
the associated trajectory, respectively. For n ∈ N and θ, η ∈ {−1, 1}d define sets

Un,θ,η := {y ∈ Rd : |y| < 2, (0, θ)# (y, η), through a control (t, i) such that
λVmin(t, i) > 1/n and rmax(t, i) < n}. (5)

Suppose y ∈ Un,θ,η, so that there exists a control (t, i) taking (0, θ) to (y, η) by which every
component of the direction vector is flipped. By perturbing the switching times t1, . . . , tp in the
control, we find that (0, θ) (y′, η) for all y′ in a sufficiently small neighbourhood of y through
a control (t′, i′) such that λVmin(t′, i′) > 1/n and rmax(t′, i′) < n. It follows that Un,θ,η is open for
all n, θ, η. For a Gaussian density we have (x, θ) # (y, η) for all (x, θ), (y, η) ∈ E by a repeated
use of Proposition 1. Thus for fixed θ, η we have the following open cover of the closed unit disc
D = {y ∈ Rd : |y| ≤ 1}:

D ⊂
⋃
n∈N
Un,θ,η.

By compactness of D, for all θ, η, there exists an Nθ,η ∈ N such that

{y ∈ Rd : |y| ≤ 1} ⊂ UNθ,η,θ,η.

Let N := maxθ,η Nθ,η. It follows that for every θ ∈ {−1, 1}d and (y, η) ∈ E, |y| ≤ 1, we have
(0, θ)# (y, η) through trajectories with minimal switching rate larger than 1/N and a maximal
distance from the origin smaller than N . By a Taylor expansion we have that, for some constant
c, which we may assume to satisfy c > 1,

|∇U(x)− V x| ≤ c|x|2 for |x| ≤ 1. (6)

Now let θ ∈ {−1, 1}d and (y, η) ∈ E, such that |y| < γ := 1
2cN3 . Let z = y/γ so that |z| < 1.

There exists a control sequence (t, i) for which (0, θ) # (z, η) such that λVmin(t, i) > 1
N and

rmax(t, i) < N . After a rescaling of t to t′ = γt we obtain a control sequence for (0, θ)# (y, η)
such that λVmin(t′, i) > γ

N = 1
2cN4 (since the switching rates for the Gaussian potential scale

linearly with distance from the origin), and such that the complete trajectory is contained within
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a ball of radius γN < 1
2cN2 < 1, so that we may apply (6) along the trajectory. Along the

trajectory with switching times (τj)pj=1 corresponding to the control sequence (t′, i), we obtain

|∇U(x(τj))− V x(τj)| ≤ c|x(τi)|2 < cγ2N2 = 1
4cN4 , j = 1, . . . , p,

so that, for all j = 1, . . . , p,

λij (x(τj), θ(τj)) = (θ(τj)∂ijU(x(τj)))+ ≥ λVij (x(τj), θ(τj))− 1
4cN4 >

1
4cN4 > 0,

i.e. the control sequence (t′, i) is admissible for (0, θ)# (y, η) with respect to the switching rates
(λi).

By an analogous argument there exists an admissible control sequence for (y, η) # (0, θ).
The statement of the proposition follows by concatenation of trajectories.

2.4 Flippability
Recall that (x, θ) # (y, η) if there is an admissible path from (x, θ) to (y, η) along which all
components of the velocity are switched.

Definition 6 (Full flippability). The process is fully flippable if for each (x, θ), there exists a
(y, η) such that (x, θ)# (y, η),

Proposition 2. If the potential U satisfies Growth Condition 1, then the process is fully flippable.

Proof. By definition, the process is fully flippable if for all points (x, θ), there exists an admissible
control sequence (i, t) such that all indices appear in i. Striving for a contradiction, suppose that
there is an (x, θ) such that, for any admissible control sequence, there is an index in {1, ..., d}
that does not appear in the indices sequence. Suppose that starting from (x, θ), we are able to
construct, for any ε and any T , an admissible trajectory (xt, θt)t∈[0,T ] along which the following
bound holds:

∀i,∀t ∈ [0, T ], θt∂iU(xt) < ε. (7)

Integrating U along this trajectory, we get U(xT ) ≤ U(x) + εdT . However, by hypothesis this
trajectory leaves at least one index in the velocity unchanged, so ‖xT − x‖∞ ≥ T . This shows
that

inf{U(y) : y such that ‖y − x‖∞ ≥ T} ≤ U(x) + εdT,

and so is less than U(x) by taking ε to zero. This contradicts the hypothesis that U converges
to infinity.

Let us now prove that such trajectories exist. Fix ε > 0, and say T is “nice” if there exists an
admissible control sequence starting from (x, θ) such that the bound (7) holds. The set of nice
T is clearly open in [0,∞), so it will be enough to check that it is closed.

To this end, suppose that the Tn are an increasing sequence of nice times converging to T .
The natural idea to construct a nice trajectory of length T is to pick a trajectory of length Tn
and continue it in the final direction θTn until time T . The corresponding trajectory will be
admissible, but it may fail to satisfy (7) if, during the interval [Tn, T ), one of the quantities
(θt)i∂iU(xt) crosses the level ε. We will prove that by switching the corresponding indices, we
can construct a nice trajectory.

Since the process moves at finite speed, we know that all admissible trajectories of length
less than T starting from (x, θ) will lie in a bounded set, only depending on T . Let CT be
an upper bound on the Hessian of U on this bounded set. Let n be large enough so that
T−Tn < ε/2CT , and consider a “nice” trajectory of length Tn; we wish to continue it up to time T .
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Let D = {i1, ..., im} be the set of “dangerous” indices, that is, indices for which θi∂iU(xTn) > ε/2.
Consider the trajectory obtained by concatenating the nice Tn control sequence with the sequence
(i1, ..., im; ε′, ..., ε′, T − Tn −mε′). If ε′ is small enough, this trajectory will be both admissible
and nice: all “dangerous” indices will be switched before the corresponding product reaches ε,
and they will not have time to grow up to ε again. The set of nice T is therefore [0,∞) in its
entirety.

2.5 Reachability in the general case
Lemma 5. If (x, θ) # (y, η), then there is an open neighborhood U of (y, η) such that for all
(y′, η′) ∈ U , (x, θ)# (y′, η′).

Proof. By hypothesis there is a sequence of times and indices such that

y = x+ t0θ + t1Fi1θ + · · · tnFi1,...,inθ.

Define Φ : (s0, ..., sn) 7→ x + s0θ + s1Fi1θ + · · · snFi1,...,inθ. Then DΦ = (θ, Fi1θ, ..., Fi1,...,inθ).
Since the difference between two consecutive vectors in this family is ±2eik , the map Φ has
full rank if all components are switched at least once. Therefore Φ is a submersion from a
neighborhood of (t0, ..., tn) to a neighborhood of y. By continuity of the switching rates, we may
assume without loss of generality that for all (s0, ..., sn) in this neighborhood, the corresponding
trajectory is admissible. Since the sequence of switches is the same as the original trajectory, we
get the conclusion.

Say (x, θ) ∼ (x′, θ′) if they are equal or if (x, θ)  (x′, θ′)  (x, θ). Denote by Cl(x, θ) the
equivalence class of (x, θ) and by R the velocity reversal (applied to points in, or subsets of,
Rd × {−1, 1}d).

Lemma 6. The equivalence classes of ∼ are either a single point or an open set in Rd×{−1, 1}d.
For any (x, θ), R(Cl(x, θ)) = Cl(R(x, θ)). In particular, the classes of (x, θ) and (x,−θ) have

the same type (open or singleton).

Proof. Suppose that (x, θ) and (x′, θ′) are two different equivalent points. This means that there
is an admissible loop starting from, and returning to, (x, θ). Along such a loop all components of
the velocity must be flipped at least once: if the ith component of the velocity stays at 1 (resp.
−1), then the ith component of the position strictly increases (resp. decreases) along the loop, a
contradiction. Therefore if Cl(x, θ) is not a singleton, then x# x.

Let us now prove openness. If (y, η) is in the non-trivial class of (x, θ), then (x, θ)# (x, θ) 
(y, η), so (x, θ) leads to all points near (y, η). Similarly, (x,−θ)# (y,−η), so (x,−θ) leads to all
points in a neighborhood of (y,−η), and by reversal, all points near (y, η) must lead to (x, θ).
Therefore all points near (y, η) are in fact equivalent to (x, θ) and the class is open.

The reversal property is a consequence of the similar property for  .

Proposition 3 (Stability of open classes). The open equivalent classes are “almost stable” under
 and its inverse, that is, if the class of (x, θ) is open, then for π-almost every (y, η), we have
the equivalence (y, η) (x, θ) ⇐⇒ (x, θ) (y, η) ⇐⇒ (x, θ) ∼ (y, η).

If the process is fully flippable in the sense of Definition 6, then the open classes are of the
form Rd × V , where V is a subset of the velocities {−1, 1}d.

Remark 9 (Terminology). In the countable state setting, classes that are stable under the ana-
logue of  are called “essential” (see, e.g., [LPW09]). In a general state space, it is known that
the communication structures are more difficult to define and study; this has led in particular
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to the definition of ψ-irreducibility, see [MT09, Chapter 5]. It turns out that in our particular
case, the relation  defines interesting equivalence classes that we can study before discussing
ψ-irreducibility.

Proof. The first step is probabilistic.
Let O be an open class. Let O+ be the “future” of O, that is, the set of (y, η) such that there

exists (x, θ) ∈ O such that (x, θ) (y, η). Note that since (x, θ)# (x, θ), O+ is open, therefore
measurable. Let P t((x, θ), A) denote the Markov transition kernel of the zigzag process. Let us
use the invariance of π through the resolvent kernel:

π(O+) =
∫ ∞

0
e−tπP t(·, O+)dt

=
∫ ∞

0

∫
E

e−tP(x,θ) [(Xt,Θt) ∈ O+] dπ(x, θ)dt

=
∫ ∞

0

∫
E

e−t1(x,θ)∈O+P(x,θ) [(Xt,Θt) ∈ O+] dπ(x, θ)dt

+
∫ ∞

0

∫
E

e−t1(x,θ)/∈O+P(x,θ) [(Xt,Θt) ∈ O+] dπ(x, θ)dt.

Since O+ is stable by  , the probability in the first integral is 1, so the whole first integral is
equal to π(O+). Therefore the second integral must vanish: for all (x, θ) in some set A of full
π-measure,

1(x,θ)/∈O+

∫ ∞
0

e−tP(x,θ) [(Xt,Θt) ∈ O+] dt = 0.

If (x, θ) is in A and leads to a point in O, then the probability above is strictly positive, so (x, θ)
must be in O+. Consequently we can build a loop from (x, θ) that intersects O, so (x, θ) is in O.

In the other direction, we use reversal. Without loss of generality we may assume A is stable
by reversal of velocities. If (x, θ) in A is reachable from a point (y, η) in O, then (x,−θ) (y,−η),
so (x,−θ) ∈ RO, and (x, θ) ∈ O.

We now prove a stronger stability statement by getting rid of the “π-almost surely”. Consider
a point (x, θ) in an open class O and suppose that (y, η) is reachable from (x, θ). By the
assumption, we can find a (z, ξ) such that (y, η) # (z, ξ). By Lemma 5, (y, η)  (z′, ξ′) for
all (z′, ξ′) in a neighborhood of (z, ξ). By transitivity, (x, θ) itself leads to all points in this
neighborhood. Such a neighborhood must have a positive π-measure, so at least one of the
(z′, ξ′) leads back to (x, θ). Therefore we have a loop (x, θ)  (y, η)  (z′, ξ′)  (x, θ), so all
three points are in the same class, so open classes are stable by  . Using reversal it is easy to
see that they are also stable in the other direction.

The third step of the proof is to use the stability to prove that non-trivial classes are closed,
and must therefore consist of a certain number of copies of Rd. Let O be a non-trivial class, and
let (x, θ) be a point in the (topological) closure of O. By Lemma 5, there exists a (y, η) and an
open set U such that (x, θ) leads to all points in U . Write y = x+ t0θ + · · ·+ Fi1,...,inθ for some
sequence of times and indices. By continuity of the switching rates, the same control sequence
will be admissible if x′ is close to x, and will lead from (x′, θ) to the point (y′, η) = (y+x′−x, η).
Since x is in the closure of O, we can find x′ in O such that (x′, θ) (y′, η), and we may assume
that (y′, η) is in U , so that (x, θ)  (y′, η). Since (x′, θ) is in O, (y′, η) is also in O by forward
stability, so (x, θ) is itself in O, proving that O is closed.

Theorem 4. If the potential U is C3, satisfies Growth Condition 1, and has a nondegenerate
local minimum, then there is only one equivalence class. In particular (x, θ)  (y, η) for all
(x, θ) ∈ E and (y, η) ∈ E.

17



Proof. By the local minimum approximation result (Lemma 4), we know that there exists an
open set U such that all points in U × {−1, 1}d are in the same equivalence class, say O. By
Lemma 6, O must then be open. Since the potential U goes to infinity, the process is fully
flippable by Proposition 2, so we may apply Proposition 3 to see that O consists of copies of Rd.
Since O contains U × {−1, 1}d, it follows that O = E.

3 Ergodicity and exponential ergodicity
To prove ergodicity and exponential ergodicity, we will use standard results from [MT92; MT93b;
Twe94; MT09; DMT95]. In order to show that they apply, we need to check a certain number
of properties of the process. Some of these properties (aperiodicity, irreducibility) are analogues
in the continuous time and continuous space setting of classical notions for Markov chains. In
order to guarantee that the process does not behave too wildly with respect to the topology of
the ambient space, Meyn and Tweedie have also introduced the notion of T -processes (where
T stands for “topology”). We will first recall these here, phrased in terms of a general Markov
process (Zt) taking values in a space E, for completeness. For a more detailed overview of these
notions, we refer to the aforementioned papers, in particular [MT93b], and the reference book
[MT09].

For a given measure ψ, a process is ψ-irreducible if for any starting point z and any set A
of positive ψ-measure, Ez

[∫∞
0 1A(Zt) dt

]
> 0. It is a T -process if there exists a probability

distribution a on R+ and a kernel K(z,A) such that for fixed A, z 7→ K(z,A) is lower semi-
continuous, and for fixed z, K(z, E) > 0 and we have the lower bound:∫

Pz [Zt ∈ A] da(t) ≥ K(z,A).

A measurable set C ⊂ E is called petite if there exists a probability distribution a, a constant
c > 0 and a nontrivial measure ν on E such that∫

Pz [Zt ∈ ·] da(t) ≥ cν(·).

An irreducible process is called aperiodic if there exists a petite set C and a time T such that
Pz [Zt ∈ C] > 0 for all starting points z ∈ C and all times t ≥ T . The process is called Harris
recurrent if, for some σ-finite measure ϕ, Pz

[∫∞
0 1A(Zt) dt =∞

]
≡ 1 whenever ϕ(A) > 0. As

discussed in [MT93b], Harris recurrence implies existence of a unique (up to constant multiples)
invariant measure. If, moreover, there is a finite invariant measure (which in this paper is always
the case by assumption (4)), the process is called positive Harris (recurrent).

In the next sections, we establish that the zigzag process is in fact an irreducible, aperiodic
T -process; Section 3.4 is devoted to finding a suitable Lyapunov function.

3.1 Continuous components
In this section we give two results on the existence of an absolutely continuous component in the
distribution of the position of the process. We start with an easy result, expressed in terms of a
certain stopping time.

Lemma 7 (Absolute continuity from jumps). Denote by (Ti) be the random times where the
components of the velocity switch. Let N be the random integer such that TN is the first time
when d− 1 components have switched; let N =∞ if this does not occur. Let τ = TN+1 if TN is
finite, and τ =∞ otherwise.
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Then the distribution of Xτ is absolutely continuous with respect to the Lebesgue measure :
if B is a Borel set in Rd of Lebesgue measure zero, then

P [τ <∞, Xτ ∈ B] = 0.

In particular, in case d = 1, then N = 0, TN = 0 and τ is the time of the first switch.

Proof. Let B be a set of zero Lebesgue measure in Rd and t be arbitrary. It is enough to
show that P(x,θ) [τ ≤ t;Xτ ∈ B] = 0, since this implies P(x,θ) [Xτ ∈ B, τ <∞] = 0 by monotone
convergence.

It is well known (see [Ben+15; BFR16]) that the law of (Xt,Θt) may be obtained by a
thinning procedure. More precisely, let λ be an upper bound on the switching rates up to time t
(such a bound exists since the process has finite speed and the switching rates are continuous).
Then the process may be constructed on [0, t] by running a Poisson clock with intensity λd, and,
for each Poisson event, picking an index i uniformly, then accepting or rejecting the flip of the
corresponding component of the velocity with a probability given by λi(x, θ)/λ.

Recall that Fi1,...,ikθ is the velocity obtained from θ by flipping, possibly many times, the
components appearing in the sequence. For convenience, we extend this definition to allow zero
values in the index sequence, which corresponds to no flipping. This allows us to write

Xτ = x+ E1θ + E2FI1θ + ...+ EM+1FI1,...,Imθ,

where M is a random integer (larger than N), the (Ik) take values in {0, 1, ..., d} with Ik = j
for j 6= 0 indicating a proposed and accepted j flip, while Ik = 0 corresponding to all rejected
flips, and the (Ei) are the interarrival times of the Poisson clock. We decompose over all possible
index sequences:

P [τ ≤ t,Xτ ∈ B] =
∑
m∈N0

∑
(i1,...,im)∈{0,...d}m

P [τ ≤ t,M = m, (I1, ..., IM ) = (i1, ..., im),

(x+ E1θ + · · ·+ Em+1Fi1,...,imθ) ∈ B] .

If M = m, N ≤ m so by definition, at least d− 1 different (non-zero) indices must appear in the
sequence (i1, ..., im), and

P [τ ≤ t,Xτ ∈ B]

≤
∑
m∈N

∑
(i1,...,im)∈{0,...d}m

d− 1 indices appear in (i1, ..., im)

P [(x+ E1θ + · · ·+ Em+1Fi1,...,imθ) ∈ B] .

For each term in the sum, the vectors (θ, Fi1θ, ..., Fi1,...,imθ) span Rd, so the distribution of
x + E1θ + · · · + Em+1Fi1,...,imθ is absolutely continuous, and the probability that it falls in the
set B is zero.

The proof of the existence of an absolutely continuous component at a fixed time is a bit
more involved, but is the key ingredient to prove that the process behaves nicely.

Lemma 8 (Continuous component). If (x, θ)# (y, η) then there exist open sets U and V , with
x ∈ U and y ∈ V , and constants ε > 0, t0 > 0, c > 0, such that for any x′ ∈ U , and all
t ∈ (t0, t0 + ε],

Px′,θ [Xt ∈ ·,Θt = η] ≥ c · Leb(· ∩ V ).
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Remark 10. Similar results may be found in previous works, e.g. [BH12, Lemmas 2 and 3], or
[Ben+15, Section 6.5]. In order to get the probabilistic consequences, we need the uniformity in
the starting point that appears in [Ben+15]. Since our hypotheses here are slightly different, we
include a proof for the sake of completeness. We also note that taking canonical switching rates
leads to a degenerate situation where the local Hörmander type criteria of [BH12; Ben+15] do
not apply.

Proof. By hypothesis there exists an admissible deterministic control sequence u = (t, i) =
(t0, ..., tm; i1, ..., im), such that all indices occur at least once in i, and Φu(x, θ) = (y, η). Recall
the notation τk =

∑k−1
j=0 tj and let t = τm+1 =

∑m
k=0 tk be the final time of the trajectory.

We use the same thinning construction as in the proof of Lemma 7 above, with a Poisson
clock of intensity λd, where λ is an upper bound on the switching rates up to time t.

For j = 1, ..., (m − 1), let Uj be a bounded neighbourhood of τj ; we may assume that the
Uj do not intersect and, by continuity, that the control sequences (s, i) = (s0, ..., sm−1, i) satisfy
λmin(s, i) ≥ λ > 0 for any s such that

∑j−1
l=0 sl ∈ Uj for all j.

Now let f be an arbitrary non-negative test function. Let A be the event that m Poisson
events T1, ..., Tm occur before time t, that Tj ∈ Uj for all j, that the indices are picked as in i,
and that all proposed switches are accepted. Then

E [f(Xt,Θt)] ≥ E [f(Xt,Θt)1A]
≥ E [f(Ψ(x, t, T1, ..., Tm))1A]

where the mapping Ψ is defined by

Ψ(x, t, τ1, ..., τm) = x+ τ1θ + (τ2 − τ1)Fi1θ + · · ·+ (t− τm)Fi1···imθ.

Since the choice of indices to switch and the acceptance/rejection tests are independent from the
Poisson process, we get by conditioning:

E [f(Xt,Θt)] ≥
(
λ

λd

)m
E

f(Ψ(x, t, T1, ..., Tm))1m events occur

m∏
j=1

1Tj∈Uj

 .
Using classical properties of the Poisson process, this implies that for some positive constant c,

E [f(Xt,Θt)] ≥ cE [f(Ψ(x, t, U1, ..., Um))] (8)

where the Uj are independent and Uj is uniformly distributed on Uj .
The partial map (u1, ..., um) 7→ Ψ(x, t, u1, ..., um) has full rank: indeed, the image of its

differential is spanned by the vectors

(θ − Fi1θ, ..., Fi1···im−1θ − Fi1···imθ) = (±2ei1 , ...,±2eim)

who span Rd since all indices in {1, ..., d} appear at least once in the sequence i. This shows
that Ψ(x, t, ·) is a submersion. It follows that, Ψ(x, t, ·) pushes the uniform distribution on

∏
Uj

to a measure which is absolutely continuous with respect to the Lebesgue measure, on an open
set containing y = Φu(x, θ) (see [BH12, Lemma 2 and 3], [Ben+15, Section 6] for related results
and details). This proves a restricted form of the lemma, for the single starting point x and the
single time t.

To prove the uniform version, we see x and t as a parameter and apply the uniform submersion
lemma [Ben+15, Lemma 6.3] to get the result.
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3.2 Non-evanescence
For classical Markov chains on countable spaces, it is well known that for any x and y, the
following equivalence holds:

Ex

[∑
n

1Xn=y

]
=∞ ⇐⇒

∑
n

1Xn=y =∞, Px − a.s.

For general chains and processes, this equivalence is no longer true: starting from a point x, the
time spent in a set A may be finite with positive probability, even when its expectation is infinite.
This may essentially happen if the process has a positive probability of escaping to infinity when
it starts in a particular set: this canonical counter-example is explained e.g. in [MT09, Section
9.1.2].

This equivalence is used to prove that a (classical) irreducible chain that admits an invariant
probability measure is positive recurrent. To obtain the natural property of Harris recurrence for
a general chain, (ψ-)irreducibility and the existence of the invariant probability are not enough,
and we need to show additionally that the escaping to infinity does not happen.

In the context of the zigzag process, we refer to the ‘ridge’, Example 3 in Section 1.3, which
describes a smooth potential function with the property that for certain initial conditions the
zigzag process will escape to infinity with full probability.

Definition 7 (Non-evanescence). A point (x, θ) is said to be non-evanescent if Px,θ [|Xt| → ∞] =
0. It is weakly non-evanescent if this probability is strictly less than 1.

We start by showing how the deterministic statements on flippability may be used to prove
probabilistic non-evanescence properties.
Remark 11 (There are infinitely many switches). Note that the first growth condition U → ∞
already has the probabilistic consequence that the process switches infinitely often. Indeed, for
any (x, θ) and any n,

P(x,θ) [no switch before time n] = exp
(
−
∫ n

0

d∑
i=1

(θi∂iU(x+ θs))+ ds

)

≤ exp
(
−
∫ n

0

d∑
i=1

θi∂iU(x+ θs) ds
)

= exp (−U(x+ θn) + U(x))→ 0 as n→∞,

so P(x,θ)
[
T 1 <∞

]
= 1, where (T i) are the switching times as introduced in Section 1.2. By the

strong Markov property, this implies for all k

P(x,θ)
[
T k+1 <∞

]
= E(x,θ)

[
1Tk<∞P(XTk ,ΘTk )

[
T 1 <∞

]]
= P(x,θ)

[
T k <∞

]
,

proving the claim by recurrence.

Lemma 9 (Two weak versions of non-evanescence). If the invariant measure π is a probability
measure, then π-almost all points are non-evanescent.

If additionally the process is fully flippable in the sense of Definition 6, then all points are
weakly non-evanescent.
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Proof. The first statement is classical. For the sake of completeness we include a proof. Let
K be a compact set. Since lim inft→∞ 1Xt /∈K = {Xt eventually leaves K}, we have by Fatou’s
lemma

Pπ [Xt eventually leaves K] ≤ lim inf
t→∞

Pπ [Xt /∈ K] = 1− π(K).

Since {|Xt| → ∞} =
⋂
K{Xt eventually leaves K}, we are done since {π} is tight.

Let us now prove the second statement. Let N be the set of non-evanescent points: this set
has full π-measure, so its complement is Lebesgue negligible. Let (x, θ) be an arbitrary starting
point, and consider the stopping time τ introduced in Lemma 7. By the strong Markov property,

P(x,θ) [|Xt| does not go to infinity] ≥ P(x,θ) [τ <∞, |Xt| does not go to infinity]
= E(x,θ)

[
1τ<∞P(Xτ ,Θτ ) [|Xt| does not go to infinity]

]
≥ E(x,θ) [1τ<∞1Xτ∈N ] .

Since Rd \ N is Lebesgue negligible, P(x,θ) [τ <∞, Xτ /∈ N ] = 0, so

P(x,θ) [|Xt| does not go to infinity] ≥ P(x,θ) [τ <∞] . (9)

If the process is fully flippable, this last probability is positive, proving the weak non-evanescence
property.

If we add a slightly stronger hypothesis on the growth of the potential at infinity, namely
Growth Condition 2, we get a stronger non-evanescence result. We start by saying that if the
process is evanescent, it must go to infinity in a very particular way, by staying forever in an
affine subspace.

Lemma 10 (Two frozen directions). Let d ≥ 2. Suppose that there exists an invariant probability
measure, and that (x, θ) satisfies P(x,θ) [|Xt| → ∞] > 0. Then there exist two indices i and j such
that

P(x,θ)
[
the ith and jth components never switch

]
> 0.

Proof. We prove this statement by contraposition and assume that, with probability one, at
most one component of the velocity does not switch. This implies that the time TN defined in
Lemma 7 is a.s. finite, and since there are infinitely many switches by Remark 11, the time
τ = TN+1 of the same Lemma 7 is also finite. Reusing the bound (9) from the proof of Lemma 9,
we immediately get that P(x,θ) [|Xt| → ∞] = 0, proving the lemma.

Recall that Growth Condition 2 states, in dimension d, that

∃c > d, ∃c′,∀x, U(x) ≥ c ln(1 + |x|)− c′.

Proposition 4 (Non-evanescence). If the potential U satisfies Growth Condition 2 then the
process is non-evanescent, that is, for any (x, θ) ∈ Rd × {−1, 1}d,

P(x,θ) [|Xt| → ∞] = 0.

Proof of Proposition 4. We wish to prove for all d the following statement:

∀U : Rd → R, U satisfies GC2 =⇒ the zigzag process for U is non-evanescent. (Pd)

If d = 1, by (9), with τ denoting the time of the first switch, and Remark 11, (Pd) follows.
For d ≥ 2, the strategy is to prove this by induction. The form of the growth condition is tai-

lored to this strategy: it clearly implies that
∫

exp(−U(x))dx is finite and may be normalized into
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a probability, but it crucially also implies that the same is true for all the conditional measures on
affine subspaces. For the base case d = 2, using Lemma 10, we see that if P(x,θ) [|Xt| → ∞] > 0
then with positive probability the process never switches. Since U →∞ this is not possible (see
Remark 11).

Let us now prove the induction step by contraposition. Assume that (Pd+1) is false: there
exists a potential U in dimension d + 1 that satisfies the growth condition, but for which the
zigzag process is evanescent, that is, there is a point (x, θ) such that P(x,θ) [|Xt| → ∞] > 0. Our
goal is to define a potential in dimension d that also satisfies the growth condition and for which
we also have evanescence.

By Lemma 10, there are two indices, say d and d+ 1 without loss of generality, such that

P(x,θ) [d and d+ 1 never switch] > 0.

We may also assume without loss of generality that θd = θd+1 = 1. Note that the process may be
constructed by considering d+1 sequences of iid exponential random variables (Ekj )j=1,...,d+1;k∈N
and saying that the kth jump of the jth component of Θ, say T kj , occurs when the accumulated
jump rate

∫ t
Tk−1
j

λj(Xs,Θs)ds reaches Ekj .
Consider now a second, d-dimensional zigzag process (Y1, ..., Yd;H1, ...,Hd) starting from

(x1, ..., xd; θ1, ..., θd) in the potential V (y1, ..., yd) = U(y1, ..., yd, yd). Note that, since U satisfies
the growth condition,

V (y1, ..., yd) ≥ c ln(1 + |(y1, ..., yd, yd)|Rd+1)− c′ ≥ c ln(1 + |(y1, ..., yd)|Rd)− c′

where c > d+ 1 > d, so V satisfies the growth condition in dimension d. It remains to show that
the zigzag process in V is evanescent.

We couple the process in V with the previous one, using the same randomness (Ekj )j=1,...,d−1,k∈N

for the first d− 1 coordinates, and an independent sequence (Ẽkd )k∈N for the last one. Let τ be
the first time when one of Θd, Θd+1 or Hd switches. For t ≤ τ , using the elementary bound
(a+ b)+ ≤ a+ + b+ and the fact that Hd, Θd and Θd+1 are all equal to 1 up to time t, we get∫ t

0
(∂dV (Ys)Hd(s))+ds =

∫ t

0
(∂dU(Ys) + ∂d+1U(Ys))+ds

=
∫ t

0
(∂dU(Xs) + ∂d+1U(Xs))+ds

≤
∫ t

0
(Θd(s)∂dU(Xs))+ds+

∫ t

0
(Θd+1(s)∂d+1U(Xs))+ds

≤
∫ ∞

0
(Θd(s)∂dU(Xs))+ds+

∫ ∞
0

(Θd+1(s)∂d+1U(Xs))+ds.

Now, the event A = {Ẽ1
d ≥ E1

d + E1
d+1} ∩ {Θd and Θd+1 never switch} has positive probability,

and on this event we can continue the bounds:∫ t

0
(∂dV (Ys)Hd(s))+ds ≤

∫ ∞
0

(Θd(s)∂dU(Xs))+ds+
∫ ∞

0
(Θd+1(s)∂d+1U(Xs))+ds

< E1
d + E1

d+1

≤ Ẽ1
d .

This shows that on A, τ must be infinite, that is, Hd never switches either and thus |Yt| → ∞.
Since the growth hypothesis is satisfied for V , this concludes the proof of the induction step by
contraposition.
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3.3 Putting the pieces together
Theorem 5. If the zigzag process is fully flippable, then it is a T -process.

If in addition (x, θ) (y, η) for all pairs of points, the process is ψ-irreducible and aperiodic,
and all compact sets are petite.

If in addition the process is (strongly) non-evanescent, then it is positive Harris recurrent and
ergodic.

Proof. We know that all points (x, θ) ∈ E lead to a different point by a sequence where all
indices are switched. From Lemma 8 and a compactness argument, this implies that there exists
a family (Un)n∈N of open sets in E, a family (Vn)n∈N of open sets in Rd, velocities ηn ∈ {−1, 1}d
and numbers (tn, εn, cn), such that:

• The (Un)n∈N form a locally finite open cover: each (x, θ) ∈ E belongs to at least one, and
at most a finite number of the Un.

• for all (x, θ) ∈ Un, all t ∈ [tn, tn + εn] and all positive measurable f ,

E(x,θ) [f(Xt,Θt)] ≥ cn
∫
f(y, ηn)1Vn(y)dy.

Define a kernel K by the formula

K((x, θ), A× {η}) =
∫

1A(y) max
n:(x,θ)∈Un

(
cn1ηn=η1Vn(y)

∫ tn+εn

tn

e−tdt

)
dy.

By construction, the resolvent is bounded below by K. Since for all (x, θ) ∈ Un, K((x, θ), E) ≥
cnLeb(Vn)

∫ tn+εn
tn

e−tdt > 0, i.e. K is nontrivial. Moreover, for any measurable set A and any
η, K((x, θ), A × {η}) is lower semicontinuous in (x, θ): indeed, if (xj) converges to x, then the
xj will eventually belong to all the Un containing x, so K((xj , θ), A) ≥ K((x, θ), A) for j large
enough. To sum up, the resolvent kernel of the process is bounded below by a nontrivial lower
semi continuous kernel: the process is a T -process.

Suppose now that (x, θ)  (y, η) for all pairs of points. This implies that (x, θ) # (y, η)
for all pairs of points. For any such pair, and any neighbourhood O × {η} of (y, η), another
application of Lemma 8 yields Px,θ [τO <∞] > 0; this in turn implies that the process is open
set irreducible in the sense of [Twe94]. By [Twe94, Theorem 3.2] (see also [MT09, Proposition
6.2.2] for the similar statement for discrete time chains), the process is then ψ-irreducible.

Let us now prove the aperiodicity, and the fact that compact sets are petite, in a single
argument. Let (x, θ) be an arbitrary point. We know that (x, θ)# (x, θ), so by Lemma 8, there
exists t0, ε and two open neighbourhoods U and V of x such that

Px′,θ [Xt ∈ ·,Θt = θ] ≥ cLeb(· ∩ V), (10)

for all x′ ∈ U and t ∈ [t0, t0 + ε]. This shows that U is a petite set, and thus that every point has
an open neighbourhood which is petite. Therefore every compact set may be covered by finitely
many petite sets, so is petite itself; a fact that could also be deduced by general theory (e.g.
[MT93b, Theorem 4.1]).

Writing W = U ∩ V, we see that W is petite (as a subset of U), and for all x′ ∈ W and
t ∈ [t0, t0 + ε],

Px′,θ [Xt ∈ W,Θt = θ] ≥ c′,
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where c′ = cLeb(W). Let N = dt0/εe and T = Nt0. For any t ≥ T , let n = bt/t0c and t′0 = t/n.
Then t′0 ∈ [t0, t0 + ε], so by iteration and the Markov property,

Px′,θ [Xt ∈ W,Θt = θ] ≥ (c′)n > 0,

proving the aperiodicity.
To prove Harris recurrence, we use the fact that for ψ-irreducible T -processes, it is in fact

equivalent to non-evanescence ([MT93b, Theorem 3.2]), and the positivity follows from the fact
that there is an invariant probability measure.

It remains to show that the process is ergodic. By [MT93b, Theorem 6.1], it is enough to
prove that some skeleton chain is irreducible. To this end, first take (x, θ) an arbitrary point:
we reuse Lemma 8 to define U , V, t0 and ε such that Eq. (10) holds; in words, it is possible to
loop around (x, θ) and there is a little room ε in the looping time. Now let (y, η), (y′, η′) be two
arbitrary points. By reachability we can go from the first one to the second one with a visit to
(x, θ) in between, and adding a loop around (x, θ) in the middle will give us what we need. More
formally, using Lemma 8 twice more, there exists t1, c1 and a neighborhood V1 of x such that

P(y,η) [(Xt1 ,Θt1) ∈ · × {θ}] ≥ c1Leb(· ∩ V1),

and t2, c2 and two neighborhoods U2 and V2 of x and y′ such that

P(x′,θ) [(Xt2 ,Θt2) ∈ · × {η′}] ≥ c2Leb(· ∩ V2)

for all x′ ∈ U2. Then for any t ∈ [t0 + t1 + t2, t0 + t1 + t2 + ε], applying the Markov property at
the times t1 and t− t2 yields

P(y,η) [(Xt,Θt) ∈ O × {η′}]
≥ P(y,η) [Θt1 = Θt−t2 = θ,Θt = η′, Xt1 ∈ U ∩ V1, Xt−t2 ∈ V ∩ U2, Xt ∈ O]
≥ P(y,η) [Θt1 = Θt−t2 = θ,Xt1 ∈ U ∩ V1, Xt−t2 ∈ V ∩ U2] c2Leb(O ∩ V2)
≥ P(y,η) [Θt1 = θ,Xt1 ∈ U ∩ V1] cLeb(V ∩ U2)c2Leb(O ∩ V2)
≥ cc1c2Leb(U ∩ V1)Leb(V ∩ U2)Leb(O ∩ V2),

since (t − t2) − t1 ∈ [t0, t0 + ε]. The time interval [t0 + t1 + t2, t0 + t1 + t2 + ε] must contain a
multiple of ε, proving that the ε-chain is open set irreducible and therefore irreducible.

3.4 Lyapunov function
In order to establish exponential ergodicity we have to establish contractivity in the tails for which
a Lyapunov function argument is used. For this we first require the notion of the generator of the
zigzag process. We define the generator of the zigzag process in E with switching rates (λi)di=1
as the operator L whose domain D(L) consists of continuous functions f : E → R, such that
t 7→ f(x + θt, θ) is absolutely continuous on [0,∞) for all (x, θ) ∈ E. For such f ∈ D(L), the
function Lf is defined as

Lf(x, θ) = 〈θ,∇f(x)〉+
d∑
i=1

λi(x, θ)(f(x, Fiθ)− f(x, θ)), (x, θ) ∈ E.

The main result on exponential ergodicity (Theorem 2) will be proved using the following
result from Down, Meyn and Tweedie ([DMT95, Theorem 5.2]).
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Theorem 6 (Drift criterion for exponential convergence). Suppose that (Xt,Θt) is an irreducible
aperiodic process, and suppose that there exists a Lyapunov function, that is, a function V ≥ 1
such that

LV ≤ −εV + c1K ,
where K is a petite set. Then (Xt,Θt) is exponentially ergodic:

‖P(x,θ) [(Xt,Θt) ∈ ·]− π‖TV ≤M(x, θ)e−ct,

for some positive constant c.

Remark 12. The continuity assumption on functions in the domain D(L) leads to a domain
which is somewhat smaller than that of the extended generator, characterized in [Dav93, Theorem
26.14]. However this definition is sufficient for our purposes.

In order to motivate our choice of Lyapunov function, first note that we are looking for a
function that typically decreases along the dynamics. Since the velocity has a positive probability
of switching whenever the process is going ”uphill” (that is, whenever 〈θ,∇U(x)〉 > 0, a first
guess might be V (x, θ) = exp(αU(x)) for some α > 0. However this velocity jump will not occur
immediately, therefore we wish to introduce a dependence on the partial derivatives of U and
on the direction θ so that the effect of the switching intensity is to decrease V with sufficiently
large probability while we are running uphill of the potential. For a zero excess switching rate,
γ(x, θ) ≡ 0, we could simply take V (x, θ) = exp(αU(x) + β〈θ,∇U(x)〉) but for nonzero excess
switching rate we have to be more careful in dependence on the partial derivatives of U . The
particular structure of the zigzag process enables us to work on each component of the gradient
separately.

The Lyapunov function we will introduce in Lemma 11 may also be compared to the Lyapunov
function for the Bouncy Particle Sampler [DBD17],

V (x, v) = exp
( 1

2U(x))− 1
2 ln(λ(x,−v)

)
, (x, v) ∈ Rd × Sd−1.

Note that this Lyapunov function is not well defined in our situation which should include the
case of canonical switching rates, where γ(·) ≡ 0.

Lemma 11. Suppose Growth Condition 3 is satisfied. Consider the process with a switching rate
given by λi(x, θ) = γi(x, θ) + (θi∂iU(x))+, where γ : E → [0,∞)d is bounded: for some constant
γ ≥ 0,

γi(x, θ) ≤ γ, (x, θ) ∈ E, i = 1, . . . , d.
Let δ > 0 and α > 0 such that 0 ≤ γδ < α < 1. Define φ(s) = 1

2 sign(s) ln (1 + δ |s|). Then the
function

V (x, θ) = exp
(
αU(x) +

∑
i

φ(θi∂iU(x))
)

(11)

is a Lyapunov function for (Xt,Θt), that is, lim|x|→∞ V (x) =∞ and

LV ≤ −εV + C1K ,

where ε, C are positive constants and K is a compact set in E.

Proof. It may be verified that V ∈ D(L). Using the expression of the generator,

(LV/V )(x, θ) = α〈θ,∇U(x)〉+
∑
i,j

θi∂ijU(x)θjφ′(θj∂jU(x))

+
∑
i

(γi + (θi∂iU)+) (exp(φ(−θi∂iU)− φ(θi∂iU))− 1)
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For the ith component, if s = θi∂iU ≥ 0, then φ(−s)− φ(s) = − ln(1 + δs), so

αs+ (γi + (s)+) (exp(φ(−s)− φ(s))− 1)

= (α− 1)s+ (1− δγi)s
1 + δs

≤ −(1− α)|s|+ (1/δ).

When s < 0, we have φ(−s)− φ(s) = ln(1 + δ |s|), so

αs+ (γi + (s)+) (exp(φ(−s)− φ(s))− 1)
= αs+ γi (1 + δ |s| − 1) ≤ −(α− γδ)|s|.

In either case,

αs+ (γi + (s)+) (exp(φ(−s)− φ(s))− 1) ≤ −min(1− α, α− δγ) |s|+ (1/δ).

Since 0 ≤ φ′(s) ≤ δ/2,

(LV/V )(x, θ) ≤ −min(1− α, α− γδ)
∑
i

|∂iU |+ d/δ + δ

2
∑
i,j

|∂ijU | ,

which is less than 1 outside a ball by our hypotheses.

3.5 Proofs of the main results
Proof of Theorem 1. The steps of the proof are completely as depicted in Figure 4 and simply
consist of combining Proposition 2, Theorem 4 and Theorem 5.

Proof of Theorem 2. By Lemma 11, there exists a Lyapunov function V such that for some ε > 0,
LV ≤ −εV outside a compact set, where L is the generator of the zigzag process, see Section 3.4.
Since Growth Condition 3 implies Growth Condition 1, by Theorem 5, all compact sets are petite,
and the process is ψ-irreducible and aperiodic, so that the conditions of Theorem 6 are satisfied,
which establishes exponential ergodicity.

Proof of Theorem 3. By the growth condition, there exist α > 0 such that α < β+η/4 < 1/2 and
δ > 0 such that 0 < δ < α such that, for some c > 0, g ≤ cV with V given by (11). Furthermore,
again by the growth condition, for x outside a bounded set, V (x, θ) ≤ exp((β + η/2)U(x)).
From the integrability assumption, π(V 2) < ∞. That all compact sets are petite follows from
Theorem 5, whose conditions are satisfied by Theorem 4. The statement of the theorem then
follows from Lemma 11 and [GM96, Theorem 4.3].
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