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Dissipative reaction diffusion systems with

quadratic growth

Michel Pierre∗, Takashi Suzuki†, Yoshio Yamada‡

March 3, 2017

Abstract

We introduce a class of reaction diffusion systems of which weak
solution exists global-in-time with relatively compact orbit in L1. Re-
action term in this class is quasi-positive, dissipative, and up to with
quadratic growth rate. If the space dimension is less than or equal to
two, the solution is classical and uniformly bounded. Provided with
the entropy structure, on the other hand, this weak solution is asymp-
totically spatially homogeneous.

Keywords. reaction diffusion equation, weak solution, duality argument,
entropy, asymptotic behavior.
MSC(2010) 35K57, 35B40

1 Introduction

The purpose of the present paper is to study global-in-time behavior of the
solution to the reaction diffusion system. Let Ω ⊂ Rn be a bounded domain
with smooth boundary ∂Ω, and τj > 0 and dj > 0, 1 ≤ j ≤ N , be constants.
We consider the system

τj
∂uj
∂t

− dj∆uj = fj(u) in QT = Ω× (0, T ), 1 ≤ j ≤ N

∂uj
∂ν

∣∣∣∣
∂Ω

= 0, uj |t=0 = uj0(x) ≥ 0, (1)

∗ENS Rennes, IRMAR, UBL Campus de Ker Lann, 35170-Bruz, France. Email:
michel.pierre@ens-rennes.fr

†Graduate School of Engineering Science, Department of System Innovation, Division
of Mathematical Science, Osaka University. Email: suzuki@sigmath.es.osaka-u.ac.jp

‡Department of Applied Mathematics, Waseda University. Email: yamada@waseda.jp

1



where u = (uj) and T > 0.
We assume that

fj : RN → R is locally Lipschitz continuous, 1 ≤ j ≤ N, (2)

and therefore, system (1) admits a unique classical solution local-in-time if
the initial value u0 = (uj0(x)) is sufficiently smooth. Also, the nonlinearity
is assumed to be quasi-positive, which means

fj(u1, · · · , uj−1, 0, uj+1, · · · , un) ≥ 0, 1 ≤ j ≤ N, 0 ≤ u = (uj) ∈ RN . (3)

Here and henceforth, we say u = (uj) ≥ 0 if and only if uj ≥ 0 for any
1 ≤ j ≤ N . From this condition, the solution satisfies u = (uj(·, t)) ≥ 0 as
long as it exists.

The solution which we handle with, however, is mostly weak solution
defined as follows.

Definition 1 We say that

0 ≤ u = (uj(·, t)) ∈ L∞
loc([0, T ), L

1(Ω)N ) ∩ L1
loc(0, T ;W

1,1(Ω)N )

is a weak solution to (1) if f(u) ∈ L1
loc(Ω× (0, T )),

τj
d

dt

∫
Ω
ujφ dx+ dj

∫
Ω
∇uj · ∇φ dx =

∫
Ω
fj(u)φ dx, 1 ≤ j ≤ N

for any φ ∈W 1,∞(Ω) in the sense of distributions with respect to t, and

uj |t=0 = uj0(x), 1 ≤ j ≤ N

in the sense of measures on Ω.

Remark 1 Similarly to the case of Dirichlet boundary condition in (1) (see,
e.g., [2] and also Lemma 5.1 of [17]), the above weak solution u = (uj(·, t))
is in C((0, T ), L1(Ω)N ) and it holds that

uj(·, t) = etτ
−1
j dj∆uj(·, τ) +

∫ t

τ
e(t−s)τ−1

j dj∆fj(u(·, s)) ds, 1 ≤ j ≤ N (4)

for any 0 < τ ≤ t < T . Furthermore, we have[∫
Ω
ujφ(·, t)

]t=t2

t=t1

=

∫∫
Ω×(t1,t2)

τjujφt − dj∇uj · ∇φ+ fj(u)φ dxdt

for any 1 ≤ j ≤ N , 0 < t1 ≤ t2 < T , and φ = φ(x, t) ∈ C1(Ω× [t1, t2]).
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Henceforth, Ci, i = 1, 2, · · · , 47, denote positive constants. Besides (2)-
(3) we assume at most quadratic growth of the nonlinearity f(u) = (fj(u)),

|f(u)| ≤ C1(1 + |u|2), u = (uj) ≥ 0, (5)

and also its dissipativity indicated by

N∑
j=1

fj(u) ≤ 0, u = (uj) ≥ 0. (6)

We also assume

∂fj
∂uj

(u) ≥ −C2(1 + |u|), 1 ≤ j ≤ N, 0 ≤ u = (uj) ∈ RN . (7)

For such a system, global-in-time existence of the weak solution is known
as in Theorem 1 below, where ∥ ∥p, 1 ≤ p ≤ ∞, stands for the standard Lp

norm.

Theorem 1 (Pierre-Rolland [19]) Assume (2), (3), (5), (6), and (7),
and let

0 ≤ u0 = (uj0(x)) ∈ L1(Ω)N

be given. Then there is a weak solution to (1) global-in-time, denoted by
0 ≤ u = (uj(·, t)) ∈ C([0,+∞), L1(Ω)N ), which satisfies

u ∈ L2
loc(Ω× (0,+∞))N ,

∇uj ∈ Lp
loc(Ω× (0,+∞))N , 1 ≤ p <

4

3
, 1 ≤ j ≤ N,

∥u(·, t)∥1 ≤ C3∥u0∥1 for t ≥ 0. (8)

Remark 2 Provided with (2), (3), (5), and (6), global-in-time existence of
the weak solution to (1)is proven for u0 = (uj0) ∈ L2(Ω)N in [17]. Theorem
1 is an extension of this result, in the sense that it admits general 0 ≤ u0 ∈
L1(Ω)N .

Remark 3 Inequality (6) is used to guarantee for the limit of approximate
solutions to be a sub-solution to (1) (see also Theorem 5.14 of [18]). This
inequality may be relaxed as

N∑
j=1

fj(u) ≤ C4(b · u+ 1), 0 ≤ u = (uj) ∈ RN

for Theorem 1 to hold, where 0 ≤ b = (bj) ∈ RN .
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Remark 4 Inequality (7) may be so relaxed as (H6) in [19]. This inequality,
however, is used also in the proof of Theorem 3 below.

Generally, weak solution can include blowup time and may not be unique.
The first result proven in this paper is concerned with the orbit constructed
in Theorem 1.

Theorem 2 The orbit O = {u(·, t) | t ≥ 0} made by the solution u =
(uj(·, t)) in Theorem 1 is relatively compact in L1(Ω)N .

The second result is the regularity of this solution.

Theorem 3 Assume (7) in addition to (2), (3), (5), and (6), and let n ≤
2 and 0 ≤ u0 = (uj0(x)) be sufficiently smooth. Then the weak solution
u = (uj(·, t)) to (1) obtained in Theorem 1 is classical, and takes relatively
compact orbit O = {u(·, t) | t ≥ 0} in C(Ω)N .

Remark 5 Since the classical solution is unique, Theorem 3 assures the
existence of a unique classical solution to (1), which is global-in-time and
uniformly bounded.

The first example covered by Theorems 1-3 is the four-component system
describing chemical reaction A1 +A3 ↔ A2 +A4:

N = 4, fj(u) = (−1)j(u1u3 − u2u4), 1 ≤ j ≤ 4. (9)

There is a weak solution global-in-time (9) which converges exponentially
to a unique spatially homogeneous stationary state in L1 norm [4, 5, 6, 8,
7]. Similar results hold for the renormalized solution [11] involving higher
growth rate [20]. Also, this solution is classical even in higher space dimen-
sions when the diffusion coeffcients are quasi-uniform [10].

The second example is the Lotka-Volterra system, where

fj(u) = (−ej +
∑
k

ajkuk)uj , 1 ≤ j ≤ N, (10)

in (1). For (10) the assumptions of Theorem 1 are fulfilled if

0 ≤ (ej) ∈ RN (11)

and
(Au, u) ≤ 0, 0 ≤ u = (uj) ∈ RN (12)
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where A = (ajk).
This system, (1) with (10), is studied in [25], and an analogous result to

Theorem 3 is obtained under a stronger condition than (11)-(12), that is,

0 ≤ (ej) ∈ RN , tA+A = 0, A = (ajk). (13)

Here, equality tA+A = 0 in (11) was applied to prevent blowup in infinite
time. Theorem 2, therefore, provides a natural extension of our previous
work [25] even to (10), in the sense that the condition (13) is relaxed as
(11)-(12).

Remark 6 The nonlinearities (9) and (10) with (13) for (ej) = 0 satisfy
the equality in (6):

N∑
j=1

fj(u) = 0, 0 ≤ u = (uj) ∈ RN . (14)

Under this condition, blowup in finite time is excluded if n ≤ 2 (see [12]
and also Proposition 3.2 of [4]). Blowup in infinite time is also excluded
by the proof of Proposition 5.1 of [25], replacing (5.4) by (3.12) with (3.19)
there. Hence Theorem 3 is still valid without (7) if (14) is assumed for (6).
This result holds even if −ejuj is added to fj(u) satisfying (14) for each
1 ≤ j ≤ N , where ej ≥ 0 is a constant.

We recall that a fundamental property derived from (6) is the total mass
control, indicated by

d

dt

∫
Ω
τ · u dx ≤ 0, τ = (τj) > 0. (15)

Besides (15), blowup analysis is used in [25] for the study of (10)-(11), based
on the scaling

uµ(x, t) = µ2u(µx, µ2t), µ > 0. (16)

At this process, the inequality

N∑
j=1

fj(u) log uj ≤ C5(1 + |u|2), u = (uj) ≥ 0 (17)

is confirmed, and plays a key role in establishing a priori estimates of the
solution in [25]. Actually, (17) is valid for general f = (fj(u)) satisfying (7).
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Proposition 1 If the nonlinearity f = (fj(u)), u = (uj), satisfies (2), (3),
(6), and (7), then inequality (17) holds true.

Without the scaling property (16), we use the point-wise inequality de-
rived from (6),

∂

∂t
(τ · u)−∆(d · u) ≤ 0 in QT ,

∂

∂ν
(d · u)

∣∣∣∣
∂Ω

≤ 0, d = (dj) > 0. (18)

(We actually have the equality for the boundary condition on d · u in (18).)
Obviously, (15) is a direct consequence of (18), which, however, deduces
several other important properties. The estimate below is obtained by the
duality argument recently developed (see [18]).

Proposition 2 (Pierre [18]) If 0 ≤ u = (uj(x, t)) is smooth on Ω× [0, T ]
and satisfies (18), then it follows that

∥u∥L2(QT ) ≤ C6T
1/2∥u0∥2, u|t=0 = u0. (19)

By the argument developed in our previous work [25], inequality (19)
guarantees global-in-time existence of the classical solution, indicated by
T = +∞, under the assumptions of Theorem 3. The next proposition, on
the other hand, is a refinement of the above Proposition 2, and may be used
alternatively to derive a key inequality for the uniform boundedness of this
global-in-time solution, that is, inequality (85) in section 3. See Remark 11.

Proposition 3 Under the assumptions of Proposition 2, it holds that

∥u∥L2(Q(η,T )) ≤ C7(η, T )∥u0∥1/21 ∥u∥1/2
L1(QT )

(20)

for any 0 < η < T where Q(η, T ) = Ω× (η, T ).

Spatially asymptotic homogenization is observed for (1) with (10)-(11)
under the presence of entropy [16, 25]. The final result in this paper shows
that this phenomenon is extended to the weak solution.

Theorem 4 Assume (2), (3), (5), and (6), and let

0 ≤ u = (uj(·, t)) ∈ C([0,+∞), L1(Ω)N ) (21)
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be the global-in-time weak solution to (1) in Theorem 1. Define its ω-limit
set by

ω(u0) = {u∗ ∈ L1(Ω)N | ∃tk ↑ +∞, lim
k→∞

∥u(·, tk)− u∗∥1 = 0}.

Then we have the following properties:

1. Assume fj(u) = ujgj(u), 1 ≤ j ≤ N1, with

|gj(u)| ≤ C8(1+ |u|),
N1∑
j=1

bjτ
−1
j gj(u) ≥ 0, 0 ≤ u = (uj) ∈ RN , (22)

where 0 < b = (bj) ∈ RN1 and 1 ≤ N1 ≤ N . Assume, furthermore,

log uj0 ∈ L1(Ω), 1 ≤ j ≤ N1. (23)

Then it holds that

P1ω(u0) ⊂ RN1
+ = {u = (u1, · · · , uN1) ∈ RN | u1, · · · , uN1 > 0}

where P1 : (u1, · · · , uN ) 7→ (u1, · · · , uN1).

2. Assume that inequality (6) is improved as

N∑
j=1

fj(u) ≤ −e · u, 0 ≤ u = (uj) ∈ RN (24)

with 0 ≤ e = (ej) ∈ RN satisfying eN2+1, · · · , eN > 0 for N2 ≥
N1. Then it holds that P2ω(u0) = {0}, where P2 : (u1, · · · , uN ) 7→
(uN2+1, · · · , uN ).

Remark 7 The second inequality of (22) provides with a Lyapunov function
to (1). Instead of (23), on the other hand, we may assume uj0 ∈ L∞(Ω) with
uj0 ̸≡ 0, 1 ≤ j ≤ N1, by the strong maximum principle and the parabolic
regularity.

Remark 8 Theorem 4 is applicable to the Lotka-Volterra system. Thus
we have a wide class of (6) with (13) provided with (N − 2) entropies,
where any non-stationary spatially homogeneous solutions are periodic-in-
time [13]. For such a system, the ω-limit set ω(u0) forms a spatially homo-
geneous periodic solution or a unique spatially homogeneous stationary state.
In particular, the ω-limit set ω(u0) in Theorem 4 is not always contained in
the set of stationary solutions.
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This paper is composed of four sections and five appendices. Theorems 2,
3, and 4 are proven in Sections 2, 3, and 4, respectively. Then Propositions
1, 2, and 3 are proven in Sections A, B, and C, respectively.

We shall use the duality argument, relying on the study of the parabolic
problem

∂v

∂t
−∆(av) = f in QT ,

∂

∂ν
(av)

∣∣∣∣
∂Ω

= 0, v|t=0 = v0(x) (25)

where

0 < C−1
9 ≤ a = a(x, t) ≤ C9, f ∈ L2(QT ), v0 ∈ L2(Ω) (26)

to which Section D is devoted. This study takes a significant role in this
paper, because (18) implies

∂v

∂t
−∆(av) ≤ 0 in QT ,

∂

∂ν
(av)

∣∣∣∣
∂Ω

≤ 0

for v = τ · u+ 1 and a = d·u+1
τ ·u+1 .

Section E is concerned with the regularity of the weak solution to the
heat equation

∂w

∂t
= ∆w +H in QT ,

∂w

∂ν

∣∣∣∣
∂Ω

= 0, w|t=0 = w0(x) (27)

for
w0 ∈ L1(Ω), H ∈ L1(QT ). (28)

Here, compactness of the mapping (Proposition 10)

(w0,H) ∈ L1(Ω)× L1(QT ) 7→ w ∈ L1(QT )

is particularly important for the proof of Theorem 2.

2 Proof of Theorem 2

Outline of this section: Global-in-time existence of the weak solution is
known under the assumptions of Theorem 2. Here we shall show that this
orbit is relatively compact in L1(Ω). Given tk ↑ +∞, we construct a compact
family of functions in L1(Q0)

N which dominates uk = uk(x, t) = u(x, t +
tk) ≥ 0 above, where Q0 = Ω×(−η0, 1) for η0 > 0. We prove that this domi-
nating sequence is bounded in L2(Qη0) which implies that {fj(uk)} is bounded
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in L1(Qη0). This bound implies the compactness of {uk} in L1(Qη0) due to
the compactness of the mapping (w0, H) ∈ L1(Ω)× L1(QT ) 7→ w ∈ L1(QT )
in (27). Then, we even prove that the dominating sequence is relatively com-
pact in L2(Qη), η ∈ (0, η0). From dominating convergence, it follows that
{uk} is itself relatively compact in L2(Qη). Then a sub-sequence of fj(uk)
converges in L1(Qη) so that uk converges in C([−η, 1];L1(Ω)). In particular,
u(·, tk) converges in L1(Ω) which is our main objective.

First, we confirm the scheme [19] to construct the global-in-time weak
solution to (1) (see Remark 2 in §1 for a historical note). In fact, the initial
value 0 ≤ u0 = (u0j) ∈ L1(Ω)N is approximated by smooth ũℓ0 = (ũℓj0),
ℓ = 1, 2, · · · , satisfying

ũℓj0 = ũℓj0(x) ≥ max{1
ℓ
, uj0(x)} a.e. in Ω

ũℓj0 → uj0 in L1(Ω) and a.e. in Ω, 1 ≤ j ≤ N. (29)

Second, the nonlinearity is modified by a smooth, non-decreasing truncation
Tℓ : [0,+∞) → [0, ℓ + 1], such that Tℓ(s) = s for 0 ≤ s ≤ ℓ. Then the
nonlinearity f ℓ = (fj ◦ Tℓ) satisfies (2), (3), and (6) for f = (f ℓj ). Then we

take the unique global-in-time classical solution ũℓ = (ũℓj(·, t)) to

τj
∂ũℓj
∂t

− dj∆ũ
ℓ
j = f ℓj (ũ

ℓ) in Ω× (0,+∞)

∂ũℓj
∂ν

∣∣∣∣∣
∂Ω

= 0, ũℓj

∣∣∣
t=0

= ũℓj0(x) (30)

to obtain

∥τ · ũℓ(·, t)∥1 ≤ ∥τ · ũℓ(·, s)∥1, 0 ≤ s ≤ t < +∞ (31)

and in particular,
sup
t≥0

∥ũℓ(·, t)∥1 ≤ C10. (32)

Third, we have

∥ũℓj∥L2(Q(η,T )) + ∥∇ũℓj∥Lp(Q(η,T ))N ≤ C11(η, T, p, ∥u0∥1), 1 ≤ j ≤ N (33)

for 0 < η < T and 1 ≤ p < 4
3 , recalling Q(η, T ) = Ω× (η, T ). Finally, up to

a subsequence we have

ũℓ → u in L1
loc(Ω× [0,+∞))N and a.e. in Ω× (0,+∞). (34)
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See the proof of Theorem 1 of [19] for (33)-(34).
Summig up, we obtain

∥τ · u(·, t)∥1 ≤ ∥τ · u(·, s)∥1, 0 ≤ s ≤ t < +∞
sup
t≥0

∥u(·, t)∥1 ≤ C10 (35)

by (31)-(32). It holds also that

∥uj∥L2(Q(η,T )) + ∥∇uj∥Lp(Q(η,T ))N ≤ C11(η, T, p, ∥u0∥1), 1 ≤ j ≤ N (36)

by (33), and this u = (uj(·, t)) is a weak solution to (1) satisfying (8). In
particular, we obtain u = (uj(·, t)) ∈ C([0,+∞), L1(Ω)N ) by Remark 1.

Given tk ↑ +∞, let

ujk(·, t) = uj(·, t+ tk), uk = (ujk(·, t)), Q = Ω× (−2, 1). (37)

It holds that
∥uk∥L2(Q)N ≤ C12 (38)

by (36) and hence
∥f(uk)∥L1(Q)N ≤ C13.

Since
∥uk(·,−2)∥1 ≤ C10

holds by (35), passing to a subsequence, we have

uk → u∞ in L1(Q)N and a.e. in Q (39)

by Proposition 10 in §E. From (36), furthermore, this u∞ is a weak solution
to (1) (for a different initial value) satisfying (8). In particular, it holds that

uk ⇀ u∞ weakly in L2(Q)N , ∥u∞∥L2(Q)N ≤ C12 (40)

by (38).
The coefficients

a ≤ ak(x, t) ≡
d · uk + 1

τ · uk + 1
≤ a, a ≤ a∞(x, t) ≡ d · u∞ + 1

τ · u∞ + 1
≤ a (41)

are well-defined, provided with the property

ak → a∞ a.e. in Q (42)
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where

a = inf
s>0

ds+ 1

τs+ 1
> 0, a = sup

s>0

ds+ 1

τs+ 1
< +∞

for d = minj dj , d = maxj dj , τ = minj τj , and τ = maxj τj .
Since the first convergence in (39) means

lim
k→∞

∫ 1

−2
∥u(·, t+ tk)− u∞(·, t)∥1 dt = 0, (43)

we have

lim
k→∞

∥uk(·, t)− u∞(·, t)∥1 = 0 for a.e. t ∈ (−2, 1),

passing to a subsequence. In particular, there is η0 ∈ (1, 2) such that

uk(·,−η0) → u∞(·,−η0) in L1(Ω) (44)

as k → ∞.

Remark 9 The convergence (44), combined with (40), is not sufficient to
apply Proposition 5 in Section D for the proof of the strong convergence

uk → u∞ in L2(Q0), Q0 = Ω× (−η0, 1).

By Lemma 2 of [19], in fact, the family {uk} is relatively compact in Lp(Q0)
for 1 ≤ p < 2. Therefore, we could replace the convergence in (44) by a
convergence in Lp(Ω) for all p < 2, but it is not clear how to obtain the
conclusion of Proposition 5 directly with this better convergence. We instead
bound uk from above by the solution wk of an appropriate majorizing system,
and prove that wk is compact in L2(Q0). For justification purposes, further-
more, we do it on regularized approximate systems, see the introduction of
wℓ
k below.

First, similarly to (44), we may assume

ũℓk(·,−η0) → uk(·,−η0) in L1(Ω), k = 1, 2, · · · (45)

as ℓ→ ∞ by (34), where

ũℓk(·, t) = ũℓ(·, t+ tk).

11



Now we take smooth wℓ
k = wℓ

k(x, t), satisfying

∂wℓ
k

∂t
−∆(aℓkw

ℓ
k) = 0 in Q0 = Ω× (−η0, 1)

∂

∂ν
(aℓkw

ℓ
k)

∣∣∣∣
∂Ω

= 0, wℓ
k

∣∣∣
t=−η0

= τ · ũℓk(·,−η0), (46)

where

aℓk(x, t) =
d · ũℓk + 1

τ · ũℓk + 1
.

Since wℓ
k(·, t) ≥ 0 it follows that

∥wℓ
k(·, t)∥1 ≤ ∥τ · ũℓk(·,−η0)∥1 ≤ C10, −η0 ≤ t ≤ 1 (47)

from (46). Therefore, by Proposition 7 in §D, each η1 ∈ (1, η0) admits the
estimate∥∥∥∥∫ 1

−η1

aℓkw
ℓ
k dt

∥∥∥∥
∞

+ ∥wℓ
k∥L2(Q1)N ≤ C14(η1), Q1 = Ω× (−η1, 1). (48)

Furthermore, inequality

N∑
j=1

f ℓj (u) ≤ 0, 0 ≤ u = (uj) ∈ RN

implies

∂

∂t
(τ · ũℓk + 1)−∆(aℓk(τ · ũℓk + 1)) ≤ 0,

∂

∂ν
(τ · ũℓk + 1)

∣∣∣∣
∂Ω

= 0,

and hence
τ · ũℓk + 1 ≤ wℓ

k in Q0 (49)

by the classical maximum principle.
In the following, first, we shall show that {wℓ

k}ℓ is relatively compact
in L2

loc(Ω × (−η0, 1]) for each k = 1, 2, · · · (Lemma 5). Second, assuming
wℓ
k → w∞

k in L2
loc(Ω × (−η0, 1]) up to a subsequence, we shall show that

{w∞
k } is relatively compact in L2

loc(Ω× (−η0, 1]) (Lemma 6). Since

0 ≤ τ · uk + 1 ≤ w∞
k a.e. in Q0 (50)

this property implies the relatively compactness of {τ · uk} (and hence that
of {uk}) in L2

loc(Ω× (η0, 1]), by uk = (ujk) ≥ 0 and τ = (τj) > 0.
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Lemma 5 For each k = 1, 2, · · · , the family {wℓ
k}ℓ ⊂ L2(Q1)

N is relatively
compact.

Proof: In the following proof, we fix k and let ℓ→ ∞. By (34), we have

a ≤ aℓk(x, t) ≤ a, aℓk(x, t) → ak(x, t) ≡ a(x, t+ tk) for a.e. (x, t) ∈ Q1. (51)

Since (48) holds, there is a subsequence satisfying

wℓ
k ⇀ w∞

k weakly in L2(Q1).

From (51) and standard duality argument, it follows also that∥∥∥∥∫ 1

−η1

akw
∞
k dt

∥∥∥∥
∞

+ ∥w∞
k ∥L2(Q1) ≤ C14(η1). (52)

First, we shall show

wℓ
k(·, t) → w∞

k (·, t) in L1(Ω) and for a.e. t ∈ (−η0, 1). (53)

For this purpose, we take smooth r0 = r0(x) and define zℓk = zℓk(x, t) by

∂zℓk
∂t

−∆(aℓkz
ℓ
k) = 0 in Q0

∂zℓk
∂ν

∣∣∣∣
∂Ω

= 0, zℓk

∣∣∣
t=−η0

= r0. (54)

By (46) and (54) we obtain

sup
−η0≤t≤1

∥wℓ
k(·, t)− zℓk(·, t)∥1 ≤ ∥τ · ũℓk(·,−η0)− r0∥1, (55)

using Proposition 6 in §D.
Since (51), we have

zℓk → z∞k in L2(Q0) (56)

by Proposition 5 in §D. In particular, it follows that

zℓk(·, t) → z∞k (·, t) in L2(Ω)N and for a.e. t ∈ (−η0, 1). (57)

Here, z∞k = z∞k (x, t) is the L2 solution to

∂z∞k
∂t

−∆(akz
∞
k ) = 0 in Q0,

∂z∞k
∂ν

∣∣∣∣
∂Ω

= 0, z∞k |t=−η0
= r0.
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Using

∥wℓ
k(·, t)− wℓ′

k (·, t)∥1
≤ ∥wℓ

k(·, t)− zℓk(·, t)∥1 + ∥zℓk(·, t)− zℓ
′
k (·, t)∥1 + ∥zℓ′k (·, t)− wℓ′

k (·, t)∥1
≤ ∥zℓk(·, t)− zℓ

′
k (·, t)∥1 + 2∥τ · ũℓk(·,−η0)− r0∥1, −η0 ≤ t ≤ 1, (58)

we obtain

lim sup
ℓ,ℓ′→∞

∥wℓ
k(·, t)− wℓ′

k (·, t)∥1 ≤ 2∥τ · uk(·,−η0)− r0∥1 for a.e. t ∈ (−η0, 1)

by (45) and (57). Since r0 is an arbitrary smooth function, there holds that

lim sup
ℓ,ℓ′→∞

∥wℓ
k(·, t)− wℓ′

k (·, t)∥1 ≤ 0 for a.e. t ∈ (−η0, 1)

and hence (53). In particular, we may assume

lim
ℓ→∞

∥wℓ
k(·,−η1)− w∞

k (·,−η1)∥1 = 0. (59)

Reducing (46) to[
wℓ
k(·, t)

]t=t2

t=t1
= ∆

∫ t2

t1

aℓkw
ℓ
k(·, t) dt

∂

∂ν

∫ t2

t1

aℓkw
ℓ
k(·, t) dt

∣∣∣∣
∂Ω

= 0, −η1 < t1, t2 < 1,

we obtain

[w∞
k (·, t)]t=t2

t=t1
= ∆

∫ t2

t1

akw
∞
k (·, t) dt

∂

∂ν

∫ t2

t1

akw
∞
k (·, t) dt

∣∣∣∣
∂Ω

= 0 for a.e. t1, t2 ∈ (−η1, 1),

in the sense of distributions on Ω, recalling (52). It thus follows that[
wℓ
k(·, t)− w∞

k (·, t)
]
−∆

∫ t

−η1

[
aℓkw

ℓ
k − akw

∞
k

]
(·, t′) dt′

=
[
wℓ
k(·,−η1)− w∞

k (·,−η1)
]

∂

∂ν

∫ t

−η1

[
aℓkw

ℓ
k − akw

∞
k

]
(·, t′) dt′

∣∣∣∣
∂Ω

= 0 for a.e. t ∈ (−η1, 1) (60)
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in the same sense. From the elliptic regularity, (48), and (52), we get∫ t

−η1

[
aℓkw

ℓ
k − akw

∞
k

]
(·, t′) dt′ ∈ H2(Ω) for a.e. t ∈ (−η1, 1).

Then, taking L2(Q) inner product of the first equation of (60) with aℓkw
ℓ
k −

akw
∞
k leads to∫∫

Q1

(wℓ
k − w∞

k )(aℓkw
ℓ
k − akw

∞
k ) dxdt

≤
∫
Ω
(wℓ

k(·,−η1)− w∞
k (·,−η1)) dx ·

∫ 1

−η1

[aℓkw
ℓ
k − akw

∞
k ](·, t) dt.

Then it follows that∫∫
Q1

(wℓ
k − w∞

k )(aℓkw
ℓ
k − akw

∞
k ) dxdt

≤ 2C14(η1)∥wℓ
k(·,−η1)− w∞

k (·,−η1)∥1

from (48) and (52). We thus end up with

lim sup
ℓ→∞

∫∫
Q1

(wℓ
k − w∞

k )(aℓkw
ℓ
k − akw

∞
k ) dxdt ≤ 0 (61)

by (59).
Here, we use

d∥wℓ
k − w∞

k ∥2L2(Q1)N
≤

∫∫
Q1

aℓk(w
ℓ
k − w∞

k )2 dxdt

=

∫∫
Q1

(wℓ
k − w∞

k )(aℓkw
ℓ
k − akw

∞
k ) + (wℓ

k − w∞
k )w∞

k (ak − aℓk) dxdt

≤
∫∫

Q1

(wℓ
k − w∞

k )(aℓkw
ℓ
k − akw

∞
k ) +

d

2
(wℓ

k − w∞
k )2

+
1

2d
(w∞

k )2(ak − aℓk)
2 dxdt

to deduce

d∥wℓ
k − w∞

k ∥2L2(Q1)N
≤

∫∫
2(wℓ

k − w∞
k )(aℓkw

ℓ
k − akw

∞
k )

+
1

d
(w∞

k )2(ak − aℓk)
2 dxdt.
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Then it follows that
wℓ
k → w∞

k in L2(Q1)
N

from (51), (61), and the dominated convergence theorem. □
By Lemma 5, passing to a subsequence, we have

wℓ
k → w∞

k in L2
loc(Ω× (−η0, 1]) and a.e. in Ω× (−η0, 1) (62)

as ℓ→ ∞, where k = 1, 2, · · · .

Lemma 6 The family {w∞
k } is relatively compact in L2

loc(Ω× (−η0, 1])N .

Proof: We have only to repeat the proof of the previous lemma, replacing
wℓ
k by w∞

k . First, we have (52) for any η1 ∈ (1, η0). Second, it follows that

∂w∞
k

∂t
−∆(akw

∞
k ) = 0 in Q0 = Ω× (−η0, 1)

∂

∂ν
(akw

∞
k )

∣∣∣∣
∂Ω

= 0, w∞
k |t=−η0

= τ · uk(·,−η0) (63)

from (46). We define zℓk = zℓk(x, t) by (54) for smooth r0 = r0(x). Passing
to a subsequence, we obtain (56), where z∞k = z∞k (x, t) is the L2 solution to

∂z∞k
∂t

−∆(akz
∞
k ) = 0 in Q0,

∂z∞k
∂ν

∣∣∣∣
∂Ω

= 0, z∞k |t=−η0
= r0

defined by Proposition 4 in §D. Then, Proposition 5 guarantees

z∞k → z∞ in L2(Q0) (64)

by (41)-(42). Here, z∞ = z∞(x, t) is the L2 solution to

∂z∞
∂t

−∆(a∞z∞) = 0 in Q0,
∂z∞
∂ν

∣∣∣∣
∂Ω

= 0, z∞|t=−η0
= r0.

We modify (58) as

∥wℓ
k(·, t)− wℓ

k′(·, t)∥1
≤ ∥wℓ

k(·, t)− zℓk(·, t)∥1 + ∥zℓk(·, t)− zℓk′(·, t)∥1 + ∥zℓk′(·, t)− wℓ
k′(·, t)∥1

≤ ∥zℓk(·, t)− zℓk′(·, t)∥1 + ∥τ · ũℓk(·,−η0)− r0∥1 + ∥τ · ũℓk′(·,−η0)− r0∥1,

so that letting ℓ→ ∞ leads to

∥w∞
k (·, t)− w∞

k′ (·, t)∥1 ≤ ∥z∞k (·, t)− z∞k′ (·, t)∥1 + ∥τ · uk(·,−η0)− r0∥1
+∥τ · uk′(·,−η0)− r0∥1 for a.e. t ∈ (−η0, 1). (65)

16



From (44), and (64), (65), it follows that

lim
k,k′→∞

∥w∞
k − w∞

k′ ∥1 = 0 for a.e. t ∈ (−η, 1) (66)

because r0 is arbitrary. Inequality (52), and equations of (63) and (66) imply
the result as in the proof of Lemma 5. □

Proof of Theorem 2: Since (50) follows from (34), (49), and (62), we
obtain

0 ≤ ujk + 1 ≤ τ−1w∞
k a.e. in Q0, 1 ≤ j ≤ N (67)

where τ = minj τj > 0. It also holds that

w∞
k → w∞ in L2

loc(Ω× (−η0, 1])N and a.e. in Ω× (−η0, 1), (68)

passing to a subsequence. From (39), (67)-(68), and the dominated conver-
gence theorem it follows that∫∫

Ω×(−η1,1)
(ujk)

2 dxdt→
∫∫

Ω×(−η1,1)
(uj∞)2 dxdt, u∞ = (uj∞),

for any η1 ∈ (η0, 2). See Theorem 4 in p.21 of [9] and its proof.
Therefore, it holds that

uk → u∞ in L2
loc(Ω× (−η0, 1])N and a.e. in Ω× (−η0, 1) (69)

by (40), and hence

f(uk) → f(u∞) in L1
loc(Ω× (−η0, 1])N (70)

by (5) and the dominated convergence theorem.
From (39), on the other hand, there is η ∈ (1, η0) such that

uk(·,−η) → u∞(·,−η) in L1(Ω)N . (71)

Proposition 9, combined with (70) and (71), now implies

uk → u∞ in C([−η, 1], L1(Ω)N ),

and hence
uk(·, 0) = u(·, tk) → u∞(·, 0) in L1(Ω)N .

Thus, any tk ↑ +∞ admits a subsequence such that {u(·, tk)} converges in
L1(Ω)N , and the proof is complete. □
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3 Proof of Theorem 3

Outline of this section: Since the case n = 1 is easier, we assume n = 2. As
is noted in our previous work [25], n = 2 is the critical dimension for the
uniform boundedness of the classical solution u = (uj(·, t)) to (1) with (5)-
(6). We have, therefore, T = +∞ and supt≥0 ∥u(·, t)∥∞ < +∞, provided
that ∥u0∥1 is sufficiently small. By this property, called ε-regularity, and the
monotonicity formula noticed in [23, 24], we have the formation of finitely
many delta-functions to u = (uj(·, t)) as the blowup time approaches. To
show Theorem 3, first, we derive a bound on sup0≤t<T ∥u(·, t)∥L logL, using
(17) and (19). This bound is improved to the one on sup0≤t<T ∥u(·, t)∥2 by
the Gagliardo-Nirenberg inequality. Once this estimate is achieved, we get
a bound of sup0≤t<T ∥u(·, t)∥∞ by the semi-group estimate and bootstrap ar-
gument, which implies T = +∞. Since these bounds are not uniform in T ,
we exclude the possibility of blowup in infinite time in the second step. For
this purpose we assume the contrary, and derive the above described blowup
mechanism for the solution sequence, obtained by the translation in time of
the original global-in-time and classical solution. Then this property, for-
mation of finitely many delta functions, contradicts Theorem 2, the relative
compactness of the orbit in L1(Ω) made by this classical solution.

Assuming the smooth initial value 0 ≤ u0 = (uj0(x)), we have the unique
local-in-time classical solution denoted by u = (uj(·, t)), 0 ≤ t < T . We
may assume uj0 = uj0(x) > 0, 1 ≤ j ≤ N , on Ω by the strong maximum
principle, which implies uj(·, t) > 0 on Ω for any 1 ≤ j ≤ N . Below we
shall take the case n = 2.

The fundamental estimate is (35), particularly,

sup
0≤t<T

∥u(·, t)∥1 ≤ C10. (72)

First, we show the a priori estimate

sup
0≤t<T

∥u(·, t)∥∞ ≤ C15(T ), (73)

which guarantees for this u = u(·, t) to be global-in-time. To this end, we
multiply (1) by log uj. Then (17) implies

d

dt

N∑
j=1

τj

∫
Ω
Φ(uj) dx+ d

N∑
j=1

∫
Ω
u−1
j |∇uj |2 dx

≤ C16

(∫
Ω
|u|2 dx+ 1

)
with d = minj dj > 0, (74)
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where
Φ(s) = s(log s− 1) + 1, s > 0.

Inequality (74) coincides with (3.18) in [25] for φ ≡ 1.
This inequality, combined with Proposition 1, implies

sup
0≤t<T

∥Φ(uj(·, t))∥1 ≤ C17(T ), 1 ≤ j ≤ N. (75)

Here we use ineuality (22) of [3], of which local version is presented as in
Lemma 11.1 of [23], that is,

∥w∥33 ≤ ε∥w∥2H1∥w logw∥1 + C18(ε), 0 ≤ w ∈ L3(Ω) (76)

for any ε > 0. In fact, inequality (5) implies

τj
2

d

dt
∥uj∥22 + dj∥∇uj∥22 ≤ C19(∥u∥33 + 1).

Then we obtain

τj
d

dt
∥uj∥22 + dj∥∇uj∥22 ≤ C20(T ), 1 ≤ j ≤ N

by (72), (75)-(76), and Poincaré-Wirtinger’s inequality, and hence

sup
0≤t<T

∥u(·, t)∥2 ≤ C21(T ). (77)

Once (77) is proven, the semigroup estimate (see [21])

∥et∆w∥r ≤ C22max{1, t−
n
2
( 1
q
− 1

r
)}∥w∥q, 1 ≤ q ≤ r ≤ ∞

applied to (4) implies (73) by the quadratic growth (5). More precisely, we
put

gj = µuj + C1(1 + |u|2)

for µ≫ 1, and define ũj = ũj(·, t) by

τj
∂ũj
∂t

− dj∆ũj + µũj = gj(·, t),
∂ũj
∂ν

∣∣∣∣
∂Ω

= 0, ũj |t=0 = uj0(x).

Then the comparison principle guarantees 0 ≤ uj ≤ ũj, and it holds also
that

ũj(·, t) = etLjuj0 +

∫ t

0
e(t−s)Ljτ−1

j gj(·, s) ds,
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where Lj = τ−1
j [−dj∆+ µ] provided with the Neumann boundary condition.

Then inequality (73) follows from the iteration scheme used in pp. 10-11 of
[25]. More precisely, assuming supt∈[0,T ) ∥u(·, t)∥q ≤ C23(T ) for q ≥ 2, we

obtain supt∈[0,T ) ∥ũj(·, t)∥r ≤ C24(T ) for q ≤ r ≤ ∞ satisfying 2
q −

1
r < 1, by

n = 2. Repeating this argument twice, we reach (73).
Second, we show that (73) is improved as

sup
t≥0

∥u(·, t)∥∞ ≤ C25. (78)

If this is not the cas, we have the non-empty blowup set

S = {x0 ∈ Ω | 1 ≤ ∃j ≤ N, ∃xk → x0, ∃tk ↑ +∞, lim
k→∞

uj(xk, tk) = +∞}.

Given x0 ∈ S, we have tk ↑ +∞ and xk → x0 such that

lim
k→∞

|u|(xk, tk) = +∞, (79)

where |u| =
√∑N

j=1 u
2
j . By Theorem 2 and its proof, we have a subsequence

denoted by the same symbol, satisfying (69) and

uk → u∞ in C([−1, 1], L1(Ω)N ) (80)

for uk = uk(·, t) defined by (37).
Given x0 ∈ Ω and 0 < R ≪ 1, let 0 ≤ φ = φx0,R(x) ∈ C∞(Ω) be the

cut-off function introduced by [22], that is,

φx0,R(x) =

{
1, x ∈ Ω ∩B(x0, R/2)
0, x ∈ Ω \B(x0, R),

∂φ

∂ν

∣∣∣∣
∂Ω

= 0, (81)

and
|∇φ| ≤ C26R

−1φ5/6, |∆φ| ≤ C26R
−2φ2/3, (82)

which is also used in our previous work [25]. To define this function, first,
we take 0 ≤ ψ = ψx0,R ∈ C∞(Ω) satisfying

ψx0,R(x) =

{
1, x ∈ Ω ∩B(x0, R/2)
0, x ∈ Ω \B(x0, R),

∂ψ

∂ν

∣∣∣∣
∂Ω

= 0. (83)

Then, setting φ = ψ6
x0,R

, we obtain (81)-(82). Second, to define ψ = ψx0,R

satisfying (83) we distinguish two cases, x0 ∈ Ω and x0 ∈ ∂Ω. If x0 ∈ Ω,
we take ψx0,R as the standard radially symmetric cut-off function, assuming
0 < R≪ 1. If x0 ∈ ∂Ω, on the other hand, this ψ = ψx0,R is constructed by
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a composition of the standard radially symmetric cut-off function and the
conformal diffeomorphism X : Ω ∩B(x0, 2R) → R2

+. See p.91 of [23].
Given ε > 0, we take sufficiently small R > 0 such that

∥u∞(·, 0)∥L1(Ω∩B(x0,4R)) <
ε

4
.

Then we obtain ∫
Ω
uj∞(·, 0)φx0,4R dx <

ε

4
for 1 ≤ j ≤ N.

Since the mapping

t 7→
∫
Ω
uj∞(·, t)φx0,4R dx

is continuous by u∞ ∈ C([−1, 1], L1(Ω)N ), there exists δ ∈ (0, 1) such that∫
Ω
uj∞(·, t)φx0,4R dx <

ε

2
, |t| < δ

which implies

sup
|t|≤δ

∥u∞(·, t)∥L1(Ω∩B(x0,2R)) <
ε

2
. (84)

By (80), inequality (84) implies

sup
|t|≤δ

∥uk(·, t)∥L1(Ω∩B(x0,R)) < ε (85)

for k ≫ 1, similarly. Henceforth, we assume (85) for k = 1, 2, · · · .
By this inequality we can deduce

∥u(·, tk)∥L∞(Ω∩B(x0,R/8)) ≤ C27, k = 1, 2, · · · , (86)

using Lemma 5.2 of [25] applied to uk(·, t) = u(·, t + tk), which contradics
(79). Thus the uniform boundedness (78) has been shown. We complete the
proof of Theorem 3 with this inequality, becuase it implies relative compact-
ness of the orbit O = {u(·, t) | t ≥ 0} in C(Ω)N .

For the sake of completeness, we describe how to derive (86). In fact, in
our setting, we can take sk ∈ (0, δ) satisfying

∥uk(·,−sk)∥2 ≤ C28 (87)

by (69). This property makes the proof simpler; it suffices to apply the
argument in p.14-15 of [25].
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More precisely, by inequality (3.19) in [25], or Lemma 11.1 of [23], it
holds that∫

Ω
u3jφx0,R dx ≤ C29∥uj∥L1(Ω∩B(x0,R)) ·

∫
Ω
|∇uj |2φx0,R dx+C29∥uj∥1 (88)

for any smooth u = (uj(·, t)) ≥ 0. Furthermore, the inequality

τj
2

d

dt

∫
Ω
u2jφx0,R dx+ dj

∫
Ω
|∇uj |2 φx0,R dx

≤ C30(R)

(∫
Ω
|u|3φx0,R dx+ 1

)
, (89)

follows from (5), as in (3.8) of [25]. We thus end up with

sup
t∈[−sk,δ]

∥uk(·, t)∥2L2(Ω∩B(x0,R/2))

+

∫ δ

−sk

∥∇uk(·, t)∥2L2(Ω∩B(x0,R/2)) dt ≤ C31 (90)

by (87)-(89), recalling uk = (ujk(·, t)) = (uj(·, t + tk)). Then we take 0 <
s′k < sk such that

∥∇uk(·, s′k)∥L2(Ω∩B(x0,R/2)) ≤ C32,

using (90), which implies

∥uk(·, s′k)∥p ≤ C33(p), 1 ≤ p <∞ (91)

by (72) and Sobolev’s embedding theorem. Using an analogous inequality to

(89), with uj replaced by u
3/2
j , that is, (3.12) of [25], we obtain

sup
t∈[−s′k,δ]

∥uk(·, t)∥L3(Ω∩B(x0,R/4)) ≤ C34.

This inequality is improved as

sup
t∈[−s′k,δ]

∥uk(·, t)∥L4(Ω∩B(x0,R/4)) ≤ C35 (92)

by repeating the same argument.
Here we use

τj
∂ũjk
∂t

− dj∆ũjk = g̃jk,
∂ũkj
∂ν

∣∣∣∣∣
∂Ω

= 0
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with ũjk = ujkφ and φ = φx0,R/4, where

g̃jk = −dj(ujk∆φ+ 2∇ujk · ∇φ) + fj(uk)φ.

We have ∫ δ

−s′k

∥g̃jk(·, t)∥22 dt ≤ C36

by (90) and (92). Then, using

ũjk(·, t) = e(t+sk)τ
−1
j dj∆ũjk(·,−s′k) +

∫ t

−s′k

e(t−s)τ−1
j dj∆τ−1

j g̃jk(·, s) ds

for t ∈ (−sk, δ), and the following semi-group estimate [21], that is,

∥∇et∆w∥r ≤ C37(q, r)max{1, t−
n
2
( 1
q
− 1

r
)− 1

2 }∥w∥q, 1 ≤ q ≤ r ≤ ∞

with n = 2, we obtain

sup
t∈[−s′′k ,δ]

∥∇ujk(·, t)∥r ≤ C38

for 0 < s′′k < sk and 1 ≤ r <∞, and hence (86) by (72). □

Remark 10 In the above proof, inequality (7) is used to exclude blowup in
finite time. This condition can be replaced by (14) as is described in Remark
6.

Remark 11 Inequality (85) can be shown alternatively by the relative com-
pactness of {u(·, tk)} ⊂ L1(Ω) and an inequality derived from (5), (20), and
(72), that is,∫ 1

−1

∣∣∣∣ ddt
∫
Ω
uj(·, t+ tk)φ dx

∣∣∣∣ dt ≤ C39∥φ∥W 2,∞ , k ≫ 1 (93)

valid to φ ∈ C2(Ω) with ∂φ
∂ν

∣∣∣
∂Ω

= 0. We note that inequality (93) is callled

the monotonicity formula by [23, 24].
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4 Proof of Theorem 4

Outline of this section: Theorem 4 says that the solution becomes spatially
homogeneous under the presense of an entropy functional. This assertion
follows from the LaSalle principle and the relatively compactness of the orbit.
In our previous work [25] we developed this argument in the framework of
the classical solution. Here, since we are concerned with the weak solution,
we use the approximate solution to complete the proof of this theorem.

Lemma 7 Under the assumptions of the first case of Theorem 4, it holds
that

log uj ∈ L1
loc(Ω× [0,+∞)), ∇ log uj ∈ L2(Ω× (0,+∞))N , 1 ≤ j ≤ N1

and

d

dt
H(u) ≥

N1∑
j=1

bjτ
−1
j dj

∫
Ω
|∇ log uj |2 dx ≥ 0 (94)

in the sense of distributions with respect to t, where

H(u) =

N1∑
j=1

∫
Ω
bj log uj dx.

Proof: Let ũℓ = (ũℓj(·, t)) be the approximate solution of u = (uj(·, t))
defined by (30). It satisfies (34), and also ũℓj(·, t) > 0 on Ω for 1 ≤ j ≤ N .

Letting gℓj = gj ◦ Tℓ, we have

d

dt
H(ũℓ) =

N1∑
j=1

bjτ
−1
j

∫
Ω
|∇ log ũℓj |2 + gℓj(ũ

ℓ) dx

≥
N1∑
j=1

∫
Ω
bjτ

−1
j |∇ log ũℓj |2 dx ≥ 0

and hence
H(ũℓ(·, t)) ≥ H(ũℓ0) ≥ H(u0) > −∞ (95)

by (23) and (29). Therefore, using

log+ ũ
ℓ
j ≤ ũℓj → uj in L1

loc(Ω× [0,+∞)) and a.e. in Ω× (0,+∞) (96)
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valid to 1 ≤ j ≤ N and Fatou’s lemma, we have

log uj ∈ L1
loc(Ω× [0,+∞)), 1 ≤ j ≤ N1

H(u(·, t)) ≥ H(u0) for a.e. t, (97)

where log+ s = max{log s, 0}. Furthermore, (32) implies

H(ũℓ(·, t)) ≤ C40,

and, therefore,∫∫
Ω×(0,+∞)

|∇ log ũℓj |2 dxdt ≤ C41, 1 ≤ j ≤ N1. (98)

Thus {∇ log ũℓj}, 1 ≤ j ≤ N1, is weakly relatively compact in L2(Ω ×
(0,+∞))N . Consequently, it holds that

∇ log uj ∈ L2(Ω× (0,+∞))N , 1 ≤ j ≤ N1 (99)

and (94) in the sense of distributions with respect to t. □
We have already shown (69) for uk = (ujk(·, t)), ujk(·, t) = uj(·, t+ tk),

and η0 ∈ (1, 2). Let u∞ = (uj∞(·, t)). We take η1 ∈ (1, η0) and put Q1 =
Ω× (−η1, 1).

Lemma 8 Under the assumptions of fhe first case of Theorem 4, it holds
that

log uj∞ ∈ L1(Q1), log ujk → log uj∞ in L1(Q1)

as k → ∞ for 1 ≤ j ≤ N1.

Proof: We take η2 ∈ (η1, η0) and put Q2 = Ω × (−η2, 1). By (94) we
have ∫∫

Q2

N1∑
j=1

bj log ujk dxdt ≥ (1 + η2) ·H(u0) > −∞, (100)

recalling (23). Then log uj∞ ∈ L1(Q2), 1 ≤ j ≤ N1, follow from (69), (96),
and Fatou’s lemma. In particular, we obtain

log ujk → log uj∞ a.e. in Q2, 1 ≤ j ≤ N1. (101)

By (30) we obtain

τj
∂

∂t
log ũℓj − dj∆log ũℓj ≥ gℓj(ũ

ℓ),
∂

∂ν
log ũj

∣∣∣∣
∂Ω

= 0,

25



which implies

τj
∂

∂t
log ujk − dj∆log ujk ≥ gj(uk),

∂

∂ν
log ujk

∣∣∣∣
∂Ω

= 0, 1 ≤ j ≤ N1

in the sense of distributions in Q1, recalling (22), (34), and (98)-(99).
By (100) there is η ∈ (η1, η2) such that {log ujk(·,−η)}, 1 ≤ j ≤ N1, is

bounded in L1(Ω). Then we take the solution (see Proposition 8 in §E)

wk
j = wk

j (·, t) ∈ L∞(−η, 1;L1(Ω)) ∩ L1
loc(−η, 1;W 1,1(Ω))

to

τj
∂wk

j

∂t
− dj∆w

k
j = gj(uk) in Ω× (−η, 1) ≡ Qη

∂wk
j

∂ν

∣∣∣∣∣
∂Ω

= 0, wk
j

∣∣∣
t=−η

= log ujk(·,−η).

Then we obtain

wk
j ≤ log ujk(≤ ujk) in Qη, 1 ≤ j ≤ N1 (102)

from the comparison principle (Lemma 3.4 of [2]). By (22) and (69) we
have

gj(uk) → gj(u∞) in L1(Qη)

by the dominated convergence theorem which implies

wk
j → wj in L1(Qη) (103)

with some wj by Proposition 10. The result follows from (101)-(103) and
the dominated convergence theorem. □

Proof of Theorem 4: Since {u(·, t) | t ≥ 0} is relatively compact in
L1(Ω)N , the ω-limit set ω(u0) is non-empty. Let tk ↑ +∞ and u(·, tk) → u∗
in L1(Ω)N . Passing to a subsequence, we obtain (80) for uk(·, t) = (uj(·, t+
tk)).

Under the assumptions of the first case, we have the existence of

lim
t↑+∞

H(u(·, t))

by (35) and (94), which implies the LaSalle principle,

lim
k→∞

∫ tk+1

tk−1
dt ·

N1∑
j=1

bjτ
−1
j dj

∫
Ω
|∇ log uj |2 dx = 0
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again by (94). Then we obtain

∇ log uj∞ = 0 in Ω× (−1, 1), 1 ≤ j ≤ N1

in the sense of distributions, recalling Lemma 8. Then it follows that 0 <
uj∞ ∈ R for 1 ≤ j ≤ N1.

In the second case we use (1) in the form of

τj
∂uj
∂t

+ ejuj = dj∆uj + fj(u) + ejuj ,
∂uj
∂ν

∣∣∣∣
∂Ω

= 0.

It holds that
d

dt

∫
Ω
τ · u dx+

∫
Ω
e · u dx ≤ 0

in the sense of distributions with respec to t, and hence there exsits

lim
t↑+∞

∫
Ω
τ · u dx.

Then we obtain ∫∫
Ω×(−1,1)

e · u∞(x, t) dxdt = 0

from the LaSalle principle, and hence

uj∗ = 0, N2 + 1 ≤ j ≤ N

for u∗ = (uj∗). The proof is complete. □

A Proof of Proposition 1

Assuming (2), (3), (5), (6), and (7), we shall show (17). Put

f̃j(u) = fj(u1, · · · , uj−1, 0, uj+1, · · · , uN ) ≥ 0, 0 ≤ u = (uj) ∈ RN .

If |u| ≤ 1 is the case, we have 0 ≤ uj ≤ 1 for 1 ≤ j ≤ N . Then, for uj > 0
it holds that

fj(u) log uj = (fj(u)− f̃j(u)) log uj + f̃j(u) log uj

≤ (fj(u)− f̃j(u)) log uj ≤ C42uj | log uj | ≤ C43,

and hence
N∑
j=1

fj(u) log uj ≤ NC36, |u| ≤ 1. (104)
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Assume |u| > 1, and put sj = uj/|u| ∈ (0, 1]. It holds that

N∑
j=1

s2j = 1 (105)

and

N∑
j=1

fj(u) log uj = log |u| ·
N∑
j=1

fj(u) +
N∑
j=1

fj(u) log sj

≤
N∑
j=1

fj(u) log sj (106)

by (6). Here we have

fj(u) log sj = (fj(u)− f̃j(u)) log sj + f̃j(u) log sj

≤ (fj(u)− f̃j(u)) log sj (107)

and

fj(u)− f̃j(u)

=

∫ 1

0

d

ds
fj(s1|u|, · · · , sj−1|u|, s · sj |u|, sj+1|u|, · · · , sN |u|) ds

=

∫ 1

0

∂fj
∂uj

(u(s)) ds · sj |u|,

where
u(s) = (s1|u|, · · · , sj−1|u|, s · sj |u|, sj+1|u|, · · · , sN |u|).

Since
|u(s)| ≤ |u|, 0 ≤ s ≤ 1

it follows from (7) that

(fj(u)− f̃j(u)) log sj ≤ C2(1 + |u|)|u| · sj | log sj |
≤ C44|u|2, |u| ≥ 1. (108)

Inequalities (106)-(108) imply

N∑
j=1

fj(u) log uj ≤ NC44|u|2, |u| ≥ 1 (109)

and then we obtain (17) by (104) and (109).
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B Proof of Proposition 2

Let u0 = u|t=0. By (18) we have

τ · u(·, t)− τ · u0 ≤
∫ t

0
∆(d · u(·, s)) ds,

and hence

(τ · u(·, t), d · u(·, t))− (τ · u0, d · u(·, t))

≤ −(∇d · u(·, t),∇
∫ t

0
d · u(·, s) ds)

= −1

2

d

dt
∥∇

∫ t

0
d · u(·, s) ds∥22, (110)

where ( , ) denotes the L2-inner product. Integration of (110) over (0, T )
implies ∫ T

0
(τ · u(·, t), d · u(·, t)) dt

≤ ∥τ · u0∥2 ·
∫ T

0
∥d · u(·, t)∥2 dt

≤ T 1/2∥τ · u0∥2 ·
(∫ T

0
∥d · u(·, t)∥22 dt

)1/2

,

and hence (19) holds by u = (uj(·, t)) ≥ 0.

C Proof of Proposition 3

It follows from (18) that

τ · u(·, T )− τ · u(·, t) ≤
∫ T

t
∆(d · u(·, s)) ds, 0 ≤ t ≤ T. (111)

It holds that
Vt = −d · u

for

V (·, t) =
∫ T

t
d · u(·, s) ds, (112)
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and hence (111) implies

∆V ≥ −τ · u(·, t) ≥ τ̃Vt in QT ,
∂V

∂ν

∣∣∣∣
∂Ω

≤ 0 for τ̃ = maxj τjd
−1
j (113)

by u = (uj(·, t)) ≥ 0. It follows also that

∥V (·, 0)∥1 ≤
∫ T

0
∥d · u(·, s)∥1 ds ≤ d̃∥u∥L1(QT ) for d̃ = maxj dj

from (112). Therefore, the parabolic regularity to (113) implies

sup
η≤t≤T

∥V (·, t)∥∞ ≤ C45(η, τ̃)∥V (·, 0)∥1

≤ C45(η, τ̃) · d̃ · ∥u∥L1(QT ) (114)

by u = (uj(·, t)) ≥ 0.
Taking 0 ≤ t0 ≤ t ≤ T , we apply (18) again, to obtain

τ · u(·, t) ≤ τ · u(·, t0) +
∫ t

t0

∆(d · u)(·, s)) ds.

Then it follows that

(τ · u(·, t), d · u(·, t)) ≤ (τ · u(·, t0), d · u(·, t))−
1

2

d

dt
∥∇

∫ t

t0

d · u(·, s) ds∥22

where ( , ) denotes the L2-inner product. Integrating the above inequality
with respect to t ∈ [0, T ] leads to∫∫

Ω×(t0,T )
(τ · u)(d · u) dxdt+ 1

2
∥∇

∫ T

t0

d · u(·, s) ds∥22

≤
∫ T

t0

(τ · u(·, t0), d · u(·, t)) dt = (τ · u(·, t0),
∫ T

t0

d · u(·, t) dt)

≤ ∥τ · u(·, t0)∥1 · ∥V (·, t0)∥∞. (115)

Inequality (20) is a direct consequence of (114)-(115) and (15).

D Parabolic problem (25)

We confirm the following fact shown in the proof of Lemma 2.3 of [15].
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Proposition 4 For (26), there is a unique solution v = v(x, t) ∈ L2(QT )
to (25) such that

∫ t
0 av ∈ L2(0, T ;H2(Ω)) in the sense that

v −∆

(∫ t

0
av(·, s) ds

)
= v0 +

∫ t

0
f(·, s) ds

∂

∂ν

∫ t

0
av(·, s) ds

∣∣∣∣
∂Ω

= 0. (116)

Similarly to (19), the estimate

∥v∥L2(QT ) ≤ C46T
1/2(∥v0∥2 + ∥f∥L2(QT )) (117)

is proven for the above v = v(x, t), which ensures the following result by the
dominated convergence theorem.

Proposition 5 Let 0 < C−1
9 ≤ ak = ak(x, t) ≤ C9, vk0 ∈ L2(Ω), and

fk ∈ L2(QT ), k = 1, 2, · · · , be sequences of coefficients, initial values, and
inhomogeneous terms, respectively, satisfying

ak → a a.e. in QT = Ω× (0, T )

vk0 → v0 in L2(Ω), fk → f in L2(QT ). (118)

Let vk = vk(x, t) ∈ L2(QT ) be the solution to

∂vk
∂t

−∆(akvk) = fk,
∂

∂ν
(akvk)

∣∣∣∣
∂Ω

= 0, vk|t=0 = vk0(x) (119)

in the sense of Propsition 4. Then it holds that

vk → v in L2(QT ),

where v = v(x, t) is the solution to (25).

Proposition 5 implies the following proposition.

Proposition 6 The solution v = v(x, t) to (25) in Proposition 4 satisfies

∥v(·, t)∥1 ≤ ∥v0∥1 +
∫ t

0
∥f(·, s)∥1 ds for a.e. t ∈ (0, T ). (120)
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Proof: Letting v±0 = max{0,±v}, f± = max{0,±f}, we take smooth C−1
9 ≤

ak = ak(x, t) ≤ C9, f±k = f±k(x, t), and v±0k = v±0k(x), k = 1, 2, · · · , such
that

ak → a, a.e., v±k0 → v±0 in L2(Ω), f±k → f± in L2(QT ).

There is a unique classical solution v±k = v±k(x, t) ≥ 0 to

∂v±k

∂t
−∆(akv±k) = f±k in QT ,

∂

∂ν
(akv±k)

∣∣∣∣
∂Ω

= 0, v±k|t=0 = v±k0(x)

(121)
which satisfies

∥v±k(·, t)∥1 = ∥v±k0∥1 +
∫ t

0
∥f±k(·, s)∥1 ds, 0 ≤ t ≤ T. (122)

Here we have v±k → v± in L2(QT ) by Proposition 5, which solves

∂v±
∂t

−∆(av±) = f± in QT ,
∂

∂ν
(av±)

∣∣∣∣
∂Ω

= 0, v±|t=0 = v±0 ,

in the sense of (116). Hence it follows that v = v+−v− from the uniqueness
of the solution and also

∥v±(·, t)∥1 = ∥v±0 ∥1 +
∫ t

0
∥f±(·, s)∥1 ds, 0 ≤ t ≤ T.

Then we obtain (120) by

∥v(·, t)∥1 = ∥v+(·, t)− v−(·, t)∥1 ≤ ∥v+(·, t)∥1 + ∥v−(·, t)∥1
∥v0∥1 = ∥v+0 ∥1 + ∥v−0 ∥1
∥f(·, s)∥1 = ∥f+(·, s)∥1 + ∥f−(·, s)∥1.

□
Finally, the following proposition is derived similarly to (114) and (115).

Proposition 7 Let 0 < C−1
9 ≤ a = a(x, t) ≤ C9 and let v = v(x, t) ≥ 0 be

a smoth function on Ω× [0, T ] satisfying

∂v

∂t
−∆(av) ≤ 0 in QT ,

∂

∂ν
(av)

∣∣∣∣
∂Ω

≤ 0.

Then it holds that

∥v∥L2(Ω×(η,T )) + ∥
∫ T

η
av(·, s) ds∥∞ ≤ C47(η, T )∥v∥L1(QT )

for any 0 < η < T .
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E Linear heat equation (27)

The description of Remark 1 is a direct consequence of the following propo-
sition. It is proven by the comparison principle (Lemma 3.4 of [2]).

Proposition 8 Given w0 ∈ L1(Ω) and H ∈ L1(QT ), let

w = w(·, t) ∈ L∞(0, T ;L1(Ω)) ∩ L1
loc(0, T ;W

1,1(Ω))

be the solution to (27). More precisely, for any φ ∈W 1,∞(Ω) it holds that

d

dt

∫
Ω
wφ dx+

∫
Ω
∇w · ∇φ dx =

∫
Ω
Hφ dx

in the sense of distributions with respec to t and

lim
t↓0

w(·, t) = w0

in the sense of measures on Ω. Then it follows that

w(·, t) = et∆w0 +

∫ t

0
e(t−s)∆H(·, s) ds, 0 ≤ t ≤ T. (123)

In particular, w ∈ C([0, T ], L1(Ω)) and this solution exists uniquely.

The existence of the solution in the above proposition may be proven by
the duality argument (Lemma 3.3 of [2]). By (123), a result comparable to
Proposition 5 is obtained.

Proposition 9 The mapping F : (w0,H) ∈ L1(Ω) × L1(QT ) 7→ w ∈
C([0, T ], L1(Ω)) is continuous, where w = w(x, t) is the solution to (27)
in Proposition 8.

The following compactness result is known even to the nonlinear con-
traction semigroup [1] (see also Lemma 3.3 of [2]).

Proposition 10 The mapping F : (w0,H) ∈ L1(Ω) × L1(QT ) 7→ w ∈
L1(QT ) is compact, where w = w(x, t) is the solution to (27) in Proposition
8. In other words, image of each bounded set in L1(Ω) × L1(QT ) by F is
relatively compact in L1(QT ).
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Proof: By (123), the dual operator

F∗ : L∞(QT ) → L∞(Ω)× L∞(QT )

is realized as F∗(h) = (θ|t=0 , θ), where θ = θ(·, t) is the solution to the
backward heat equation

∂θ

∂t
+∆θ = h in QT ,

∂θ

∂ν

∣∣∣∣
∂Ω

= 0, θ|t=T = 0.

Then the assertion follows because F∗ is compact by the parabolic regularity.
□
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