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We introduce a class of reaction diffusion systems of which weak solution exists global-in-time with relatively compact orbit in L 1 . Reaction term in this class is quasi-positive, dissipative, and up to with quadratic growth rate. If the space dimension is less than or equal to two, the solution is classical and uniformly bounded. Provided with the entropy structure, on the other hand, this weak solution is asymptotically spatially homogeneous.

Introduction

The purpose of the present paper is to study global-in-time behavior of the solution to the reaction diffusion system. Let Ω ⊂ R n be a bounded domain with smooth boundary ∂Ω, and τ j > 0 and d j > 0, 1 ≤ j ≤ N , be constants. We consider the system

τ j ∂u j ∂t -d j ∆u j = f j (u) in Q T = Ω × (0, T ), 1 ≤ j ≤ N ∂u j ∂ν ∂Ω = 0, u j | t=0 = u j0 (x) ≥ 0, (1) 
where u = (u j ) and T > 0.

We assume that

f j : R N → R is locally Lipschitz continuous, 1 ≤ j ≤ N, (2) 
and therefore, system (1) admits a unique classical solution local-in-time if the initial value u 0 = (u j0 (x)) is sufficiently smooth. Also, the nonlinearity is assumed to be quasi-positive, which means

f j (u 1 , • • • , u j-1 , 0, u j+1 , • • • , u n ) ≥ 0, 1 ≤ j ≤ N, 0 ≤ u = (u j ) ∈ R N . ( 3 
)
Here and henceforth, we say u = (u j ) ≥ 0 if and only if u j ≥ 0 for any 1 ≤ j ≤ N . From this condition, the solution satisfies u = (u j (•, t)) ≥ 0 as long as it exists.

The solution which we handle with, however, is mostly weak solution defined as follows.

Definition 1 We say that

0 ≤ u = (u j (•, t)) ∈ L ∞ loc ([0, T ), L 1 (Ω) N ) ∩ L 1 loc (0, T ; W 1,1 (Ω) N )
is a weak solution to [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF] if f (u) ∈ L 1 loc (Ω × (0, T )),

τ j d dt ∫ Ω u j φ dx + d j ∫ Ω ∇u j • ∇φ dx = ∫ Ω f j (u)φ dx, 1 ≤ j ≤ N
for any φ ∈ W 1,∞ (Ω) in the sense of distributions with respect to t, and

u j | t=0 = u j0 (x), 1 ≤ j ≤ N
in the sense of measures on Ω.

Remark 1 Similarly to the case of Dirichlet boundary condition in [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF] (see, e.g., [START_REF] Baras | Problèmes paraboliques semi-linéaires avec donées mesures[END_REF] and also Lemma 5.1 of [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction diffusion systems[END_REF]), the above weak solution u = (u j (•, t)) is in C((0, T ), L 1 (Ω) N ) and it holds that

u j (•, t) = e tτ -1 j d j ∆ u j (•, τ ) + ∫ t τ e (t-s)τ -1 j d j ∆ f j (u(•, s)) ds, 1 ≤ j ≤ N (4)
for any 0 < τ ≤ t < T . Furthermore, we have

[∫ Ω u j φ(•, t) ] t=t 2 t=t 1 = ∫ ∫ Ω×(t 1 ,t 2 )
τ j u j φ t -d j ∇u j • ∇φ + f j (u)φ dxdt for any 1 ≤ j ≤ N , 0 < t 1 ≤ t 2 < T , and φ = φ(x, t) ∈ C 1 (Ω × [t 1 , t 2 ]).

Henceforth, C i , i = 1, 2, • • • , 47, denote positive constants. Besides (2)-( 3) we assume at most quadratic growth of the nonlinearity f (u) = (f j (u)),

|f (u)| ≤ C 1 (1 + |u| 2 ), u = (u j ) ≥ 0, (5) 
and also its dissipativity indicated by

N ∑ j=1 f j (u) ≤ 0, u = (u j ) ≥ 0. ( 6 
)
We also assume

∂f j ∂u j (u) ≥ -C 2 (1 + |u|), 1 ≤ j ≤ N, 0 ≤ u = (u j ) ∈ R N . ( 7 
)
For such a system, global-in-time existence of the weak solution is known as in Theorem 1 below, where ∥ ∥ p , 1 ≤ p ≤ ∞, stands for the standard L p norm.

Theorem 1 (Pierre-Rolland [START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF]) Assume ( 2), ( 3), ( 5), [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF], and [START_REF] Desvillettes | About global existence for quadratic systems of reaction-diffusion[END_REF], and let 0 ≤ u 0 = (u j0 (x)) ∈ L 1 (Ω) N be given. Then there is a weak solution to [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF] global-in-time, denoted by 0 ≤ u = (u j (•, t)) ∈ C([0, +∞), L 1 (Ω) N ), which satisfies u ∈ L 2 loc (Ω × (0, +∞)) N ,

∇u j ∈ L p loc (Ω × (0, +∞)) N , 1 ≤ p < 4 3 , 1 ≤ j ≤ N, ∥u(•, t)∥ 1 ≤ C 3 ∥u 0 ∥ 1 for t ≥ 0. ( 8 
)
Remark 2 Provided with [START_REF] Baras | Problèmes paraboliques semi-linéaires avec donées mesures[END_REF], [START_REF] Biler | The Debye system: existence and large time behavior of solutions[END_REF], [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF], and ( 6), global-in-time existence of the weak solution to [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF]is proven for u 0 = (u j0 ) ∈ L 2 (Ω) N in [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction diffusion systems[END_REF]. Theorem 1 is an extension of this result, in the sense that it admits general 0 ≤ u 0 ∈ L 1 (Ω) N .

Remark 3 Inequality ( 6) is used to guarantee for the limit of approximate solutions to be a sub-solution to [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF] (see also Theorem 5.14 of [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF]). This inequality may be relaxed as

N ∑ j=1 f j (u) ≤ C 4 (b • u + 1), 0 ≤ u = (u j ) ∈ R N
for Theorem 1 to hold, where 0 ≤ b = (b j ) ∈ R N .

Remark 4 Inequality ( 7) may be so relaxed as (H6) in [START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF]. This inequality, however, is used also in the proof of Theorem 3 below.

Generally, weak solution can include blowup time and may not be unique. The first result proven in this paper is concerned with the orbit constructed in Theorem 1.

Theorem 2 The orbit

O = {u(•, t) | t ≥ 0} made by the solution u = (u j (•, t)) in Theorem 1 is relatively compact in L 1 (Ω) N .
The second result is the regularity of this solution.

Theorem 3 Assume (7) in addition to ( 2), ( 3), [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF], and ( 6), and let n ≤ 2 and 0 ≤ u 0 = (u j0 (x)) be sufficiently smooth. Then the weak solution u = (u j (•, t)) to [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF] obtained in Theorem 1 is classical, and takes relatively

compact orbit O = {u(•, t) | t ≥ 0} in C(Ω) N .
Remark 5 Since the classical solution is unique, Theorem 3 assures the existence of a unique classical solution to [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF], which is global-in-time and uniformly bounded.

The first example covered by Theorems 1-3 is the four-component system describing chemical reaction

A 1 + A 3 ↔ A 2 + A 4 : N = 4, f j (u) = (-1) j (u 1 u 3 -u 2 u 4 ), 1 ≤ j ≤ 4. ( 9 
)
There is a weak solution global-in-time [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF] which converges exponentially to a unique spatially homogeneous stationary state in L 1 norm [START_REF] Cãnizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF][START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF][START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF][START_REF] Devillettes | Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemitstry[END_REF][START_REF] Desvillettes | About global existence for quadratic systems of reaction-diffusion[END_REF]. Similar results hold for the renormalized solution [START_REF] Fischer | Global existence of renormalized solutions to entropydissipating reaction-diffusion systems[END_REF] involving higher growth rate [START_REF] Pierre | Asymptotic behavior of renormalized solutions to chemical reaction-diffusion systems[END_REF]. Also, this solution is classical even in higher space dimensions when the diffusion coeffcients are quasi-uniform [START_REF] Fellner | Global classical solutions for massconserving, quadratic reaction-diffusion systems in three and higher space dimensions[END_REF].

The second example is the Lotka-Volterra system, where

f j (u) = (-e j + ∑ k a jk u k )u j , 1 ≤ j ≤ N, (10) 
in [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF]. For [START_REF] Fellner | Global classical solutions for massconserving, quadratic reaction-diffusion systems in three and higher space dimensions[END_REF] the assumptions of Theorem 1 are fulfilled if

0 ≤ (e j ) ∈ R N (11) and (Au, u) ≤ 0, 0 ≤ u = (u j ) ∈ R N ( 12 
)
where A = (a jk ). This system, (1) with [START_REF] Fellner | Global classical solutions for massconserving, quadratic reaction-diffusion systems in three and higher space dimensions[END_REF], is studied in [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF], and an analogous result to Theorem 3 is obtained under a stronger condition than ( 11)- [START_REF] Goudon | Regularity analysis for systems of reactiondiffusion equations[END_REF], that is,

0 ≤ (e j ) ∈ R N , t A + A = 0, A = (a jk ). ( 13 
)
Here, equality t A + A = 0 in [START_REF] Fischer | Global existence of renormalized solutions to entropydissipating reaction-diffusion systems[END_REF] was applied to prevent blowup in infinite time. Theorem 2, therefore, provides a natural extension of our previous work [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF] even to [START_REF] Fellner | Global classical solutions for massconserving, quadratic reaction-diffusion systems in three and higher space dimensions[END_REF], in the sense that the condition ( 13) is relaxed as ( 11)- [START_REF] Goudon | Regularity analysis for systems of reactiondiffusion equations[END_REF].

Remark 6

The nonlinearities ( 9) and ( 10) with [START_REF] Kobayashi | Lotka-Volterra systems with periodic orbits[END_REF] for (e j ) = 0 satisfy the equality in [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF]:

N ∑ j=1 f j (u) = 0, 0 ≤ u = (u j ) ∈ R N . ( 14 
)
Under this condition, blowup in finite time is excluded if n ≤ 2 (see [START_REF] Goudon | Regularity analysis for systems of reactiondiffusion equations[END_REF] and also Proposition 3.2 of [START_REF] Cãnizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF]). Blowup in infinite time is also excluded by the proof of Proposition 5.1 of [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF], replacing (5.4) by (3.12) with (3.19) there. Hence Theorem 3 is still valid without [START_REF] Desvillettes | About global existence for quadratic systems of reaction-diffusion[END_REF] if ( 14) is assumed for [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF]. This result holds even if -e j u j is added to f j (u) satisfying ( 14) for each 1 ≤ j ≤ N , where e j ≥ 0 is a constant.

We recall that a fundamental property derived from [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF] is the total mass control, indicated by

d dt ∫ Ω τ • u dx ≤ 0, τ = (τ j ) > 0. (15) 
Besides [START_REF] Lepoutre | Global well-posedness of a conservative relaxed cross diffusion system[END_REF], blowup analysis is used in [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF] for the study of ( 10)- [START_REF] Fischer | Global existence of renormalized solutions to entropydissipating reaction-diffusion systems[END_REF], based on the scaling

u µ (x, t) = µ 2 u(µx, µ 2 t), µ > 0. ( 16 
)
At this process, the inequality

N ∑ j=1 f j (u) log u j ≤ C 5 (1 + |u| 2 ), u = (u j ) ≥ 0 ( 17 
)
is confirmed, and plays a key role in establishing a priori estimates of the solution in [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF]. Actually, ( 17) is valid for general f = (f j (u)) satisfying [START_REF] Desvillettes | About global existence for quadratic systems of reaction-diffusion[END_REF].

Proposition 1 If the nonlinearity f = (f j (u)), u = (u j ), satisfies ( 2), ( 3), [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF], and [START_REF] Desvillettes | About global existence for quadratic systems of reaction-diffusion[END_REF], then inequality [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction diffusion systems[END_REF] holds true.

Without the scaling property [START_REF] Masuda | Asymptotic behavior of solutions of reaction-diffusion systems of Lotka-Volterra type[END_REF], we use the point-wise inequality derived from [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF],

∂ ∂t (τ • u) -∆(d • u) ≤ 0 in Q T , ∂ ∂ν (d • u) ∂Ω ≤ 0, d = (d j ) > 0. ( 18 
)
(We actually have the equality for the boundary condition on d • u in [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF].) Obviously, ( 15) is a direct consequence of [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF], which, however, deduces several other important properties. The estimate below is obtained by the duality argument recently developed (see [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF]).

Proposition 2 (Pierre [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF])

If 0 ≤ u = (u j (x, t)) is smooth on Ω × [0, T ]
and satisfies [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF], then it follows that

∥u∥ L 2 (Q T ) ≤ C 6 T 1/2 ∥u 0 ∥ 2 , u| t=0 = u 0 . ( 19 
)
By the argument developed in our previous work [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF], inequality (19) guarantees global-in-time existence of the classical solution, indicated by T = +∞, under the assumptions of Theorem 3. The next proposition, on the other hand, is a refinement of the above Proposition 2, and may be used alternatively to derive a key inequality for the uniform boundedness of this global-in-time solution, that is, inequality (85) in section 3. See Remark 11.

Proposition 3 Under the assumptions of Proposition 2, it holds that

∥u∥ L 2 (Q(η,T )) ≤ C 7 (η, T )∥u 0 ∥ 1/2 1 ∥u∥ 1/2 L 1 (Q T ) (20)
for any 0 < η < T where Q(η, T ) = Ω × (η, T ). Spatially asymptotic homogenization is observed for (1) with ( 10)- [START_REF] Fischer | Global existence of renormalized solutions to entropydissipating reaction-diffusion systems[END_REF] under the presence of entropy [START_REF] Masuda | Asymptotic behavior of solutions of reaction-diffusion systems of Lotka-Volterra type[END_REF][START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF]. The final result in this paper shows that this phenomenon is extended to the weak solution.

Theorem 4 Assume ( 2), ( 3), [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF], and [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF], and let

0 ≤ u = (u j (•, t)) ∈ C([0, +∞), L 1 (Ω) N ) ( 21 
)
be the global-in-time weak solution to [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF] in Theorem 1. Define its ω-limit set by

ω(u 0 ) = {u * ∈ L 1 (Ω) N | ∃t k ↑ +∞, lim k→∞ ∥u(•, t k ) -u * ∥ 1 = 0}.
Then we have the following properties:

1. Assume f j (u) = u j g j (u), 1 ≤ j ≤ N 1 , with |g j (u)| ≤ C 8 (1 + |u|), N 1 ∑ j=1 b j τ -1 j g j (u) ≥ 0, 0 ≤ u = (u j ) ∈ R N , ( 22 
)
where 0 < b = (b j ) ∈ R N 1 and 1 ≤ N 1 ≤ N . Assume, furthermore, log u j0 ∈ L 1 (Ω), 1 ≤ j ≤ N 1 . ( 23 
)
Then it holds that

P 1 ω(u 0 ) ⊂ R N 1 + = {u = (u 1 , • • • , u N 1 ) ∈ R N | u 1 , • • • , u N 1 > 0}
where

P 1 : (u 1 , • • • , u N ) → (u 1 , • • • , u N 1 ).
2. Assume that inequality ( 6) is improved as

N ∑ j=1 f j (u) ≤ -e • u, 0 ≤ u = (u j ) ∈ R N ( 24 
)
with 0 ≤ e = (e j ) ∈ R N satisfying e N 2 +1 , • • • , e N > 0 for N 2 ≥ N 1 .
Then it holds that P 2 ω(u 0 ) = {0}, where

P 2 : (u 1 , • • • , u N ) → (u N 2 +1 , • • • , u N ).

Remark 7

The second inequality of [START_REF] Senba | Chemotactic collapse in a parabolic-elliptic system of mathematical biology[END_REF] provides with a Lyapunov function to [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF]. Instead of [START_REF] Suzuki | Free Energy and Self-Interacting Particles[END_REF], on the other hand, we may assume u j0 ∈ L ∞ (Ω) with u j0 ̸ ≡ 0, 1 ≤ j ≤ N 1 , by the strong maximum principle and the parabolic regularity.

Remark 8 Theorem 4 is applicable to the Lotka-Volterra system. Thus we have a wide class of ( 6) with [START_REF] Kobayashi | Lotka-Volterra systems with periodic orbits[END_REF] provided with (N -2) entropies, where any non-stationary spatially homogeneous solutions are periodic-intime [START_REF] Kobayashi | Lotka-Volterra systems with periodic orbits[END_REF]. For such a system, the ω-limit set ω(u 0 ) forms a spatially homogeneous periodic solution or a unique spatially homogeneous stationary state.

In particular, the ω-limit set ω(u 0 ) in Theorem 4 is not always contained in the set of stationary solutions.

This paper is composed of four sections and five appendices. Theorems 2, 3, and 4 are proven in Sections 2, 3, and 4, respectively. Then Propositions 1, 2, and 3 are proven in Sections A, B, and C, respectively.

We shall use the duality argument, relying on the study of the parabolic problem

∂v ∂t -∆(av) = f in Q T , ∂ ∂ν (av) ∂Ω = 0, v| t=0 = v 0 (x) (25) 
where

0 < C -1 9 ≤ a = a(x, t) ≤ C 9 , f ∈ L 2 (Q T ), v 0 ∈ L 2 (Ω) (26) 
to which Section D is devoted. This study takes a significant role in this paper, because [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF] implies

∂v ∂t -∆(av) ≤ 0 in Q T , ∂ ∂ν (av) ∂Ω ≤ 0 for v = τ • u + 1 and a = d•u+1 τ •u+1
. Section E is concerned with the regularity of the weak solution to the heat equation

∂w ∂t = ∆w + H in Q T , ∂w ∂ν ∂Ω = 0, w| t=0 = w 0 (x) (27) 
for

w 0 ∈ L 1 (Ω), H ∈ L 1 (Q T ). ( 28 
)
Here, compactness of the mapping (Proposition 10)

(w 0 , H) ∈ L 1 (Ω) × L 1 (Q T ) → w ∈ L 1 (Q T )
is particularly important for the proof of Theorem 2.

Proof of Theorem 2

Outline of this section: Global-in-time existence of the weak solution is known under the assumptions of Theorem 2. Here we shall show that this orbit is relatively compact in 27). Then, we even prove that the dominating sequence is relatively compact in L 2 (Q η ), η ∈ (0, η 0 ). From dominating convergence, it follows that

L 1 (Ω). Given t k ↑ +∞, we construct a compact family of functions in L 1 (Q 0 ) N which dominates u k = u k (x, t) = u(x, t + t k ) ≥ 0 above, where Q 0 = Ω × (-η 0 , 1) for η 0 > 0. We prove that this domi- nating sequence is bounded in L 2 (Q η 0 ) which implies that {f j (u k )} is bounded in L 1 (Q η 0 ). This bound implies the compactness of {u k } in L 1 (Q η 0 ) due to the compactness of the mapping (w 0 , H) ∈ L 1 (Ω) × L 1 (Q T ) → w ∈ L 1 (Q T ) in (
{u k } is itself relatively compact in L 2 (Q η ). Then a sub-sequence of f j (u k ) converges in L 1 (Q η ) so that u k converges in C([-η, 1]; L 1 (Ω)). In particular, u(•, t k ) converges in L 1 (Ω) which is our main objective.
First, we confirm the scheme [START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF] to construct the global-in-time weak solution to (1) (see Remark 2 in §1 for a historical note). In fact, the initial value 0

≤ u 0 = (u 0j ) ∈ L 1 (Ω) N is approximated by smooth ũℓ 0 = (ũ ℓ j0 ), ℓ = 1, 2, • • • , satisfying ũℓ j0 = ũℓ j0 (x) ≥ max{ 1 ℓ , u j0 (x)} a.e. in Ω ũℓ j0 → u j0 in L 1 (Ω) and a.e. in Ω, 1 ≤ j ≤ N. ( 29 
)
Second, the nonlinearity is modified by a smooth, non-decreasing truncation

T ℓ : [0, +∞) → [0, ℓ + 1], such that T ℓ (s) = s for 0 ≤ s ≤ ℓ. Then the nonlinearity f ℓ = (f j • T ℓ ) satisfies (2), (3) 
, and ( 6) for f = (f ℓ j ). Then we take the unique global-in-time classical solution ũℓ = (ũ ℓ j (•, t)) to

τ j ∂ ũℓ j ∂t -d j ∆ũ ℓ j = f ℓ j (ũ ℓ ) in Ω × (0, +∞) ∂ ũℓ j ∂ν ∂Ω = 0, ũℓ j t=0 = ũℓ j0 (x) (30) to obtain ∥τ • ũℓ (•, t)∥ 1 ≤ ∥τ • ũℓ (•, s)∥ 1 , 0 ≤ s ≤ t < +∞ (31)
and in particular, sup

t≥0 ∥ũ ℓ (•, t)∥ 1 ≤ C 10 . ( 32 
)
Third, we have

∥ũ ℓ j ∥ L 2 (Q(η,T )) + ∥∇ũ ℓ j ∥ L p (Q(η,T )) N ≤ C 11 (η, T, p, ∥u 0 ∥ 1 ), 1 ≤ j ≤ N (33) for 0 < η < T and 1 ≤ p < 4 3 , recalling Q(η, T ) = Ω × (η, T ). Finally, up to a subsequence we have ũℓ → u in L 1 loc (Ω × [0, +∞)) N and a.e. in Ω × (0, +∞). ( 34 
)
See the proof of Theorem 1 of [START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF] for (33)-(34). Summig up, we obtain

∥τ • u(•, t)∥ 1 ≤ ∥τ • u(•, s)∥ 1 , 0 ≤ s ≤ t < +∞ sup t≥0 ∥u(•, t)∥ 1 ≤ C 10 (35) 
by ( 31)-( 32). It holds also that

∥u j ∥ L 2 (Q(η,T )) + ∥∇u j ∥ L p (Q(η,T )) N ≤ C 11 (η, T, p, ∥u 0 ∥ 1 ), 1 ≤ j ≤ N (36)
by ( 33), and this u = (u j (•, t)) is a weak solution to (1) satisfying [START_REF] Devillettes | Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemitstry[END_REF]. In particular, we obtain u

= (u j (•, t)) ∈ C([0, +∞), L 1 (Ω) N ) by Remark 1. Given t k ↑ +∞, let u jk (•, t) = u j (•, t + t k ), u k = (u jk (•, t)), Q = Ω × (-2, 1). ( 37 
)
It holds that

∥u k ∥ L 2 (Q) N ≤ C 12 (38) 
by ( 36) and hence

∥f (u k )∥ L 1 (Q) N ≤ C 13 . Since ∥u k (•, -2)∥ 1 ≤ C 10
holds by (35), passing to a subsequence, we have

u k → u ∞ in L 1 (Q) N and a.e. in Q (39)
by Proposition 10 in §E. From (36), furthermore, this u ∞ is a weak solution to (1) (for a different initial value) satisfying [START_REF] Devillettes | Exponential convergence to equilibrium for a nonlinear reaction-diffusion systems arising in reversible chemitstry[END_REF]. In particular, it holds that

u k ⇀ u ∞ weakly in L 2 (Q) N , ∥u ∞ ∥ L 2 (Q) N ≤ C 12 (40) 
by ( 38). The coefficients

a ≤ a k (x, t) ≡ d • u k + 1 τ • u k + 1 ≤ a, a ≤ a ∞ (x, t) ≡ d • u ∞ + 1 τ • u ∞ + 1 ≤ a (41)
are well-defined, provided with the property

a k → a ∞ a.e. in Q (42)
where

a = inf s>0 ds + 1 τ s + 1 > 0, a = sup s>0 ds + 1 τ s + 1 < +∞
for d = min j d j , d = max j d j , τ = min j τ j , and τ = max j τ j . Since the first convergence in (39) means

lim k→∞ ∫ 1 -2 ∥u(•, t + t k ) -u ∞ (•, t)∥ 1 dt = 0, (43) 
we have

lim k→∞ ∥u k (•, t) -u ∞ (•, t)∥ 1 = 0 for a.e. t ∈ (-2, 1),
passing to a subsequence. In particular, there is

η 0 ∈ (1, 2) such that u k (•, -η 0 ) → u ∞ (•, -η 0 ) in L 1 (Ω) (44)
as k → ∞.

Remark 9

The convergence (44), combined with (40), is not sufficient to apply Proposition 5 in Section D for the proof of the strong convergence

u k → u ∞ in L 2 (Q 0 ), Q 0 = Ω × (-η 0 , 1).
By Lemma 2 of [START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF], in fact, the family {u k } is relatively compact in L p (Q 0 ) for 1 ≤ p < 2. Therefore, we could replace the convergence in (44) by a convergence in L p (Ω) for all p < 2, but it is not clear how to obtain the conclusion of Proposition 5 directly with this better convergence. We instead bound u k from above by the solution w k of an appropriate majorizing system, and prove that w k is compact in L 2 (Q 0 ). For justification purposes, furthermore, we do it on regularized approximate systems, see the introduction of w ℓ k below.

First, similarly to (44), we may assume

ũℓ k (•, -η 0 ) → u k (•, -η 0 ) in L 1 (Ω), k = 1, 2, • • • (45)
as ℓ → ∞ by (34), where

ũℓ k (•, t) = ũℓ (•, t + t k ). Now we take smooth w ℓ k = w ℓ k (x, t), satisfying ∂w ℓ k ∂t -∆(a ℓ k w ℓ k ) = 0 in Q 0 = Ω × (-η 0 , 1) ∂ ∂ν (a ℓ k w ℓ k ) ∂Ω = 0, w ℓ k t=-η 0 = τ • ũℓ k (•, -η 0 ), (46) 
where

a ℓ k (x, t) = d • ũℓ k + 1 τ • ũℓ k + 1 . Since w ℓ k (•, t) ≥ 0 it follows that ∥w ℓ k (•, t)∥ 1 ≤ ∥τ • ũℓ k (•, -η 0 )∥ 1 ≤ C 10 , -η 0 ≤ t ≤ 1 (47) from (46). Therefore, by Proposition 7 in §D, each η 1 ∈ (1, η 0 ) admits the estimate ∫ 1 -η 1 a ℓ k w ℓ k dt ∞ + ∥w ℓ k ∥ L 2 (Q 1 ) N ≤ C 14 (η 1 ), Q 1 = Ω × (-η 1 , 1). (48) Furthermore, inequality N ∑ j=1 f ℓ j (u) ≤ 0, 0 ≤ u = (u j ) ∈ R N implies ∂ ∂t (τ • ũℓ k + 1) -∆(a ℓ k (τ • ũℓ k + 1)) ≤ 0, ∂ ∂ν (τ • ũℓ k + 1) ∂Ω = 0,
and hence

τ • ũℓ k + 1 ≤ w ℓ k in Q 0 (49)
by the classical maximum principle.

In the following, first, we shall show that

{w ℓ k } ℓ is relatively compact in L 2 loc (Ω × (-η 0 , 1]) for each k = 1, 2, • • • (Lemma 5). Second, assuming w ℓ k → w ∞ k in L 2 loc (Ω × (-η 0 , 1]) up to a subsequence, we shall show that {w ∞ k } is relatively compact in L 2 loc (Ω × (-η 0 , 1]) (Lemma 6). Since 0 ≤ τ • u k + 1 ≤ w ∞ k a.e. in Q 0 ( 50 
)
this property implies the relatively compactness of {τ • u k } (and hence that of

{u k }) in L 2 loc (Ω × (η 0 , 1]), by u k = (u jk ) ≥ 0 and τ = (τ j ) > 0. Lemma 5 For each k = 1, 2, • • • , the family {w ℓ k } ℓ ⊂ L 2 (Q 1 ) N is relatively compact.
Proof: In the following proof, we fix k and let ℓ → ∞. By (34), we have

a ≤ a ℓ k (x, t) ≤ a, a ℓ k (x, t) → a k (x, t) ≡ a(x, t + t k ) for a.e. (x, t) ∈ Q 1 . (51)
Since (48) holds, there is a subsequence satisfying

w ℓ k ⇀ w ∞ k weakly in L 2 (Q 1 ).
From (51) and standard duality argument, it follows also that

∫ 1 -η 1 a k w ∞ k dt ∞ + ∥w ∞ k ∥ L 2 (Q 1 ) ≤ C 14 (η 1 ). ( 52 
)
First, we shall show

w ℓ k (•, t) → w ∞ k (•, t) in L 1 (Ω) and for a.e. t ∈ (-η 0 , 1). ( 53 
)
For this purpose, we take smooth r 0 = r 0 (x) and define

z ℓ k = z ℓ k (x, t) by ∂z ℓ k ∂t -∆(a ℓ k z ℓ k ) = 0 in Q 0 ∂z ℓ k ∂ν ∂Ω = 0, z ℓ k t=-η 0 = r 0 . ( 54 
)
By ( 46) and (54) we obtain sup

-η 0 ≤t≤1 ∥w ℓ k (•, t) -z ℓ k (•, t)∥ 1 ≤ ∥τ • ũℓ k (•, -η 0 ) -r 0 ∥ 1 , ( 55 
)
using Proposition 6 in §D. Since (51), we have

z ℓ k → z ∞ k in L 2 (Q 0 ) (56) 
by Proposition 5 in §D. In particular, it follows that

z ℓ k (•, t) → z ∞ k (•, t) in L 2 (Ω) N and for a.e. t ∈ (-η 0 , 1). ( 57 
)
Here,

z ∞ k = z ∞ k (x, t) is the L 2 solution to ∂z ∞ k ∂t -∆(a k z ∞ k ) = 0 in Q 0 , ∂z ∞ k ∂ν ∂Ω = 0, z ∞ k | t=-η 0 = r 0 .
Using

∥w ℓ k (•, t) -w ℓ ′ k (•, t)∥ 1 ≤ ∥w ℓ k (•, t) -z ℓ k (•, t)∥ 1 + ∥z ℓ k (•, t) -z ℓ ′ k (•, t)∥ 1 + ∥z ℓ ′ k (•, t) -w ℓ ′ k (•, t)∥ 1 ≤ ∥z ℓ k (•, t) -z ℓ ′ k (•, t)∥ 1 + 2∥τ • ũℓ k (•, -η 0 ) -r 0 ∥ 1 , -η 0 ≤ t ≤ 1, (58) 
we obtain lim sup

ℓ,ℓ ′ →∞ ∥w ℓ k (•, t) -w ℓ ′ k (•, t)∥ 1 ≤ 2∥τ • u k (•, -η 0 ) -r 0 ∥ 1 for a.e. t ∈ (-η 0 , 1)
by ( 45) and (57). Since r 0 is an arbitrary smooth function, there holds that lim sup

ℓ,ℓ ′ →∞ ∥w ℓ k (•, t) -w ℓ ′ k (•, t)∥ 1 ≤ 0 for a.e. t ∈ (-η 0 , 1)
and hence (53). In particular, we may assume

lim ℓ→∞ ∥w ℓ k (•, -η 1 ) -w ∞ k (•, -η 1 )∥ 1 = 0. (59) 
Reducing ( 46) to

[ w ℓ k (•, t) ] t=t 2 t=t 1 = ∆ ∫ t 2 t 1 a ℓ k w ℓ k (•, t) dt ∂ ∂ν ∫ t 2 t 1 a ℓ k w ℓ k (•, t) dt ∂Ω = 0, -η 1 < t 1 , t 2 < 1, we obtain [w ∞ k (•, t)] t=t 2 t=t 1 = ∆ ∫ t 2 t 1 a k w ∞ k (•, t) dt ∂ ∂ν ∫ t 2 t 1 a k w ∞ k (•, t) dt ∂Ω = 0 for a.e. t 1 , t 2 ∈ (-η 1 , 1),
in the sense of distributions on Ω, recalling (52). It thus follows that

[ w ℓ k (•, t) -w ∞ k (•, t) ] -∆ ∫ t -η 1 [ a ℓ k w ℓ k -a k w ∞ k ] (•, t ′ ) dt ′ = [ w ℓ k (•, -η 1 ) -w ∞ k (•, -η 1 ) ] ∂ ∂ν ∫ t -η 1 [ a ℓ k w ℓ k -a k w ∞ k ] (•, t ′ ) dt ′ ∂Ω = 0 for a.e. t ∈ (-η 1 , 1) (60)
in the same sense. From the elliptic regularity, (48), and (52), we get

∫ t -η 1 [ a ℓ k w ℓ k -a k w ∞ k ] (•, t ′ ) dt ′ ∈ H 2 (Ω) for a.e. t ∈ (-η 1 , 1).
Then, taking L 2 (Q) inner product of the first equation of (60) with

a ℓ k w ℓ k - a k w ∞ k leads to ∫ ∫ Q 1 (w ℓ k -w ∞ k )(a ℓ k w ℓ k -a k w ∞ k ) dxdt ≤ ∫ Ω (w ℓ k (•, -η 1 ) -w ∞ k (•, -η 1 )) dx • ∫ 1 -η 1 [a ℓ k w ℓ k -a k w ∞ k ](•, t) dt.
Then it follows that ∫ ∫

Q 1 (w ℓ k -w ∞ k )(a ℓ k w ℓ k -a k w ∞ k ) dxdt ≤ 2C 14 (η 1 )∥w ℓ k (•, -η 1 ) -w ∞ k (•, -η 1 )∥ 1
from (48) and (52). We thus end up with lim sup

ℓ→∞ ∫ ∫ Q 1 (w ℓ k -w ∞ k )(a ℓ k w ℓ k -a k w ∞ k ) dxdt ≤ 0 (61) 
by ( 59).

Here, we use

d∥w ℓ k -w ∞ k ∥ 2 L 2 (Q 1 ) N ≤ ∫ ∫ Q 1 a ℓ k (w ℓ k -w ∞ k ) 2 dxdt = ∫ ∫ Q 1 (w ℓ k -w ∞ k )(a ℓ k w ℓ k -a k w ∞ k ) + (w ℓ k -w ∞ k )w ∞ k (a k -a ℓ k ) dxdt ≤ ∫ ∫ Q 1 (w ℓ k -w ∞ k )(a ℓ k w ℓ k -a k w ∞ k ) + d 2 (w ℓ k -w ∞ k ) 2 + 1 2d (w ∞ k ) 2 (a k -a ℓ k ) 2 dxdt
to deduce

d∥w ℓ k -w ∞ k ∥ 2 L 2 (Q 1 ) N ≤ ∫ ∫ 2(w ℓ k -w ∞ k )(a ℓ k w ℓ k -a k w ∞ k ) + 1 d (w ∞ k ) 2 (a k -a ℓ k ) 2 dxdt.
Then it follows that 51), (61), and the dominated convergence theorem. □ By Lemma 5, passing to a subsequence, we have

w ℓ k → w ∞ k in L 2 (Q 1 ) N from (
w ℓ k → w ∞ k in L 2 loc (Ω × (-η 0 , 1]) and a.e. in Ω × (-η 0 , 1) (62) as ℓ → ∞, where k = 1, 2, • • • . Lemma 6 The family {w ∞ k } is relatively compact in L 2 loc (Ω × (-η 0 , 1]) N .
Proof: We have only to repeat the proof of the previous lemma, replacing w ℓ k by w ∞ k . First, we have (52) for any

η 1 ∈ (1, η 0 ). Second, it follows that ∂w ∞ k ∂t -∆(a k w ∞ k ) = 0 in Q 0 = Ω × (-η 0 , 1) ∂ ∂ν (a k w ∞ k ) ∂Ω = 0, w ∞ k | t=-η 0 = τ • u k (•, -η 0 ) (63) 
from (46). We define z ℓ k = z ℓ k (x, t) by ( 54) for smooth r 0 = r 0 (x). Passing to a subsequence, we obtain (56), where

z ∞ k = z ∞ k (x, t) is the L 2 solution to ∂z ∞ k ∂t -∆(a k z ∞ k ) = 0 in Q 0 , ∂z ∞ k ∂ν ∂Ω = 0, z ∞ k | t=-η 0 = r 0
defined by Proposition 4 in §D. Then, Proposition 5 guarantees

z ∞ k → z ∞ in L 2 (Q 0 ) (64) 
by ( 41)-(42). Here,

z ∞ = z ∞ (x, t) is the L 2 solution to ∂z ∞ ∂t -∆(a ∞ z ∞ ) = 0 in Q 0 , ∂z ∞ ∂ν ∂Ω = 0, z ∞ | t=-η 0 = r 0 .
We modify (58) as

∥w ℓ k (•, t) -w ℓ k ′ (•, t)∥ 1 ≤ ∥w ℓ k (•, t) -z ℓ k (•, t)∥ 1 + ∥z ℓ k (•, t) -z ℓ k ′ (•, t)∥ 1 + ∥z ℓ k ′ (•, t) -w ℓ k ′ (•, t)∥ 1 ≤ ∥z ℓ k (•, t) -z ℓ k ′ (•, t)∥ 1 + ∥τ • ũℓ k (•, -η 0 ) -r 0 ∥ 1 + ∥τ • ũℓ k ′ (•, -η 0 ) -r 0 ∥ 1 , so that letting ℓ → ∞ leads to ∥w ∞ k (•, t) -w ∞ k ′ (•, t)∥ 1 ≤ ∥z ∞ k (•, t) -z ∞ k ′ (•, t)∥ 1 + ∥τ • u k (•, -η 0 ) -r 0 ∥ 1 +∥τ • u k ′ (•, -η 0 ) -r 0 ∥ 1 for a.e. t ∈ (-η 0 , 1). ( 65 
)
From (44), and (64), (65), it follows that lim

k,k ′ →∞ ∥w ∞ k -w ∞ k ′ ∥ 1 = 0 for a.e. t ∈ (-η, 1) (66) 
because r 0 is arbitrary. Inequality (52), and equations of ( 63) and (66) imply the result as in the proof of Lemma 5. □

Proof of Theorem 2: Since (50) follows from (34), (49), and (62), we obtain 0

≤ u jk + 1 ≤ τ -1 w ∞ k a.e. in Q 0 , 1 ≤ j ≤ N ( 67 
)
where τ = min j τ j > 0. It also holds that

w ∞ k → w ∞ in L 2 loc (Ω × (-η 0 , 1]) N and a.e. in Ω × (-η 0 , 1), (68) 
passing to a subsequence. From (39), ( 67)-( 68), and the dominated convergence theorem it follows that ∫ ∫ Ω×(-η 1 ,1)

(u jk ) 2 dxdt → ∫ ∫ Ω×(-η 1 ,1) (u j∞ ) 2 dxdt, u ∞ = (u j∞ ),
for any η 1 ∈ (η 0 , 2). See Theorem 4 in p.21 of [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF] and its proof. Therefore, it holds that

u k → u ∞ in L 2 loc (Ω × (-η 0 , 1]
) N and a.e. in Ω × (-η 0 , 1) (69) by (40), and hence

f (u k ) → f (u ∞ ) in L 1 loc (Ω × (-η 0 , 1]) N (70)
by ( 5) and the dominated convergence theorem. From (39), on the other hand, there is η ∈ (1, η 0 ) such that

u k (•, -η) → u ∞ (•, -η) in L 1 (Ω) N . ( 71 
)
Proposition 9, combined with (70) and ( 71), now implies

u k → u ∞ in C([-η, 1], L 1 (Ω) N ),
and hence

u k (•, 0) = u(•, t k ) → u ∞ (•, 0) in L 1 (Ω) N .
Thus, any t k ↑ +∞ admits a subsequence such that {u(•, t k )} converges in L 1 (Ω) N , and the proof is complete. □

Proof of Theorem 3

Outline of this section: Since the case n = 1 is easier, we assume n = 2. As is noted in our previous work [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF], n = 2 is the critical dimension for the uniform boundedness of the classical solution u = (u j (•, t)) to ( 1) with ( 5)- [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF]. We have, therefore, T = +∞ and sup t≥0 ∥u(•, t)∥ ∞ < +∞, provided that ∥u 0 ∥ 1 is sufficiently small. By this property, called ε-regularity, and the monotonicity formula noticed in [START_REF] Suzuki | Free Energy and Self-Interacting Particles[END_REF][START_REF] Suzuki | Mean Field Theories and Dual Variation -Mathematical Structure of the Mesoscopic Model[END_REF], we have the formation of finitely many delta-functions to u = (u j (•, t)) as the blowup time approaches. To show Theorem 3, first, we derive a bound on sup 0≤t<T ∥u(•, t)∥ L log L , using ( 17) and ( 19). This bound is improved to the one on sup 0≤t<T ∥u( Assuming the smooth initial value 0 ≤ u 0 = (u j0 (x)), we have the unique local-in-time classical solution denoted by u = (u j (•, t)), 0 ≤ t < T . We may assume u j0 = u j0 (x) > 0, 1 ≤ j ≤ N , on Ω by the strong maximum principle, which implies u j (•, t) > 0 on Ω for any 1 ≤ j ≤ N . Below we shall take the case n = 2.

The fundamental estimate is (35), particularly,

sup 0≤t<T ∥u(•, t)∥ 1 ≤ C 10 . ( 72 
)
First, we show the a priori estimate

sup 0≤t<T ∥u(•, t)∥ ∞ ≤ C 15 (T ), ( 73 
)
which guarantees for this u = u(•, t) to be global-in-time. To this end, we multiply ( 1) by log u j . Then [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction diffusion systems[END_REF] implies

d dt N ∑ j=1 τ j ∫ Ω Φ(u j ) dx + d N ∑ j=1 ∫ Ω u -1 j |∇u j | 2 dx ≤ C 16 (∫ Ω |u| 2 dx + 1 ) with d = min j d j > 0, ( 74 
)
where

Φ(s) = s(log s -1) + 1, s > 0.
Inequality (74) coincides with (3.18) in [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF] for φ ≡ 1. This inequality, combined with Proposition 1, implies

sup 0≤t<T ∥Φ(u j (•, t))∥ 1 ≤ C 17 (T ), 1 ≤ j ≤ N. ( 75 
)
Here we use ineuality [START_REF] Senba | Chemotactic collapse in a parabolic-elliptic system of mathematical biology[END_REF] of [START_REF] Biler | The Debye system: existence and large time behavior of solutions[END_REF], of which local version is presented as in Lemma 11.1 of [START_REF] Suzuki | Free Energy and Self-Interacting Particles[END_REF], that is,

∥w∥ 3 3 ≤ ε∥w∥ 2 H 1 ∥w log w∥ 1 + C 18 (ε), 0 ≤ w ∈ L 3 (Ω) ( 76 
)
for any ε > 0. In fact, inequality [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF] implies

τ j 2 d dt ∥u j ∥ 2 2 + d j ∥∇u j ∥ 2 2 ≤ C 19 (∥u∥ 3 3 + 1).
Then we obtain 72), ( 75)-( 76), and Poincaré-Wirtinger's inequality, and hence

τ j d dt ∥u j ∥ 2 2 + d j ∥∇u j ∥ 2 2 ≤ C 20 (T ), 1 ≤ j ≤ N by (
sup 0≤t<T ∥u(•, t)∥ 2 ≤ C 21 (T ). ( 77 
)
Once ( 77) is proven, the semigroup estimate (see [START_REF] Rothe | Global Solution of Reaction-Diffusion Systems[END_REF])

∥e t∆ w∥ r ≤ C 22 max{1, t -n 2 ( 1 q -1 r ) }∥w∥ q , 1 ≤ q ≤ r ≤ ∞
applied to ( 4) implies ( 73) by the quadratic growth [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF]. More precisely, we put

g j = µu j + C 1 (1 + |u| 2 )
for µ ≫ 1, and define ũj = ũj (•, t) by

τ j ∂ ũj ∂t -d j ∆ũ j + µũ j = g j (•, t), ∂ ũj ∂ν ∂Ω = 0, ũj | t=0 = u j0 (x).
Then the comparison principle guarantees 0 ≤ u j ≤ ũj , and it holds also that

ũj (•, t) = e tL j u j0 + ∫ t 0 e (t-s)L j τ -1 j g j (•, s) ds,
where L j = τ -1 j [-d j ∆ + µ] provided with the Neumann boundary condition. Then inequality (73) follows from the iteration scheme used in pp. 10-11 of [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF]. More precisely, assuming sup t∈[0,T ) ∥u(•, t)∥ q ≤ C 23 (T ) for q ≥ 2, we obtain sup t∈[0,T ) ∥ũ j (•, t)∥ r ≤ C 24 (T ) for q ≤ r ≤ ∞ satisfying 2 q -1 r < 1, by n = 2. Repeating this argument twice, we reach (73).

Second, we show that ( 73) is improved as

sup t≥0 ∥u(•, t)∥ ∞ ≤ C 25 . ( 78 
)
If this is not the cas, we have the non-empty blowup set

S = {x 0 ∈ Ω | 1 ≤ ∃j ≤ N, ∃x k → x 0 , ∃t k ↑ +∞, lim k→∞ u j (x k , t k ) = +∞}.
Given x 0 ∈ S, we have t k ↑ +∞ and x k → x 0 such that

lim k→∞ |u|(x k , t k ) = +∞, ( 79 
)
where |u| = √ ∑ N j=1 u 2 j . By Theorem 2 and its proof, we have a subsequence denoted by the same symbol, satisfying (69) and

u k → u ∞ in C([-1, 1], L 1 (Ω) N ) ( 80 
)
for u k = u k (•, t) defined by (37). Given x 0 ∈ Ω and 0 < R ≪ 1, let 0 ≤ φ = φ x 0 ,R (x) ∈ C ∞ (Ω) be the cut-off function introduced by [START_REF] Senba | Chemotactic collapse in a parabolic-elliptic system of mathematical biology[END_REF], that is,

φ x 0 ,R (x) = { 1, x ∈ Ω ∩ B(x 0 , R/2) 0, x ∈ Ω \ B(x 0 , R), ∂φ ∂ν ∂Ω = 0, ( 81 
)
and |∇φ| ≤ C 26 R -1 φ 5/6 , |∆φ| ≤ C 26 R -2 φ 2/3 , ( 82 
)
which is also used in our previous work [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF]. To define this function, first, we take 0

≤ ψ = ψ x 0 ,R ∈ C ∞ (Ω) satisfying ψ x 0 ,R (x) = { 1, x ∈ Ω ∩ B(x 0 , R/2) 0, x ∈ Ω \ B(x 0 , R), ∂ψ ∂ν ∂Ω = 0. ( 83 
)
Then, setting φ = ψ 6 x 0 ,R , we obtain ( 81)-( 82). Second, to define ψ = ψ x 0 ,R satisfying (83) we distinguish two cases, x 0 ∈ Ω and x 0 ∈ ∂Ω. If x 0 ∈ Ω, we take ψ x 0 ,R as the standard radially symmetric cut-off function, assuming 0 < R ≪ 1. If x 0 ∈ ∂Ω, on the other hand, this ψ = ψ x 0 ,R is constructed by 20 a composition of the standard radially symmetric cut-off function and the conformal diffeomorphism X : Ω ∩ B(x 0 , 2R) → R 2 + . See p.91 of [START_REF] Suzuki | Free Energy and Self-Interacting Particles[END_REF]. Given ε > 0, we take sufficiently small R > 0 such that

∥u ∞ (•, 0)∥ L 1 (Ω∩B(x 0 ,4R)) < ε 4 .
Then we obtain

∫ Ω u j ∞ (•, 0)φ x 0 ,4R dx < ε 4 for 1 ≤ j ≤ N .
Since the mapping

t → ∫ Ω u j ∞ (•, t)φ x 0 ,4R dx is continuous by u ∞ ∈ C([-1, 1], L 1 (Ω) N ), there exists δ ∈ (0, 1) such that ∫ Ω u j ∞ (•, t)φ x 0 ,4R dx < ε 2 , |t| < δ which implies sup |t|≤δ ∥u ∞ (•, t)∥ L 1 (Ω∩B(x 0 ,2R)) < ε 2 . ( 84 
)
By (80), inequality (84) implies

sup |t|≤δ ∥u k (•, t)∥ L 1 (Ω∩B(x 0 ,R)) < ε (85)
for k ≫ 1, similarly. Henceforth, we assume (85) for k = 1, 2, • • • . By this inequality we can deduce

∥u(•, t k )∥ L ∞ (Ω∩B(x 0 ,R/8)) ≤ C 27 , k = 1, 2, • • • , ( 86 
)
using Lemma 5.2 of [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF] applied to u k (•, t) = u(•, t + t k ), which contradics (79). Thus the uniform boundedness (78) has been shown. We complete the proof of Theorem 3 with this inequality, becuase it implies relative compactness of the orbit

O = {u(•, t) | t ≥ 0} in C(Ω) N .
For the sake of completeness, we describe how to derive (86). In fact, in our setting, we can take s k ∈ (0, δ) satisfying

∥u k (•, -s k )∥ 2 ≤ C 28 (87) 
by ( 69). This property makes the proof simpler; it suffices to apply the argument in p.14-15 of [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF].

More precisely, by inequality (3.19) in [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF], or Lemma 11.1 of [START_REF] Suzuki | Free Energy and Self-Interacting Particles[END_REF], it holds that

∫ Ω u 3 j φ x 0 ,R dx ≤ C 29 ∥u j ∥ L 1 (Ω∩B(x 0 ,R)) • ∫ Ω |∇u j | 2 φ x 0 ,R dx + C 29 ∥u j ∥ 1 (88)
for any smooth u = (u j (•, t)) ≥ 0. Furthermore, the inequality

τ j 2 d dt ∫ Ω u 2 j φ x 0 ,R dx + d j ∫ Ω |∇u j | 2 φ x 0 ,R dx ≤ C 30 (R) (∫ Ω |u| 3 φ x 0 ,R dx + 1 ) , ( 89 
)
follows from ( 5), as in (3.8) of [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF]. We thus end up with

sup t∈[-s k ,δ] ∥u k (•, t)∥ 2 L 2 (Ω∩B(x 0 ,R/2)) + ∫ δ -s k ∥∇u k (•, t)∥ 2 L 2 (Ω∩B(x 0 ,R/2)) dt ≤ C 31 (90) 
by ( 87)-( 89), recalling

u k = (u jk (•, t)) = (u j (•, t + t k )). Then we take 0 < s ′ k < s k such that ∥∇u k (•, s ′ k )∥ L 2 (Ω∩B(x 0 ,R/2)) ≤ C 32 , using (90), which implies ∥u k (•, s ′ k )∥ p ≤ C 33 (p), 1 ≤ p < ∞ (91)
by ( 72) and Sobolev's embedding theorem. Using an analogous inequality to (89), with u j replaced by u 3/2 j , that is, (3.12) of [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF], we obtain

sup t∈[-s ′ k ,δ] ∥u k (•, t)∥ L 3 (Ω∩B(x 0 ,R/4)) ≤ C 34 .
This inequality is improved as

sup t∈[-s ′ k ,δ] ∥u k (•, t)∥ L 4 (Ω∩B(x 0 ,R/4)) ≤ C 35 (92)
by repeating the same argument.

Here we use

τ j ∂ ũjk ∂t -d j ∆ũ jk = gjk , ∂ ũk j ∂ν ∂Ω = 0
with ũjk = u jk φ and φ = φ x 0 ,R/4 , where

gjk = -d j (u jk ∆φ + 2∇u jk • ∇φ) + f j (u k )φ.
We have

∫ δ -s ′ k ∥g jk (•, t)∥ 2 2 dt ≤ C 36
by ( 90) and ( 92). Then, using

ũjk (•, t) = e (t+s k )τ -1 j d j ∆ ũjk (•, -s ′ k ) + ∫ t -s ′ k e (t-s)τ -1 j d j ∆ τ -1 j gjk (•, s) ds
for t ∈ (-s k , δ), and the following semi-group estimate [START_REF] Rothe | Global Solution of Reaction-Diffusion Systems[END_REF], that is,

∥∇e t∆ w∥ r ≤ C 37 (q, r) max{1, t -n 2 ( 1 q -1 r )-1 2 }∥w∥ q , 1 ≤ q ≤ r ≤ ∞ with n = 2, we obtain sup t∈[-s ′′ k ,δ] ∥∇u jk (•, t)∥ r ≤ C 38 for 0 < s ′′ k < s k and 1 ≤ r < ∞,
and hence ( 86) by ( 72). □

Remark 10

In the above proof, inequality [START_REF] Desvillettes | About global existence for quadratic systems of reaction-diffusion[END_REF] is used to exclude blowup in finite time. This condition can be replaced by [START_REF] Latos | Transient and asymptotic dynamics of a prey-predator system with diffusion[END_REF] as is described in Remark 6.

Remark 11 Inequality (85) can be shown alternatively by the relative compactness of {u(•, t k )} ⊂ L 1 (Ω) and an inequality derived from ( 5), [START_REF] Pierre | Asymptotic behavior of renormalized solutions to chemical reaction-diffusion systems[END_REF], and (72), that is,

∫ 1 -1 d dt ∫ Ω u j (•, t + t k )φ dx dt ≤ C 39 ∥φ∥ W 2,∞ , k ≫ 1 (93)
valid to φ ∈ C 2 (Ω) with ∂φ ∂ν ∂Ω = 0. We note that inequality (93) is callled the monotonicity formula by [START_REF] Suzuki | Free Energy and Self-Interacting Particles[END_REF][START_REF] Suzuki | Mean Field Theories and Dual Variation -Mathematical Structure of the Mesoscopic Model[END_REF].

Proof of Theorem 4

Outline of this section: Theorem 4 says that the solution becomes spatially homogeneous under the presense of an entropy functional. This assertion follows from the LaSalle principle and the relatively compactness of the orbit.

In our previous work [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF] we developed this argument in the framework of the classical solution. Here, since we are concerned with the weak solution, we use the approximate solution to complete the proof of this theorem.

Lemma 7

Under the assumptions of the first case of Theorem 4, it holds that

log u j ∈ L 1 loc (Ω × [0, +∞)), ∇ log u j ∈ L 2 (Ω × (0, +∞)) N , 1 ≤ j ≤ N 1 and d dt H(u) ≥ N 1 ∑ j=1 b j τ -1 j d j ∫ Ω |∇ log u j | 2 dx ≥ 0 (94)
in the sense of distributions with respect to t, where

H(u) = N 1 ∑ j=1 ∫ Ω b j log u j dx.
Proof: Let ũℓ = (ũ ℓ j (•, t)) be the approximate solution of u = (u j (•, t)) defined by (30). It satisfies (34), and also ũℓ j (•, t) > 0 on Ω for 1 ≤ j ≤ N . Letting g ℓ j = g j • T ℓ , we have

d dt H(ũ ℓ ) = N 1 ∑ j=1 b j τ -1 j ∫ Ω |∇ log ũℓ j | 2 + g ℓ j (ũ ℓ ) dx ≥ N 1 ∑ j=1 ∫ Ω b j τ -1 j |∇ log ũℓ j | 2 dx ≥ 0 and hence H(ũ ℓ (•, t)) ≥ H(ũ ℓ 0 ) ≥ H(u 0 ) > -∞ (95)
by ( 23) and ( 29). Therefore, using

log + ũℓ j ≤ ũℓ j → u j in L 1 loc (Ω × [0, +∞)
) and a.e. in Ω × (0, +∞) (96)

valid to 1 ≤ j ≤ N and Fatou's lemma, we have

log u j ∈ L 1 loc (Ω × [0, +∞)), 1 ≤ j ≤ N 1 H(u(•, t)) ≥ H(u 0 ) for a.e. t, ( 97 
)
where log + s = max{log s, 0}. Furthermore, (32) implies

H(ũ ℓ (•, t)) ≤ C 40 ,
and, therefore, ∫ ∫

Ω×(0,+∞) |∇ log ũℓ j | 2 dxdt ≤ C 41 , 1 ≤ j ≤ N 1 . ( 98 
)
Thus {∇ log ũℓ j }, 1 ≤ j ≤ N 1 , is weakly relatively compact in L 2 (Ω × (0, +∞)) N . Consequently, it holds that ∇ log u j ∈ L 2 (Ω × (0, +∞)) N , 1 ≤ j ≤ N 1 ( 99 
)
and ( 94) in the sense of distributions with respect to t. □

We have already shown (69

) for u k = (u jk (•, t)), u jk (•, t) = u j (•, t + t k ), and η 0 ∈ (1, 2). Let u ∞ = (u j∞ (•, t)). We take η 1 ∈ (1, η 0 ) and put Q 1 = Ω × (-η 1 , 1).

Lemma 8 Under the assumptions of fhe first case of Theorem 4, it holds

that log u j∞ ∈ L 1 (Q 1 ), log u jk → log u j∞ in L 1 (Q 1 )
as k → ∞ for 1 ≤ j ≤ N 1 .

Proof: We take η 2 ∈ (η 1 , η 0 ) and put Q 2 = Ω × (-η 2 , 1). By (94) we have ∫ ∫

Q 2 N 1 ∑ j=1 b j log u jk dxdt ≥ (1 + η 2 ) • H(u 0 ) > -∞, ( 100 
)
recalling [START_REF] Suzuki | Free Energy and Self-Interacting Particles[END_REF]. Then log 69), ( 96), and Fatou's lemma. In particular, we obtain

u j∞ ∈ L 1 (Q 2 ), 1 ≤ j ≤ N 1 , follow from (
log u jk → log u j∞ a.e. in Q 2 , 1 ≤ j ≤ N 1 . ( 101 
)
By ( 30) we obtain

τ j ∂ ∂t log ũℓ j -d j ∆ log ũℓ j ≥ g ℓ j (ũ ℓ ), ∂ ∂ν log ũj ∂Ω = 0, which implies τ j ∂ ∂t log u jk -d j ∆ log u jk ≥ g j (u k ), ∂ ∂ν log u jk ∂Ω = 0, 1 ≤ j ≤ N 1
in the sense of distributions in Q 1 , recalling [START_REF] Senba | Chemotactic collapse in a parabolic-elliptic system of mathematical biology[END_REF], (34), and ( 98)-(99). By (100) there is η ∈ (η 1 , η 2 ) such that {log u jk (•, -η)}, 1 ≤ j ≤ N 1 , is bounded in L 1 (Ω). Then we take the solution (see Proposition 8 in §E)

w k j = w k j (•, t) ∈ L ∞ (-η, 1; L 1 (Ω)) ∩ L 1 loc (-η, 1; W 1,1 (Ω)) to τ j ∂w k j ∂t -d j ∆w k j = g j (u k ) in Ω × (-η, 1) ≡ Q η ∂w k j ∂ν ∂Ω = 0, w k j t=-η = log u jk (•, -η).
Then we obtain

w k j ≤ log u jk (≤ u jk ) in Q η , 1 ≤ j ≤ N 1 (102) 
from the comparison principle (Lemma 3.4 of [START_REF] Baras | Problèmes paraboliques semi-linéaires avec donées mesures[END_REF]). By [START_REF] Senba | Chemotactic collapse in a parabolic-elliptic system of mathematical biology[END_REF] and ( 69) we have

g j (u k ) → g j (u ∞ ) in L 1 (Q η )
by the dominated convergence theorem which implies

w k j → w j in L 1 (Q η ) ( 103 
)
with some w j by Proposition 10. The result follows from ( 101)-( 103) and the dominated convergence theorem. □

Proof of Theorem 4: Since

{u(•, t) | t ≥ 0} is relatively compact in L 1 (Ω) N , the ω-limit set ω(u 0 ) is non-empty. Let t k ↑ +∞ and u(•, t k ) → u * in L 1 (Ω) N . Passing to a subsequence, we obtain (80) for u k (•, t) = (u j (•, t + t k )).
Under the assumptions of the first case, we have the existence of

lim t↑+∞ H(u(•, t))
by ( 35) and ( 94), which implies the LaSalle principle,

lim k→∞ ∫ t k +1 t k -1 dt • N 1 ∑ j=1 b j τ -1 j d j ∫ Ω |∇ log u j | 2 dx = 0
again by (94). Then we obtain

∇ log u j∞ = 0 in Ω × (-1, 1), 1 ≤ j ≤ N 1
in the sense of distributions, recalling Lemma 8. Then it follows that 0 < u j∞ ∈ R for 1 ≤ j ≤ N 1 .

In the second case we use [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF] in the form of

τ j ∂u j ∂t + e j u j = d j ∆u j + f j (u) + e j u j , ∂u j ∂ν ∂Ω = 0. It holds that d dt ∫ Ω τ • u dx + ∫ Ω e • u dx ≤ 0
in the sense of distributions with respec to t, and hence there exsits

lim t↑+∞ ∫ Ω τ • u dx. Then we obtain ∫ ∫ Ω×(-1,1) e • u ∞ (x, t) dxdt = 0
from the LaSalle principle, and hence

u j * = 0, N 2 + 1 ≤ j ≤ N
for u * = (u j * ). The proof is complete. □

A Proof of Proposition 1

Assuming ( 2), ( 3), ( 5), [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a priori bounds[END_REF], and ( 7), we shall show [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction diffusion systems[END_REF]. Put

fj (u) = f j (u 1 , • • • , u j-1 , 0, u j+1 , • • • , u N ) ≥ 0, 0 ≤ u = (u j ) ∈ R N .
If |u| ≤ 1 is the case, we have 0 ≤ u j ≤ 1 for 1 ≤ j ≤ N . Then, for u j > 0 it holds that

f j (u) log u j = (f j (u) -fj (u)) log u j + fj (u) log u j ≤ (f j (u) -fj (u)) log u j ≤ C 42 u j | log u j | ≤ C 43 ,
and hence

N ∑ j=1 f j (u) log u j ≤ N C 36 , |u| ≤ 1. ( 104 
)
Assume |u| > 1, and put

s j = u j /|u| ∈ (0, 1]. It holds that N ∑ j=1 s 2 j = 1 (105) and N ∑ j=1 f j (u) log u j = log |u| • N ∑ j=1 f j (u) + N ∑ j=1 f j (u) log s j ≤ N ∑ j=1 f j (u) log s j (106)
by ( 6). Here we have

f j (u) log s j = (f j (u) -fj (u)) log s j + fj (u) log s j ≤ (f j (u) -fj (u)) log s j ( 107 
)
and

f j (u) -fj (u) = ∫ 1 0 d ds f j (s 1 |u|, • • • , s j-1 |u|, s • s j |u|, s j+1 |u|, • • • , s N |u|) ds = ∫ 1 0 ∂f j ∂u j (u(s)) ds • s j |u|, where u(s) = (s 1 |u|, • • • , s j-1 |u|, s • s j |u|, s j+1 |u|, • • • , s N |u|). Since |u(s)| ≤ |u|, 0 ≤ s ≤ 1 it follows from (7) that (f j (u) -fj (u)) log s j ≤ C 2 (1 + |u|)|u| • s j | log s j | ≤ C 44 |u| 2 , |u| ≥ 1. ( 108 
)
Inequalities ( 106)-( 108) imply

N ∑ j=1 f j (u) log u j ≤ N C 44 |u| 2 , |u| ≥ 1 ( 109 
)
and then we obtain ( 17) by ( 104) and (109).

B Proof of Proposition 2

Let u 0 = u| t=0 . By [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF] we have

τ • u(•, t) -τ • u 0 ≤ ∫ t 0 ∆(d • u(•, s)) ds,
and hence

(τ • u(•, t), d • u(•, t)) -(τ • u 0 , d • u(•, t)) ≤ -(∇d • u(•, t), ∇ ∫ t 0 d • u(•, s) ds) = - 1 2 d dt ∥∇ ∫ t 0 d • u(•, s) ds∥ 2 2 , ( 110 
)
where ( , ) denotes the L 2 -inner product. Integration of ( 110) over (0, T )

implies ∫ T 0 (τ • u(•, t), d • u(•, t)) dt ≤ ∥τ • u 0 ∥ 2 • ∫ T 0 ∥d • u(•, t)∥ 2 dt ≤ T 1/2 ∥τ • u 0 ∥ 2 • (∫ T 0 ∥d • u(•, t)∥ 2 2 dt ) 1/2 ,
and hence [START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF] holds by u = (u j (•, t)) ≥ 0.

C Proof of Proposition 3

It follows from [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF] that

τ • u(•, T ) -τ • u(•, t) ≤ ∫ T t ∆(d • u(•, s)) ds, 0 ≤ t ≤ T. ( 111 
)
It holds that

V t = -d • u for V (•, t) = ∫ T t d • u(•, s) ds, ( 112 
)
and hence (111) implies

∆V ≥ -τ • u(•, t) ≥ τ V t in Q T , ∂V ∂ν ∂Ω ≤ 0 for τ = max j τ j d -1 j ( 113 
)
by u = (u j (•, t)) ≥ 0. It follows also that 

∥V (•, 0)∥ 1 ≤ ∫ T 0 ∥d • u(•, s)∥ 1 ds ≤ d∥u∥ L 1 (Q T ) for d =
∫ T t 0 d • u(•, t) dt) ≤ ∥τ • u(•, t 0 )∥ 1 • ∥V (•, t 0 )∥ ∞ . ( 115 
)
Inequality ( 20) is a direct consequence of ( 114)-( 115) and [START_REF] Lepoutre | Global well-posedness of a conservative relaxed cross diffusion system[END_REF].

D Parabolic problem (25)

We confirm the following fact shown in the proof of Lemma 2.3 of [START_REF] Lepoutre | Global well-posedness of a conservative relaxed cross diffusion system[END_REF].

Proposition 4 For (26), there is a unique solution v = v(x, t) ∈ L 2 (Q T ) to [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF] such that ∫ t 0 av ∈ L 2 (0, T ; H 2 (Ω)) in the sense that Similarly to [START_REF] Pierre | Global existence for a class of quadratic reaction-diffusion system with nonlinear diffusion and L 1 initial data[END_REF], the estimate

∥v∥ L 2 (Q T ) ≤ C 46 T 1/2 (∥v 0 ∥ 2 + ∥f ∥ L 2 (Q T ) ) ( 117 
)
is proven for the above v = v(x, t), which ensures the following result by the dominated convergence theorem. 

v k0 → v 0 in L 2 (Ω), f k → f in L 2 (Q T ). ( 118 
)
Let v k = v k (x, t) ∈ L 2 (Q T ) be the solution to

∂v k ∂t -∆(a k v k ) = f k , ∂ ∂ν (a k v k ) ∂Ω = 0, v k | t=0 = v k0 (x) ( 119 
)
in the sense of Propsition 4. Then it holds that

v k → v in L 2 (Q T ),
where v = v(x, t) is the solution to [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF].

Proposition 5 implies the following proposition.

Proposition 6

The solution v = v(x, t) to [START_REF] Suzuki | Global-in-time behavior of Lotka-Volterra system with diffusion -skew symmetric case[END_REF] 

) 120 
Proof: Letting v ± 0 = max{0, ±v}, f ± = max{0, ±f }, we take smooth C -1 9 ≤ a k = a k (x, t) ≤ C 9 , f ±k = f ±k (x, t), and v ±0k = v ±0k (x), k = 1, 2, • • • , such that a k → a, a.e., v ±k0 → v ± 0 in L 2 (Ω), f ±k → f ± in L 2 (Q T ). There is a unique classical solution v ±k = v ±k (x, t) ≥ 0 to

∂v ±k ∂t -∆(a k v ±k ) = f ±k in Q T , ∂ ∂ν (a k v ±k ) ∂Ω = 0, v ±k | t=0 = v ±k0 (x)
(121) which satisfies

∥v ±k (•, t)∥ 1 = ∥v ±k0 ∥ 1 + ∫ t 0 ∥f ±k (•, s)∥ 1 ds, 0 ≤ t ≤ T. ( 122 
)
Here we have v ±k → v ± in L 2 (Q T ) by Proposition 5, which solves

∂v ± ∂t -∆(av ± ) = f ± in Q T , ∂ ∂ν (av ± ) ∂Ω = 0, v ± | t=0 = v ± 0 ,
in the sense of (116). Hence it follows that v = v + -v -from the uniqueness of the solution and also for any 0 < η < T .

Proposition 5 9 ≤

 59 Let 0 < C -1 a k = a k (x, t) ≤ C 9 , v k0 ∈ L 2 (Ω), and f k ∈ L 2 (Q T ), k = 1, 2, • • • ,be sequences of coefficients, initial values, and inhomogeneous terms, respectively, satisfyinga k → a a.e. in Q T = Ω × (0, T )

Proposition 7

 7 ∥v ± (•, t)∥ 1 = ∥v ± 0 ∥ 1 + ∫ t 0 ∥f ± (•, s)∥ 1 ds, 0 ≤ t ≤ T.Then we obtain (120) by∥v(•, t)∥ 1 = ∥v + (•, t) -v -(•, t)∥ 1 ≤ ∥v + (•, t)∥ 1 + ∥v -(•, t)∥ 1 ∥v 0 ∥ 1 = ∥v + 0 ∥ 1 + ∥v - 0 ∥ 1 ∥f (•, s)∥ 1 = ∥f + (•, s)∥ 1 + ∥f -(•, s)∥ 1 .□ Finally, the following proposition is derived similarly to (114) and (115). Let0 < C -1 9 ≤ a = a(x, t) ≤ C 9 and let v = v(x, t) ≥ 0 be a smoth function on Ω × [0, T ] satisfying ∂v ∂t -∆(av) ≤ 0 in Q T , Then it holds that ∥v∥ L 2 (Ω×(η,T )) + ∥ ∫ T η av(•, s) ds∥ ∞ ≤ C 47 (η, T )∥v∥ L 1 (Q T )

  max j d j from (112). Therefore, the parabolic regularity to (113) implies sup

			∫ t		
				t 0		
						1 2	d dt	∥∇	∫ t t 0	d • u(•, s) ds∥ 2
	Ω×(t 0 ,T ) ∫ T	(τ • u)(d • u) dxdt +	1 2	∥∇	∫ T t 0	d • u(•, s) ds∥ 2 2
	≤					
	t 0					

η≤t≤T ∥V (•, t)∥ ∞ ≤ C 45 (η, τ )∥V (•, 0)∥ 1 ≤ C 45 (η, τ ) • d • ∥u∥ L 1 (Q T ) (114) by u = (u j (•, t)) ≥ 0.

Taking 0 ≤ t 0 ≤ t ≤ T , we apply (

18

) again, to obtain

τ • u(•, t) ≤ τ • u(•, t 0 ) + ∆(d • u)(•, s)) ds.

Then it follows that

(τ • u(•, t), d • u(•, t)) ≤ (τ • u(•, t 0 ), d • u(•, t)) -2

where ( , ) denotes the L 2 -inner product. Integrating the above inequality with respect to t ∈ [0, T ] leads to ∫ ∫

(τ • u(•, t 0 ), d • u(•, t)) dt = (τ • u(•, t 0 ),

  in Proposition 4 satisfies ∥v(•, t)∥ 1 ≤ ∥v 0 ∥ 1 +

	∫ t

0 ∥f (•, s)∥ 1 ds for a.e. t ∈ (0, T ).

(
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E Linear heat equation (27)

The description of Remark 1 is a direct consequence of the following proposition. It is proven by the comparison principle (Lemma 3.4 of [START_REF] Baras | Problèmes paraboliques semi-linéaires avec donées mesures[END_REF]).

be the solution to (27). More precisely, for any φ ∈ W 1,∞ (Ω) it holds that

in the sense of distributions with respec to t and

in the sense of measures on Ω. Then it follows that

In particular, w ∈ C([0, T ], L 1 (Ω)) and this solution exists uniquely.

The existence of the solution in the above proposition may be proven by the duality argument (Lemma 3.3 of [START_REF] Baras | Problèmes paraboliques semi-linéaires avec donées mesures[END_REF]). By (123), a result comparable to Proposition 5 is obtained.

Proposition 9 The mapping

The following compactness result is known even to the nonlinear contraction semigroup [START_REF] Baras | Compacité de l'opérateur f → u solution d'une équation non linéaire (du/dt) + Au ∋ f[END_REF] (see also Lemma 3.3 of [2]).

Proposition 10 The mapping

Proof: By (123), the dual operator

is realized as F * (h) = ( θ| t=0 , θ), where θ = θ(•, t) is the solution to the backward heat equation

Then the assertion follows because F * is compact by the parabolic regularity. □