
HAL Id: hal-01671787
https://hal.science/hal-01671787

Submitted on 22 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Standardized multi-protocol data management for grid
and cloud GridRPC frameworks

Yves Caniou, Hadrien Croubois, Gaël Le Mahec

To cite this version:
Yves Caniou, Hadrien Croubois, Gaël Le Mahec. Standardized multi-protocol data management for
grid and cloud GridRPC frameworks. Data Management in Cloud, Grid and P2P Systems, 2014,
978-3-319-10067-8. �hal-01671787�

https://hal.science/hal-01671787
https://hal.archives-ouvertes.fr

Standardized multi-protocol data management
for grid and cloud GridRPC frameworks

Yves Caniou1, Hadrien Croubois2, and Gaël le Mahec3

1 Université de Lyon, JFLI CNRS, Japan,
Yves.Caniou@ens-lyon.fr

2 Université de Lyon, ÉNS Lyon
Hadrien.Croubois@ens-lyon.fr

3 Université de Picardie Jules Verne, MIS Laboratory, France,
Gael.Le.Mahec@u-picardie.fr

Abstract. GridRPC is an international standard of the Open Grid Fo-
rum defining an API designed to allow applications to be submitted
in a seamless way on large scale, heterogeneous and geographically dis-
tributed computing platforms. First versions of the standard did not take
into account any data management feature. Data were parameters of the
Remote Procedure calls, without any possibility to prefetch them, to use
persistence, replication, external sources, etc. , and making GridRPC
codes middleware dependent. The data extension of the standard intro-
duced a short set of functions and data structures to complete the API
with simple but powerful data management features. In this paper, we
present a modular and extensible implementation of both APIs, which
needs only a few developments to be usable with any middleware relying
on RPC, and which provides access to numerous and easy to extend pro-
tocols and data middleware to access data. Gaining data management
functions, it introduces interesting potentiality for optimization that such
an approach would provide to large scale applications.

1 Introduction

Many applications use RPC-like mechanisms to distribute computations over
nodes of clusters and supercomputers composing some distributed systems like
a grid, a cloud, or both (now referred as sky computing). Combined with con-
nections to huge databases, they more or less transparently provide scientists
with the possibility to focus on their core thematic, giving them more time to
deal with data analysis, without dealing with the underlying complexity of all
the different mechanisms involved into job and data management. More lately
applications even directly couple analysis, graphical representations and such,
making platform management only a part of their project, whose actions are gen-
erally available through some web site. And surprisingly, when considering a new
area, a new platform, new independent pieces of software are often developed
instead of using previous work, software or standardized APIs.

The Open Grid Forum standard defining the GridRPC paradigm, namely
Remote Procedure Call over the Grid, has been published in 2007, benefiting

2 Yves Caniou, Hadrien Croubois, and Gaël le Mahec

from 10 years of experience by their respective authors. Simple and easy to use,
it has been completed with a standardized data extension only recently. This
extension to the native API proposes to expert users to easily handle remote data
and to optimize distributed applications with prefetch, migration or replication
of possibly distant data using multiple asynchronous transfers together with
remote procedure calls on available distributed computing resources.

Based on preliminary experiments[1, 5], applications also benefit from multi-
administration sites resources managed by multi-middleware (inherent to inter-
operability provided with the implementation of the API data extension) and
target not only traditional Grids but any distributed platform possibly composed
of resources from the Cloud [6].

In an attempt to simplify and develop interoperability, and to unify previous
works, we propose here a library managing both GridRPC and GridRPC Data
Management APIs. We present an overview of the project architecture, designed
with a very modular prospect, relying on middleware and data manager modules
but also bringing inner data manager capabilities and transfer protocols. Having
in mind not to go too much into details, we highlight here some of its features,
such as the asynchronous requests management and the transfer management,
which involves mapping and scheduling aspects: there is interesting potentiality
for optimization at the data operation level, with scheduling to reduce the com-
pletion time of a data operation when several sources and several destinations
are provided but not necessarily interconnected; and at the workflow/dataflow
level to reduce any [sub part of an] application graph. At the moment, the library
provides modules for the grid middleware Diet and Ninf , and data manager
modules for projects and protocols like Dagda, iRods, webdav (used for web-
based repositories like dropbox, owncloud), ftp and rsync.

The rest of the paper is organized as follows: next section explains the moti-
vations behind the GridRPC DM API and some related work. Section 3 presents
the global design of the implementation, the different issues that the API leads
to and their solution. Section 4 presents some validation experiments and after
explaining some future work directions, we conclude in Section 6.

2 State of the Art

2.1 The GridRPC Data Management API, Summary

The GridRPC DM API [2] introduces the concept of data handle and with it,
several GridRPC data types to provide standardized information, for example
lists of input and output URIs to give the locations of respectively source and
destination [remote] data, with the according protocols to access it at the consid-
ered location). It also defines mode managements for a client to characterize the
persistence of the data in the system, etc. All actions (initializing, transferring,
waiting for completion of asynchronous transfers, etc.) are provided with only
12 functions.

This standard answers at the API level to issues related to feasibility of
the computation by decoupling the data from its locations and from protocols

Standardized data management for GridRPC framework 3

to access it; to performance using different sources and protocols to access a
remote data, providing explicit data management with the possibility to prefetch
and to migrate data, as well as the possibility to rely on some smart middleware
to transparently handle data management; and to extensibility by providing
containers of data. It also solves portability, making GridRPC codes portable
from one middleware to another.

2.2 Related Work

Similar works can address some data management issues in the GridRPC but
only separately and without integration into remote procedure call: one can store
data on a distributed file system like GlusterFS4 or GFarm [9] to deal with auto-
matic replication; OmniRPC introduced omniStorage [7] as a Data Management
layer relying on several Data Managers such as GFarm and Bittorrent. It aims
to provide data sharing patterns (worker to worker, broadcast and all-exchange)
to optimize communications between a set of resources, but needs knowledge on
the topology and middleware deployment to be useful; Diet also introduced its
own data managers (DTM and Dagda [3, 4]), which focus on both user explicit
data management and persistence of data across the resources, with transparent
migrations and replications.

At a higher level, Stork [8] is a batch scheduler specialized in data placement
and data movement. If the transfer protocol specified in the job description file
fails for some reason, Stork can automatically switch to any alternative protocol
available between the same source and the destination hosts and complete the
transfer; Galaxy5 is a web interface written in python allowing on-line design
of task workflows. Galaxy focuses mainly on bioinformatics but could be used
for all type of applications relying on workflow execution. By default Galaxy
is configured to execute application on its host server but can use the OGF
DRMAA API to distribute computations on remote servers. Data can only be
transferred as files. On the contrary of classical RPC, there is no simple way to
upload data directly on the application memory address space. Moreover, the
GridRPC API modularity allows to combine simplicity of such data management
systems and tunability by choosing where and when data are transfered.

By using standardized GridRPC code with our implementation and its cor-
responding modules, it should be possible to benefit at a upper layer from previ-
ous works, gaining in portability and interoperability with middleware and data
managers, which in turn provides access to a potentially larger set of resources
and architectures.

3 Implementation: architecture and features

We present in this section the system underlying our implementation of the
GridRPC and GridRPC Data Management standards. We highlight the features

4 http://www.gluster.org/
5 http://galaxyproject.org/

4 Yves Caniou, Hadrien Croubois, and Gaël le Mahec

of the library, its data management capabilities as well as scheduling possibilities
between and for each data operation, i.e., the set of all transfers requested
between the URIs provided as sources and destinations for the same data.
The library is developed in C++ and C, using internally boost, and cmake

to build the project. It is freely available from a sourceforge repository: http:

//sourceforge.net/projects/gridrpcdm/.

3.1 Modularity of the solution

GridRPC middlewares
modules

Data managers modules

GridRPC Data Management Library
grpc_initialize(…)
grpc_function_handle_default(…)
grpc_function_handle_init(…)
grpc_get_handle(…)
grpc_call(…)
...

grpc_data_init(…)
grpc_data_memory_mapping_set(…)
grpc_data_memory_mapping_get(…)
grpc_data_container_set(…)
...

DIET module Ninf module

...Local
module

http module ftp module

DAGDA
module ...

DIET module

grpc_initialize(…)
...

ftp module

grpc_data_init_in(…)
grpc_data_init_out(…)
...

const char*
 get_name()

grpc_remote_transfer(…)

const char**
 get_protocols()

Fig. 1. A very modular implementation

The proposed implementation can be viewed as a meta-implementation) of
the APIs (see Figure 1) since it provides the two GridRPC APIs, adding some
seamless mechanisms for performance (scheduling etc.) in a middleware and pro-
tocol “agnostic” manner. The library does not interact directly with the middle-
ware nor the data storage servers. It proposes a fully interoperable API for any
middleware and protocol/data manager with only very few specific developments
of simple modules. The module developers do not have to take care about which
data transfer protocol is available, like the data manager module developpers do
not have to care about which middleware is used to call remote procedures. To
do so, different interfaces are provided by the library:

– The client application interface: the external client API. Clients can use the
API directly without any knowledge about the underlying GridRPC middle-
ware. However, by adding a prefix to the service name, users can force the li-
brary to use a specific middleware (e.g., "DIET:matmul" and "Ninf:matmul"

select respectively Diet and Ninf-G for the "matmul" service).
– The Services interface: it is a subset of the client API with some additional

utility functions facilitating servers conversions from standard GridRPC
servers to GridRPC Data Management servers.

Standardized data management for GridRPC framework 5

– The Modules interface: the library defines a set of functions that should be
exposed by the module to extend the library capacities.

Integrating a new middleware requires to fulfill a set of 10 main functions
and one optional. Most of them are just type conversions functions from the ex-
isting middleware data-type to the new GridRPC data-types. The most complex
function of a middleware module is grpc remote transfer() which initiates a
transfer from a remote host to another remote host. A default implementation
is included in the library relying on a middleware service call: the module de-
veloppers have just to implement this simple service using the library transfer
capabilities on the server side.

Remarks:

– To avoid “name conflicts” between existing GridRPC implementations and
the new definitions of the library, definitions in the library headers files are
automatically prefixed when needed, allowing an easy reuse of the existing
functions without name-clashing at the compilation step.

– Note on asynchronous calls: they are internally managed by the library from
synchronous calls to middleware. However, middleware functions must be
reentrant for a safe asynchronous use.

At the moment, the modules for the Diet and Ninf GridRPC middleware are
available.

Integrating a new data manager module requires to provide 4 functions: 2
initialization functions corresponding to input and output data, which can most
of the time be left empty; and 2 transfer functions to get and put a data. They
are generally wrappers of existing transfer protocol libraries (e.g., libcurl for
http and ftp).

At the moment, the library implements the data manager modules for rsync and
scp, using the shell commands; 2) iRODS, using the shell command (the library
is only available for Java and PHP); webdav, to access Owncloud and Dropbox

servers. It uses the neon library and; curl, to access http and ftp via the curl

library.

Module initialization The library global initialization process reads the global
configuration file to determine which module should be dynamically loaded at
execution time, where to find it, and some parameters available for each module
in its own separate section.

The initialization function of each module is then processed sequentially,
passing the arguments of the module specific configuration, and potentially read-
ing more parameters in the deployed module-specific configuration file.

6 Yves Caniou, Hadrien Croubois, and Gaël le Mahec

3.2 Asynchronicity management

We call a request the inner action managed in the library: they correspond to
API calls for remote procedure, API calls for a transfer or a group of transfers
involving a unique data. For example when one source and several destinations
are provided as input and ouput URIs, several transfers are involved in group
to provide the unique API transfer call. All requests are managed the same
way by the request controller: this entity registers each of them during their
initialization, and with the help of threads and semaphores it limits their number
and immediately knows the idendity of a request that completes without active
wait. Some additional dependency information is also recorded with each request,
and thus a hierarchy of requests (the link being the temporal dependency) can
be built. It is used to express the concept of a group of requests reported above
in the transfer example, but it is also a powerful way to handle waits for one or
a group of asynchronous remote procedure calls as well.

Requests are managed with a priority system, which has been instantiated in
the current implementation with a queue managed with a FIFO algorithm and a
limitation on the number of parallel threads executed at a given moment: There
is not much more that can be done at the moment: since there is no dependency
information between data transfers operated at the API level, one cannot try any
optimization between requests that do not belong to the same group because it
could generate inconsistency in data or failure. However coupled with a system
that handles workflow/dataflow, some meta-scheduling over available GridRPC
middleware and data managers may be performed.

3.3 Data manager capabilities

The library does not only operate with underlying data transfer projects. It must
provide the data persistence as defined in the API, integrate the possibility to
communicate in-memory data (which possibly avoids at least one copy to disk),
and make the junction between different locations where the data is available,
and the protocols with which one can access them. The latter induces possible
hidden (automatic and mandatory) copies and scheduling for the data to be
transferred to all requested destinations.

Data persistence The GridRPC Data Management API defines numerous per-
sistence modes: the data can be volatile, i.e., there is no special requirement on
its management and this can be considered as the default mode; it can be strictly
volatile, meaning that the library has to provide means to remove the data from
the platform after a computation (thus some protocols and data managers can-
not be used); when defined as sticky, the data or a copy must be kept on the
location where the client requests are executed; if unique sticky, no replication
nor migration can be performed; finally, the client can also request the library
to transparently manage prefetch, replication and migration of data. Then, by
also handling procedure calls the library can perform some scheduling in order

Standardized data management for GridRPC framework 7

to reduce some metrics. At the moment persistent data are managed through
Dagda .

The memory protocol Each data is referenced by a given set of specific URIs,
providing the transfer protocol or the underlying data manager to use (for ex-
ample http or dagda). But when trying to get performance, on linear algebra
computation for example, there is a need to keep data in memory and avoid
file transfers. The GridRPC Data Management API foresaw this kind of use
and introduced the memory protocol. In addition to this protocol management,
our implementation lets a client (or the library itself) use URIs with query and
fragment. This leads to possible evolution for improvements (see after) and to
manage more data managers (like P2P middleware that initiate torrents with
specific files).

Implementing the memory protocol means that the library has to use GridRPC
middleware inner data manager which can hopefully communicate between its
own components to achieve such a need. But when a data is in memory and has
to be transferred either on another GridRPC middleware components or on a
storage server, it has to be written to a file and then be manipulated (trans-
ferred and possibly handled remotely) to be in the requested status. This part
uses (de)serialization functions, defined by the GridRPC Data Management API,
partly relying on tools provided by the boost library. But that maybe shows an
unclear part of the API: the protocol to use in that specific case to manipulate
the file is not precised. In our current implementation, the protocol is static and
is read from the middleware configuration file at initialization time.

But if going a bit further than the API, we can use the query part of the
URI. Indeed considering a data available in memory, the API does not provide
a mean to know which protocol(s) can be used to send or to receive it since the
URI would be similar to memory://graal.ens-lyon.fr/matrixA. In ongoing
work, our library is going to explore what can be done with specifying protocols
within the URI query part, e.g., ?protocol=rsync?protocol=webdav.

Scheduling for implicit and explicit data transfers Data transfers are
operated 1) when data participate to a remote procedure call. They are in that
case implicit or automatic, and; 2) can be explicitly requested by a client with
a call to grpc_data_transfer().

Implicit and automatic transfers: When a remote procedure call is performed,
meta-data are serialized and transferred to the distant service. They contain
sets of URIs which may lead to additional transfers before and after the service
execution (Fig 2).

– If one of the input URI refers to a memory or file data on the client, the data
must be available to the service before its execution so that it can remotely
access it.

– If one of the ouput URI refers to a memory or file data on the client, the
service must have made it available and the client must get it.

8 Yves Caniou, Hadrien Croubois, and Gaël le Mahec

Explicit data transfers: Several transfers are operated by grpc data transfer(),
i.e., a call to an explicit transfer operation: the data should be present in all lo-
cations set in the input URIs list, and must be present in all locations set in
the output URIs list. This can be treated with a sequential set of transfers from
one given source to each destination for example, but that would be inefficient.
In addition, it is not mandatory that all participants are directly interconnected
(either by network or by protocol) and transfers may have to be scheduled to
make the whole operations possible (destinations of completed transfers being
considered as potential sources). The library also makes possible to delegate
transfers on all GridRPC servers that offers some library specific service. Hence
transfers can be distributed over nodes to reduce the bandwidth impact, and/or
to try to reduce the transfer operation completion date for example.

In order to build a schedule in our implementation (made by the dispatcher,
Fig 3), we list the nodes that can participate to a transfer operation: To our bene-
fit, since the library contains middleware modules, it can also rely on underlying
GridRPC middleware to potentially add relay servers to [remotely] distribute
the transfer load or a part of it. To discover those middleware nodes, the library
provides an echo service, that must be deployed, i.e., registered in the GridRPC
server capabilities (at the moment, only middleware nodes with the memory pro-
tocol available are considered. If the service is not deployed, the node is simply
not considered as a possible relay).

Data Manager

RAM

Data Manager

Middleware call
Client Server

Upload

Upload

Download

Download

Fig. 2. Automatic transfers during a
GridRPC call

Fig. 3. Dispatcher’s cycle

Then URIs are sorted: Local, Middleware node or Storage server; and the
dispatcher uses a Round-Robin algorithm to build and launch every one-to-one
transfer according to the sorted list below: the list describes by priority of action,
matching one input URI to one output URI depending on their nature (Local,
Middleware or Storage), the action undertaken to manage the corresponding
transfer. As seen in Sec. 3.2, transfers at the same time are possibly limited in
number, they are monitored with an effective and sufficient semaphore mech-
anism, and a completion leads to a dynamic update of the set of input URIs.

Standardized data management for GridRPC framework 9

The above algorithm loops until all transfers to ouput locations are done. In
case of failure due to an unresponsive input middleware, the middleware is not
considered anymore in the next scheduling/mapping cycle.

L-S: The transfer is initiated locally.
M-S: The transfer is processed through a call to the remote transfer service.
S-L: The transfer is initiated locally.

S-M: The transfer is performed through a call to the distant transfer service.
L-L: The transfer is initiated and performed locally.

L-M: The library makes the local data available via the GridRPC middleware
inner data manager whose remote counter part will download afterwards.

M-L: The remote middleware is being asked to make the data available, this data
is then downloaded by the GridRPC middleware.

M-M: The source middleware is asked to make the data available so that the des-
tination middleware can download it when needed.

S-S: The library first tries to invoke a remote service on the destination server to
initiate the transfer. If the transfer fails, data is downloaded on the library
client, then transferred to the destination server. If there is no available
protocol to proceed to such transfers, the call fails returning an error code.

4 Experimental results

4.1 Multi-protocol and dispatcher scheduling/mapping validation

Table 1 lists the experiment deployment. We used 3 computing resources, 2
in Japan and 1 in France, on which we deployed iRODS and ssh servers, and
Diet components: a client, a dietAgent (the registry), and a server (matrix ad-
dition) written with the GridRPC APIs requirements together with our library.
Two matrices are defined with a list of input URIs depending on the running
test, described hereafter.

Machine (location) Services Data (protocol)

Arcterix (JFLI - Japon) dietAgent, client, sshd matA (ssh)
yume (JFLI - Japon) service ’+’, iRODS, sshd matA, matB (ssh)

graal (Éns-Lyon - France) sshd matB (ssh)
Table 1. Resources involved in Experiment 1

There are four tests, built with the scenario of getting the two matrices
through ssh, performing the addition, and uploading the result to an iRODS

server (here locally):

– Remote/Remote: the client does not include the URIs concerning the host
yume in the input list used for the remote call.

10 Yves Caniou, Hadrien Croubois, and Gaël le Mahec

– Remote/Local: the client does not use the URI concerning matA on yume
in the input list used for the remote call.

– Local/Remote: the client does not use the URI concerning matB on yume
in the input list used for the remote call.

– Local/Local: all URIs are used for in remote call.

This simple experiment aims to show both 1) the seamless multi-protocol
management of the library, as well as 2) the possibility for the dispatcher, de-
scribed page 9, to perform a schedule: due to its priority matching combined
with its Round-Robin algorithm, the library uses the local data first if available.
Figure 4 clearly shows this behavior, the blue region showing the time spent
during each transfer when it occurs.

 0

 1

 2

 3

 4

 5

 6

Mat A
Mat B

Mat C
Mat A

Mat B
Mat C

Mat A
Mat B

Mat C
Mat A

Mat B
Mat C

Ti
m

e
(s

ec
on

ds
)

Comparison of data transfer time depending on locality
(transfering 512B matrices)

Local/LocalLocal/RemoteRemote/LocalRemote/Remote

M
at

 A

M
at

 B

M
at

 C

M
at

 A

M
at

 B

M
at

 C

M
at

 A

M
at

 B

M
at

 C

Remote/Remote Remote/Local Local/Remote

M
at

 A

M
at

 B

M
at

 C
Local/Local

Ti
m

e
(s

ec
on

ds
)

Comparison of data transfer time depending on locality
(transferring 512B matrices)

Fig. 4. Results for Experiment 1

 0

 10

 20

 30

 40

 50

 60

Ti
m

e
(s

ec
on

ds
)

Number of simultaneous allowed transfers

Comparison of data transfer and processing time depending on transfer concurency
(transfering and processing 32 Mb matrices)

Waiting time
Transfer time

Deserializing time

Computing time
Freeing time

Limit 8Limit 4Limit 2Limit 1

Ti
m

e
(s

ec
on

ds
)

Limit 1 Limit 2 Limit 4 Limit 8

Waiting time
Transfer time
Deserializing time

Computing time
Freeing time

Comparison of data transfer and processing time
depending on transfer concurrency (32MB matrices)

Fig. 5. Results for Experiment 2

4.2 Asynchronous transfers management and bounded number of
simultaneous transfers

For this experiment, we designed the following scenario: a remote procedure call
is performed to add a given number of matrices which are available remotely
through ssh. Matrices are downloaded and added as soon as the operation is
possible, i.e., at first when two of them are finished to be downloaded, then
every time a new one has been downloaded and the previous computation has
finished. We performed 4 tests, corresponding to the number of simultaneous
transfers that it is possible to make at a given instant, resp. 1 unique transfer,
2, 4 and 8 transfers maximum at a given time. The number of matrices is fixed
to 16, and one matrix is 32MB (i.e., 2000 × 2000 of 64bits integers).

We designed this experiment to validate the request controller behavior, i.e.,
the implementation of the possibility to limit the number of simultaneous trans-
fers occurring in a transfer operation, and the possibility to use the waiting
functions, here with grpc_data_transfer() and the GRPC_WAIT_ANY parame-
ter, making the server able to perform an operation as soon as enough matrices

Standardized data management for GridRPC framework 11

are present on the server side (the addition was chosen for the operation since
it requires less time than a transfer, which leads to show the wanted behavior.
Besides, it also makes sense conceptually since it’s a commutative operation).

Figure 5 shows the activity of the service and its duration on the y-axis,
related to the progression over the number of matrices downloaded for each limit
on the x-axis. The same evolution by group of cardinal equal to the possible limit
of both the waiting time (non-active wait) and transfer time highlights that the
number of simultaneous transfers operated by the library is indeed configurable
(for the moment the information is static in the configuration file. We intend
to look if it makes sens to have it self-tuned by the library, depending on the
dynamicity of both the network and computing performance). It also shows that
every computations occur when enough matrices are finished to be downloaded.
As a side effect, it also confirms the observations made in [8]: there’s a real need
to limit the number of possible parallel transfers. We can indeed observe on this
small example that the overall completion time of the addition of the 16 matrices
is a bit reduced when the limit is fixed to 2 for our small testbed.

5 Future works

Future works are heading towards different directions. If the library is already
usable and implements most of the API, more performance can be obtained
with more efficient scheduling: at the request controller (Section 3.2), and at the
dispatcher level (Section 3.3); and more development: for example including a
middleware module for ssh would add more scheduling possibilities; the proto-
col memory leads to already complex data management mechanisms, yet to be
continued in addition to a file protocol that would help avoiding useless data
copies, making the use of the library even more scalable. Modules for dCache
and GridFTP would possibly make transfers faster, but further control would
have to be done on the bandwidth consumption; a data manager module for
Amazon S36 would give further access to cloud storage resources leading for a
need to also take into account some financial criteria in the above scheduling
process, and possible migration of data when possible (e.g., when the data is
requested as GRPC PERSISTENT).

6 Conclusion

With the GridRPC Data Management standard completing previous works on
GridRPC, both at the API and software level, feasibility of computations and
performance is at reach with immediate portability and interoperability between
GridRPC middleware. To ease its spread, while giving access to GridRPC mid-
dleware and to existing data managers, we provide an implementation of both
APIs relying on a very modular architecture. Fulfilling the standard require-
ments, the library also implements the data management modes as well as a

6 http://aws.amazon.com/

12 Yves Caniou, Hadrien Croubois, and Gaël le Mahec

memory protocol to avoid useless copy to disk. We showed that an efficient
system to handle waiting mechanisms is in place and that we operate some
mapping/scheduling when several transfers are involved in the same data man-
agement. We conducted some experiments and obtained results validating the
expected behaviors. From now on we will focus on more theoretical work to im-
prove the yet non-trivial mapping/scheduling of transfers involved for a given
data, and we are considering to plug a workflow/dataflow analyzing tool to
schedule transfers of different data with remote procedure calls altogether. Fur-
ther developments will also occur, giving more adaptability and choices to the
end-user while bringing new issues concerning scheduling possibilities, for exam-
ple with Cloud storage resources.

Acknowledgment: This work is partially founded by the ÉNS Lyon. The authors
want to thank Hidemoto Nakada for the Ninf middleware module.

References

1. Yves Caniou, Eddy Caron, Gaël Le Mahec, and Hidemoto Nakada. Transparent
Collaboration of GridRPC Middleware using the OGF Standardized GridRPC Data
Management API. In The International Symposium on Grids and Clouds (ISGC),
page 12p. Proceedings of Science, February 26 - March 2 2012.

2. Yves Caniou, Eddy Caron, Gaël Le Mahec, and Hidemoto Nakada. Data manage-
ment API within the GridRPC. In GFD-R-P.186, June 2011.

3. B. Del-Fabbro, D. Laiymani, J.M. Nicod, and L. Philippe. DTM: a service for man-
aging data persistency and data replication in network-enabled server environments.
Concurrency and Computation: Practice and Experience, 19(16):2125–2140, 2007.

4. F. Desprez, E. Caron, and G. Le Mahec. DAGDA: Data Arrangement for the Grid
and Distributed Applications. In AHEMA 2008. International Workshop on Ad-
vances in High-Performance E-Science Middleware and Applications. In conjunction
with eScience 2008, pages 680–687, Indianapolis, Indiana, USA, December 2008.

5. Frédéric Camillo, Yves Caniou, Benjamin Depardon, Ronan Guivarch, and Gaël Le
Mahec. Improvement of the data management in GridTLSE, a sparse linear algebra
expert system. JCIT: Journal of Convergence Information Technology, 8(6):562–
571, 2013.

6. Adrian Muresan. Scheduling and deployment of large-scale applications on Cloud
platforms. These, Ecole normale supérieure de lyon - ENS LYON, December 2012.

7. Y. Nakajima, Y. Aida, M. Sato, and O. Tatebe. Performance evaluation of data
management layer by data sharing patterns for GridRPC applications. In LNCS
Euro-Par 2008 - Parallel Processing, volume 5168, pages 554–564, 2008.

8. J. McLaren T. Kosar, A. Hutanu and D. Thain. Coordination of access to large-scale
datasets in distributed environments. In A. Shoshani, CRC Press/Taylor D. Rotem,
and Francis Books, editors, Scientific Data Management: Challenges, Existing Tech-
nology, and Deployment, 2009.

9. O. Tatebe, K. Hiraga, and N. Soda. Gfarm grid file system. New Generation
Computing, 28:257–275, 2010.

