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Abstract

Since its advent in the 1960s, elastoplastic micromechanics has been con-
fronted by continuous challenges, as the classical incremental elastoplastic
tangents are known to deliver unrealistically stiff material responses. As
a complement to the various “secant” approximations targeting this chal-
lenge, we here develop a theoretical framework based on an extension of
Dvorak’s transformation field analysis, comprising the derivation of concen-
tration and influence tensors. We thereby overcome the problem of actually
non-homogeneous stress distributions across finite (often spherical) material
phases, through consideration of infinitely many (non-spherical) solid phases
oriented in all space directions, arriving at a micro-elastoplasticity theory
of porous polycrystals. The resulting governing equations are discretized in
time and space, and then solved in the framework of a new return mapping
algorithm, the realization of which we exemplify by means of Mohr-Coulomb
plasticity at the solid phase level. The corresponding homogenized
material law is finally shown to satisfactorily represent the
behavior of the porous hydroxyapatite polycrystals making up
the so-called cement lines in osteonal bone. This is experi-
mentally validated through strength and ultrasonic tests on
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hydroxyapatite, as well as through light microscopy, chemical
composition, and osteon pushout tests on bone.

Keywords: microstructures, elastic-plastic material, inhomogeneous
material, polycrystalline material, numerical algorithms
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Nomenclature

Ai fourth-order strain concentration tensor of phase i
Apore fourth-order strain concentration tensor of pore phase
A∞
pore matrix-inclusion problem-related strain concentration ten-

sor of the pore phase
Aθφ fourth-order strain concentration tensor of solid needle

phase with orientation (θ, φ)
A∞
θφ matrix-inclusion problem-related strain concentration ten-

sor of the solid needle phase oriented in direction (θ, φ)
csolid cohesion of solid phases
C0 stiffness tensor of matrix in matrix-inclusion problem
CHA stiffness tensor of hydroxyapatite
Chom homogenized stiffness tensor (of porous polycrystal)
Cpore stiffness tensor of pore phase
Csolid stiffness tensor of solid needle phases
d characteristic length of the inhomogeneities within the

RVE
Dij fourth-order influence tensor linking eigen-

strains in integration point j to total strains
in integration point i

Dpore,ΘΦ fourth-order influence tensor linking eigenstrains in (Θ,Φ)-
oriented solid needle phase to total strains in the pore phase

Dθφ,ΘΦ fourth-order influence tensor linking eigenstrains in (Θ,Φ)-
oriented solid needle phase to total strains in (θ, φ)-oriented
solid needle phase

Dpore,j fourth-order influence tensor linking eigenstrains in phase
j to total strains in pore phase

E macroscopic strain tensor
En,En+1 macroscopic strain tensor at load steps n and (n + 1), re-

spectively
∆En+1 (n+ 1)-st macroscopic strain increment
E0 homogeneous strains at the infinite boundary of the matrix-

inclusion problem
Eπ

0 strain-like quantity according to (33)
Ep macroscopic plastic strain tensor
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Ep,n,Ep,n+1 macroscopic plastic strains at load steps n and (n + 1),
respectively

e1, e2, e3 unit base vectors of Cartesian reference base frame
eθ, eφ, er unit base vectors of spherical base frame attached to the

solid needle phase
fHA volume fraction of hydroxyapatite
fpore volume fraction of (intercrystalline) pore space; i.e. (inter-

crystalline) porosity
fvas volume fraction of vascular pores; i.e. vascular porosity
F (α) α-th yield function of the multisurface yield criterion

F (α),n+1,trial
i trial state in phase i at load step (n+ 1), of yield function

F (α)

G(α) plastic flow potential related to activity of the α-th yield
function in multisurface yield criterion

i, j indices numbering integration points chosen for
evaluation of integrals over the unit sphere
(the latter representing the set of all spatial
orientations of solid needle-shaped phases)

I fourth-order identity tensor
Idev deviatoric part of I
Ivol volumetric part of I
kHA bulk modulus of hydroxyapatite
kH2O bulk modulus of water
l characteristic length of the RVE
lθφ length of all needle-shaped crystals oriented in (θ, φ)-

direction
L characteristic structural length
n unit normal vector at microscopic scale
Ncyl,plast number of plasticizing needle-shaped (cylindrical) solid

phases
NFact,i number of active yield surfaces in (plasticizing) solid needle

phase i
NFact,max maximum number of potentially active yield surfaces per

solid needle phase
pI−II , pI−III planes defining regions in stress space representations of

Mohr-Coulomb criterion
Pcyl Hill (or morphology) tensor of cylindrical inclusion embed-

ded in matrix with stiffness Chom
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Psph Hill (or morphology) tensor of spherical inclusion embed-
ded in matrix with stiffness Chom

RVE Representative Volume Element
Rn+1,k+1,l residual vector in Newton iteration scheme, related to load

step (n+ 1), to the (k + 1)-st macro-micro transition, and
to return mapping iteration l

S set of Gaussian points over the unit sphere
Scyl,plast set of plasticizing needle-shaped (cylindrical) solid phases
tn, tn+1 time instants at load steps n and (n+ 1), respectively
t vector orthogonal to n, within the Mohr plane spanned by

n and T
T (microscopic) traction vector
Vpore volume of pore phase
VRV E volume of the RVE
∂VRV E surface of the RVE
W ext work of external forces acting on the RVE
W int work of internal forces acting within the RVE
x position vector inside the RVE
β ratio between uniaxial tensile strength and shear strength

of hydroxyapatite
δ Kronecker delta
ε microscopic strain
εi average microscopic strain in phase i
εni , ε

n+1
i average microscopic strains in phase i, at load steps n and

(n+ 1), respectively
ε
p
i average microscopic plastic strains in phase i

∆ε
p,n+1
i (n+ 1)-st increment of microscopic plastic strain tensor of

phase i
εpore average pore strains
εnpore, ε

n+1
pore average pore strains at load steps n and (n+1), respectively

εθφ average microscopic strains in solid needle phase with ori-
entation (θ, φ)

ε
p
θφ average plastic strains in solid needle phase with orienta-

tion (θ, φ)
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θ spherical (co-latitudinal) coordinate

λ̇
(α)
θφ plastic multiplier related to the α-th yield surface associ-

ated to the solid needle phase oriented in (θ, φ)-direction

∆λn+1,k+1,l plastic multiplier vector in Newton iteration scheme, re-
lated to load step (n + 1), to the (k + 1)-st macro-micro
transition, and to return mapping iteration l

∆(∆λ)n+1,k+1,l plastic multiplier vector update in Newton iteration
scheme, related to load step (n+1), to the (k+1)-st macro-
micro transition, and to return mapping iteration l

∆λ
(α),n+1
i (n+1)-st increment of plastic multiplier related to the α-th

yield surface associated to phase i
µHA shear modulus of hydroxyapatite
ξ microscopic displacement field
πθφ eigenstress of solid needle phase oriented in (θ, φ)-direction
Π0 eigenstress acting in the infinite matrix of the matrix-

inclusion problem
ρec extracellular bone tissue mass density
ρexvas extravascular bone tissue mass density
ρmacro macroscopic mass density
φ spherical (longitudinal) coordinate
ϕsolid angle of internal friction
σi,j ordered principal stresses of phase i, j = I, II, III
σy,HA compressive yield strength of hydroxyapatite
σ microscopic stress
σi average stress in phase i
σn
i ,σ

n+1
i average stress in phase i at load steps n and (n + 1), re-

spectively
∆σn+1

i (n+ 1)-st microscopic stress increment of phase i

σ
n+1,trial
i trial stress in phase i, at load step (n+ 1)

σ̃n+1
i average stress in phase i, at load step (n+1), as defined in

(81)
σnn = σ normal component of traction vector
σnt = τ shear component of traction vector
σpore average pore stress
σθφ average stress in solid needle phase with orientation (θ, φ)
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Σ macroscopic stress tensor
Σn,Σn+1 macroscopic stress tensor at load steps n and (n + 1), re-

spectively
∆Σn+1 (n+ 1)-st macroscopic stress increment
ωi Gaussian weight

∇s symmetric gradient operator
〈(.)〉 spatial average of quantity (.), over the RVE
div divergence operator
(.)T transpose of tensorial quantity (.)
(.)−1 inverse of tensorial quantity (.)
⊗ dyadic product
˙(.) rate (temporal derivative) of quantity (.)
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1. Introduction

Homogenization theories for elastic properties, whose high maturity has
been reviewed in many textbooks and review papers (Nemat-Nasser and Hori,
1999; Zaoui, 2002; Dormieux et al., 2006), have fundamentally shaped the
understanding and design of microheterogeneous materials, such as metals
(Mori and Tanaka, 1973), ceramics (Constantinides and Ulm, 2004), or hard
biological materials (Fritsch and Hellmich, 2007). By comparison, the field
of micro-elastic-plasticity, although emerging almost as early as the elasticity
homogenization theories, namely in the 1960s, seems to remain remarkably
less influential on materials research and design. It appears that elastoplastic
homogenization is much more tricky than its purely elastic counterpart. This
becomes already obvious from a very compact historical review: Already in
1965, Hill proposed an incremental method (Hill, 1965a) for elastoplastic
upscaling: The microscopic elastoplastic behavior is represented by a (time-
dependent) phase-specific elastoplastic tangent tensor which multilinearly re-
lates microstresses to microstrains; and this formally “elastic” relation is then
simply inserted into classical homogenization schemes for the realm of elas-
ticity, such as the self-consistent method (Hershey, 1954; Kröner, 1958) or the
Mori-Tanaka method (Mori and Tanaka, 1973; Benveniste, 1987). However,
the results obtained by this approach appeared as consistently too stiff when
compared to full elastoplastic Finite Element simulations of the microstruc-
ture - and this has, up to the present day, motivated a series of interesting
correction schemes, such as “isotropization” of the (originally anisotropic)
elastoplastic tangent (or secant) operators, see e.g. (Berveiller and Zaoui,
1978; Doghri and Ouaar, 2003; Chaboche et al., 2005; Shen et al., 2012;
Cayzac et al., 2013; Rousselier and Luo, 2014; Shen and Shao, 2016) and the
various references cited there.

It took until the early 1990s that Dvorak and coworkers proposed a more
fundamental approach to the topic. Considering that plastic microstrains
are, as of their nature, kinematically incompatible, and therefore qualify as
free strains or eigenstrains, Dvorak and co-workers developed a new type of
homogenization theory, called “transformation field analysis - TFA” (Dvo-
rak and Benveniste, 1992; Dvorak, 1992; Dvorak et al., 1994). Corresponding
homogenization schemes (which will be more deeply reviewed and described
in Section 3) provide access to the so-called concentration tensors Ai and
influence tensors Dij, which relate the microscopic strains in the i-th mate-
rial phase, εi, to the macroscopic strains E prescribed at the boundary of
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the Representative Volume Element (RVE) and to all the free (here plastic)
strains εpj occurring in all the other material phases,

εi = Ai : E+
∑

j

Dij : ε
p
j (1)

Derivation of (1) with respect to time readily delivers

ε̇i = Ai : Ė+
∑

j

Dij : ε̇
p
j (2)

It is instructive to note that relation (2) is fundamentally different from the
standard concentration relation in elastic homogenization, which for the case
of elastoplastic tangent upscaling according to Hill’s incremental method
would read as (Hill, 1965b; Zaoui, 2002)

ε̇i = Ai(Ci = C
eps
i ) : Ė (3)

Comparison of (3) and (2) highlights that the use of the elastic concen-
tration (or localization) problem for upscaling elastoplastic tangent tensors
C
eps
i (rather than elasticity tensors Ci) obviously neglects several sources for

microscopic deformations. This is consistent with the repeatedly made state-
ment that the incremental homogenization method delivers results which are
too stiff. Accordingly, very promising examples for the use of (1) and (2),
with properties derived from unit cell methods, could be given for periodic
microstructures by Dvorak et al. (1994); Kruch and Chaboche (2011); Cav-
alcante and Pindera (2016). However, in case of more complex and more
random micromorphologies, the proper choice and number of phases (with
uniform plastic strains), which would actually allow for appropriately cover-
ing the complex plastic flow patterns across the microstructures, often ap-
pears as the real (and hard-to-master) challenge when applying the “classi-
cal” TFA. While the introduction of “plastic modes” across material phases
[in the course of non-uniform TFA - NTFA (Michel and Suquet, 2003, 2004;
Roussette et al., 2009; Fritzen and Böhlke, 2011)] showed interesting ways to
overcome the aforementioned problem for various applications, we here follow
yet another approach, which proved recently very successful in the context of
elastic, of poroelastic, and of brittle strength upscaling; across various mate-
rial classes such as hydroxyapatite, bioactive glass ceramics, gypsum, cemen-
titious materials, and piezoelectric ceramics (Fritsch et al., 2006, 2009a,b,

9



2013; Pichler et al., 2008; Pichler and Hellmich, 2011; Pichler et al., 2013).
In this approach, the representative volume element is divided into infinitely
many non-spherical solid phases oriented in all space directions, and spherical
pores in-between. It is for this micromechanical representation, that we here
develop an elastoplastic homogenization theory based on a recent extension
and generalization of the transformation field analysis (Dvorak et al., 1994).
This is described in the remainder of the present paper: In Section 2, the
concept of the representative volume element is reviewed in the framework
of the principle of virtual power (Germain, 1973; Salençon, 2001), and then
specified for a porous polycrystalline material system built up by elastoplas-
tic needle-shaped solid elements and pores in-between. Thereafter, upscaling
of elastoplastic behavior from the level of the solid needles to that of the
overall polycrystalline material is covered in Section 3, by introducing phase-
specific concentration, influence, as well as homogenized stiffness tensors.
Semi-analytical expressions for the latter are derived in Section 4, based on
eigenstressed matrix-inclusion problems of the Eshelby-Laws type. The re-
sulting governing equations are then discretized in time and space, and solved
in the framework of a return mapping algorithm described in Section 5; the
realization of which we exemplify by means of Mohr-Coulomb plasticity at
the solid phase level in Section 6. Finally, the new theory and computational
model is applied to osteoneal bone, in Section 7; followed by Conclusions in
Section 8.

2. Representative volume element (RVE) - momentum balance
and kinematic compatibility - microstructural characteristics of
porous polycrystals

The investigated material is considered as a macro-homogeneous but
micro-heterogeneous matter filling a Representative Volume Element (RVE)
(Hill, 1963; Zaoui, 2002). Such RVEs fulfill the separation of scales require-
ment:

d ≪ l ≪ L (4)

with d as the characteristic length of the inhomogeneities within the RVE,
l as the characteristic length of the RVE, and L as the characteristic size of
the body or structure made up by the material, or of loads acting on this
body, such as wavelengths in case of dynamic loading. We consider an RVE
subjected to homogeneous linearized macroscopic strains prescribed in terms
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of displacements
on ∂VRV E ξ(x) = E · x (5)

with x as the location vector labeling points within the RVE and at its bound-
ary. Homogeneous boundary conditions (5) and compatibility of microstrains
within the RVE

∀x ∈ VRV E ε(x) = ∇Sξ(x) (6)

directly imply the so-called strain average rule (Hashin, 1983)

1

VRV E

∫

VRV E

ε(x)dV = 〈ε〉 = E, (7)

Furthermore, the aforementioned deformations provoke traction forces T(x)
on the boundary of the RVE, and microstresses σ(x) throughout the RVE,
fulfilling the equilibrium conditions

∀x ∈ VRV E divσ(x) = 0

∀x ∈ ∂VRV E T(x) = σ(x) · n(x) (8)

with n(x) as the normal to the boundary at position x. The external work
done by these traction forces reads as

W ext =

∫

∂VRV E

T(x) · ξ(x)dS =

∫

∂VRV E

(E · x) · [σ(x) · n(x)]dS

= E :

∫

VRV E

σ(x)dV

(9)

Hence, the force quantity doing work on the macroscopic strains E is the vol-
ume integral over the microscopic stress, which is independent of microscopic
position and dimension “stress times volume”. This induces the existence of
the macroscopic stress Σ in the form

Σ VRV E =

∫

VRV E

σ(x)dV ⇔ Σ =
1

VRV E

∫

VRV E

σ(x)dV = 〈σ〉, (10)

i.e. the well-known stress average rule. Insertion of (10) into the principle
of virtual power (Germain, 1973; Salençon, 2001), which in the case of lin-
earized strains, can be expressed in terms of an expression with the dimension
“work”,

W ext = −W int =
1

VRV E

∫

VRV E

σ(x) : ε(x)dV = 〈σ : ε〉 (11)
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solid needles

homogenized matrix

fluid-filled pore space

Figure 1: Representative Volume Element of the porous polycrys-
tal

yields the so-called Hill’s lemma

Σ : E =
1

VRV E

∫

VRV E

σ(x) : ε(x)dV. (12)

As the microstructure cannot be described in complete detail, the morpho-
logical description is restricted to mechanically relevant features, through in-
troduction of subdomains within the RVE, called phases. The latter exhibit
homogeneous mechanical properties as described in further detail in Section
3. The mechanical state of these phases is characterized by stress and strain
averages. For the present case of a porous polycrystal as depicted in Figure
1, a “pore phase” fills subvolume Vpore within the RVE, with respective stress
and strain averages following from

σpore =
1

Vpore

∫

Vpore

σ(x)dx

εpore =
1

Vpore

∫

Vpore

ε(x)dx

(13)

The rest of the RVE is filled by elongated solid crystal phases which are
fully characterized by the orientation in space, through orientation vector er
(see Figure 2): The latter can be given as a function of an orthonormal base
frame e1, e2, and e3, and of longitudinal and co-latitudinal angles φ and θ,

er = sin θ(cosφ e1 + sin φ e2) + cos θ e3 (14)

12



The corresponding stress and strain averages depend on the aforementioned
angles, and read as

σθφ =
1

lθφ

∫

lθφ

σ(s)ds

εθφ =
1

lθφ

∫

lθφ

ε(s)ds

(15)

with lθφ as the length of all needle-shaped crystals oriented in (θ, φ)-direction.
As a result, the strain average rules can be given in the following form,
respectively

Σ = fporeσpore + (1− fpore)

∫ π

θ=0

∫ 2π

φ=0

σθφ

sin θ

4π
dθdφ (16)

E = fporeεpore + (1− fpore)

∫ π

θ=0

∫ 2π

φ=0

εθφ
sin θ

4π
dθdφ (17)

whereby fpore = Vpore/VRV E is the volume fraction of the pore space (i.e. the
porosity).

3. Elastoplasticity of solid phases - upscaling to porous polycrystal
scale

The following constitutive laws are assigned to the material phases de-
picted in Figure 1: In order to keep the mathematical descriptions of our
developments as concise as possible, the spherical pore phase is simply char-
acterized by a linear elastic material behavior

σpore = Cpore : εpore (18)

with Cpore as the fourth-order isotropic stiffness tensor of the pore space.
In case of drained conditions, Cpore may be typically set to zero; and the
extension to a full poromechanical formulation (Dormieux et al., 2006) may
be realized through the introduction of additional eigenstresses representing
pore pressures (Pichler and Hellmich, 2010; Fritsch et al., 2013). The needle-
shaped solid phases exhibit an elastic-perfectly plastic behavior

σθφ = Csolid :
[

εθφ − ε
p
θφ

]

(19)
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θ

er

e1

eφ

eθ
e3

e2

φ

Figure 2: Orientation of solid needle by means of spherical coordi-
nates θ and φ, and definition of corresponding spherical base
frame

with Csolid as their (isotropic) fourth-order stiffness tensor and ε
p
θφ as the

average plastic strain in the solid needle phase oriented in (θ, φ)-direction.
These plastic strains follow the multisurface plasticity flow rule according to
Koiter (1953)

ε̇
p
θφ =

NFact,max
∑

α=1

λ̇
(α)
θφ

∂G(α)(σθφ)

∂σθφ

(20)

and occurrence of these strains is governed by the Melan-Kuhn-Tucker con-
ditions

∀α ∈ {1, . . . , NFact,max}
λ̇
(α)
θφ ≥ 0

F (α)(σθφ) ≤ 0

λ̇
(α)
θφ × F (α)(σθφ) = 0

(21)

with NFact,max as the total number of yield surfaces F (α) and of plastic po-
tentials G(α) defining the multisurface yield criteria and flow rules; with asso-
ciated plastic multipliers λ

(α)
θφ , governing the magnitude of the plastic strain

rate.
For a linear elastic medium with eigenstrains, the latter (in our case, the plas-
tic strains ε

p
θφ) are related to the macroscopic strains through the so-called
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concentration-influence relations (Dvorak and Benveniste, 1992; Pichler and
Hellmich, 2010); reading in the present case for the solid needle phases as

εθφ = Aθφ : E +

∫ π

Θ=0

∫ 2π

Φ=0

Dθφ;ΘΦ : εpΘΦ

sinΘ

4π
dΘdΦ (22)

and for the pores

εpore = Apore : E +

∫ π

Θ=0

∫ 2π

Φ=0

Dpore;ΘΦ : εpΘΦ

sinΘ

4π
dΘdΦ (23)

In these relations, Aθφ and Apore are the strain concentration tensors in the
needle-shaped particles with orientation (θ, φ) and in the spherical pore
phase respectively; Dθφ;ΘΦ is the influence tensor expressing the effect of the
plastic strain in the solid needles with orientation (Θ,Φ) on the overall strain
in the solid needles with orientation (θ, φ); Dpore;ΘΦ is the influence tensor
expressing the effect of the plastic strain in the solid needles with orientation
(Θ,Φ) on the overall strain in the pore phase.

The stress and strain average rules allow for upscaling the microscopic
constitutive law to the macroscopic scale. In the presence of eigenstrains
inside the RVE, the homogenized constitutive law is accessed through Levin’s
theorem (Levin, 1967; Laws, 1973)

Σ = Chom : (E −Ep) (24)

with Chom as the homogenized stiffness tensor (Zaoui, 2002), defined by

Chom = 〈C : A〉VRV E
= fporeCpore : Apore

+ (1− fpore)Csolid :

∫ π

θ=0

∫ 2π

φ=0

Aθφ

sin θ

4π
dθdφ

(25)

and with Ep as the macroscopic “plastic” strain, reading as (Levin, 1967;
Laws, 1973; Zaoui, 2002)

Ep = 〈εp : C : A : C−1
hom〉

= (1− fpore)C
−1
hom :

∫ π

θ=0

∫ 2π

φ=0

A
T
θφ : Csolid : ε

p
θφ

sin θ

4π
dθdφ

(26)
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at ∞: E0

cylindrical (needle-shaped) inclusion

elasticity: Csolid

infinite 3D matrix

eigenstress: Π0

spherical inclusion

elasticity: Cpore
elasticity: C0 = Chom

at ∞: E0

RVE

eigenstress: πθφ

Figure 3: Quantifying RVE behavior through generalized Eshelby
matrix-inclusion problems with eigenstresses

4. Self-consistent estimation of concentration and influence tensors
from eigenstressed Eshelby problems

Self-consistent estimates for the strain concentration and influence tensors
appearing in (22) and (23) are obtained by means of generalized Eshelby
matrix-inclusion-type problems (Pichler and Hellmich, 2010; Zaoui, 2002).
The pore phase is represented as a spherical inclusion embedded in a matrix
with stiffness Chom and eigenstress Π0, subjected to homogeneous strains E0

acting at the infinite boundary of the aforementioned matrix, see Figure 3.
The needle-shaped solid phases are represented each as a cylindrical inclusion
with stiffness Csolid and eigenstresses πθφ = −Csolid : ε

p
θφ, embedded into the

very same matrix, and subjected to the very same strains E0, see Figure 3.
This results to inclusion/phase strains reading as (Zaoui, 2002)

εθφ = A
∞
θφ :

[

E0 − Pcyl(θ, φ) :
(

πθφ −Π0
)]

(27)

εpore = A
∞
pore :

[

E0 − Psph :
(

−Π0
)]

(28)

with the abbreviations A∞
θφ and A∞

pore standing for

A
∞
θφ = [I+ Pcyl(θ, φ) : (Csolid − Chom)]

−1 (29)
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and
A

∞
pore = [I+ Psph : (Cpore − Chom)]

−1 (30)

whereby I is the fourth-order identity tensor, with components Iijkl =
1
2
(δikδjl+

δilδjk), δij is the Kronecker delta: δij = 1 if i = j and zero otherwise; Pcyl and
Psph, respectively, are the Hill tensors of cylindrical and spherical inclusions
embedded into a matrix with stiffness Chom. Insertion of (27) and (28) into
the strain average rule (17) delivers

E =

{

fporeA
∞
pore :

[

E0 − Psph :
(

−Π0
)]

+ (1− fpore)

∫ π

θ=0

∫ 2π

φ=0

A
∞
θφ :

[

E0 − Pcyl(θ, φ) :
(

πθφ −Π0
)]sin θ

4π
dθdφ

}

(31)

Solving (31) for E0 yields

E0 =

{

fporeA
∞
pore

+ (1− fpore)

∫ π

θ=0

∫ 2π

φ=0

A
∞
θφ

sin θ

4π
dθdφ

}−1

:
{

E +Eπ
0

}

(32)

with

Eπ
0 = fporeA

∞
pore : Psph :

(

−Π0
)

+ (1− fpore)

∫ π

θ=0

∫ 2π

φ=0

A
∞
θφ : Pcyl(θ, φ) :

(

πθφ −Π0
)sin θ

4π
dθdφ

(33)

Insertion of (32) into (27) and (28) yields

εθφ = Aθφ :
{

E +Eπ
0

}

− A
∞
θφ : Pcyl(θ, φ) :

(

πθφ −Π0
)

(34)

εpore = Apore :
{

E +Eπ
0

}

− A
∞
pore : Psph :

(

−Π0
)

(35)

with

Aθφ = A
∞
θφ :

{

fporeA
∞
pore + (1− fpore)

∫ π

Θ=0

∫ 2π

Φ=0

A
∞
ΘΦ

sinΘ

4π
dΘdΦ

}−1

(36)

Apore = A
∞
pore :

{

fporeA
∞
pore + (1− fpore)

∫ π

θ=0

∫ 2π

φ=0

A
∞
θφ

sin θ

4π
dθdφ

}−1

(37)
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Comparison of (34) and (35) with (22) and (23) makes readily evident that
Aθφ and Apore are the sought expressions for the concentration tensors ap-
pearing in (22) and (23). As a second step, the stress average rule, combined
with the Levin’s theorem, allows for estimating the influence tensors. There-
fore, (24) and (26) can be rewritten in the form,

Σ = Chom : E

+ (1− fpore)

∫ π

θ=0

∫ 2π

φ=0

πθφ : Aθφ

sin θ

4π
dθdφ

(38)

On the other hand, the combination of the stress average rule (16) with
constitutive equations (18) and (19), as well as with the scale transition rela-
tions (34) and (35), while considering the expression (25) for the homogenized
stiffness, results in

Σ = fporeCpore :

{

Apore :
{

E +Eπ
0

}

− A
∞
pore : Psph :

(

−Π0
)

}

+ (1− fpore)

∫ π

θ=0

∫ 2π

φ=0

{

Csolid :
{

Aθφ :
(

E +Eπ
0

)

− A
∞
θφ : Pcyl(θ, φ) :

(

πθφ −Π0
)}

+ πθφ

}

sin θ

4π
dθdφ

(39)

Setting the macroscopic stress relations (38) and (39) equal and solving the
resulting expression for Π0 delivers

Π0 =

{

(Chom − Cpore) : fporeA
∞
pore : Psph

+ (Chom − Csolid) : (1− fpore)

∫ π

θ=0

∫ 2π

φ=0

A
∞
θφ : Pcyl(θ, φ)

sin θ

4π
dθdφ

}−1

:

{

(1− fpore)

∫ π

θ=0

∫ 2π

φ=0

[

πθφ : [I− Aθφ]

+ (Chom − Csolid) : A
∞
θφ : Pcyl(θ, φ) : πθφ

]

sin θ

4π
dθdφ

}

(40)

Finally, inserting (40) into (34) and (35) and comparing the resulting expres-
sions to (22) and (23) yield the eigenstress influence tensors Dpore,ΘΦ, Dθφ,ΘΦ,
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and Dθφ,θφ. They read as

Dpore,ΘΦ =

{

− Apore(1− fpore) : A
∞
ΘΦ : Pcyl(Θ,Φ)

+

[

Aporefpore : A
∞
pore : Psph

+ Apore(1− fpore) :

∫ π

χ=0

∫ 2π

ψ=0

A
∞
χψ : Pcyl(χ, ψ)

sinχ

4π
dχdψ

− A
∞
pore : Psph

]

:

[

(1− fpore)(Chom − Csolid) :

∫ π

χ=0

∫ 2π

ψ=0

A
∞
χψ : Pcyl(χ, ψ)

sinχ

4π
dχdψ

+ fpore(Chom − Cpore) : A
∞
pore : Psph

]−1

:

(1− fpore)
[

[I− AΘΦ]
T

+ (Chom − Csolid) : A
∞
ΘΦ : Pcyl(Θ,Φ)

}

: Csolid

(41)

Dθφ,ΘΦ =

{

− Aθφ : (1− fpore)A
∞
ΘΦ : Pcyl(Θ,Φ)

+

[

Aθφ : (1− fpore)

∫ π

χ=0

∫ 2π

ψ=0

A
∞
χψ : Pcyl(χ, ψ)

sinχ

4π
dχdψ

+ Aθφ : fpore : A
∞
pore : Psph − A

∞
θφ : Pcyl(θ, φ)

]

:

[

(1− fpore)(Chom − Csolid) :

∫ π

χ=0

∫ 2π

ψ=0

A
∞
χψ : Pcyl(χ, ψ)

sinχ

4π
dχdψ

+ fpore(Chom − Cpore) : A
∞
pore : Psph

]−1

:

(1− fpore)
[

[I− AΘΦ]
T

+ (Chom − Csolid) : A
∞
ΘΦ : Pcyl(Θ,Φ)

]

}

: Csolid

(42)
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Dθφ,θφ =

{

[I− (1− fpore)Aθφ] : A
∞
θφ : Pcyl(θ, φ)

+

[

Aθφ : (1− fpore)

∫ π

χ=0

∫ 2π

ψ=0

A
∞
χψ : Pcyl(χ, ψ)

sinχ

4π
dχdψ

+ Aθφ : fporeA
∞
pore : Psph − A

∞
θφ : Pcyl(θ, φ)

]

:

[

(1− fpore)(Chom − Csolid) :

∫ π

χ=0

∫ 2π

ψ=0

A
∞
χψ : Pcyl(χ, ψ)

sinχ

4π
dχdψ

+ fpore(Chom − Cpore) : A
∞
pore : Psph

]−1

:

(1− fpore)
[

[I− Aθφ]
T

+ (Chom − Csolid) : A
∞
θφ : Pcyl(θ, φ)

]

}

: Csolid

(43)

5. Algorithmic treatment of multiscale elastoplasticity

Numerical computations of plastic evolutions within the solid phases of
the RVE depicted in Figure 1, as a function of arbitrary macroscopic load-
ing in terms of macroscopic stresses Σ or macroscopic strains E, requires
temporal and spatial discretization of the elastoplastic relations (22)-(26),
together with (41)-(43), and with average rules (16)-(17); as well as solution
of the resulting algebraic equations. This will be dealt with in the following
subsection.

5.1. Spatial discretization of governing equations

As regards spatial discretization, all integrals over the unit sphere are
approximated through weighted sums of the integrands being evaluated at
a particular set S of Gaussian points on the unit sphere (labelled by the
two Euler angles {θi, φi}i∈S) with the associated Gaussian weights ωi|i∈S .
Accordingly, the integral over an arbitrary function a(Θ,Φ) is approximated
by the weighted sum over this function evaluated at particular Gaussian
points labelled by index i; i.e. by the following discrete expression

∫∫

Θ,Φ

a(Θ,Φ)
sinΘ

4π
dΘdΦ =

∑

i∈S

ωia(Θi,Φi) =
∑

i∈S

ωi ai (44)

This leads to the following discretized versions of the governing equations:
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• the (spatially discretized) stress and strain average rules

Σ = fporeσpore +
∑

i∈S

(1− fpore)ωiσi (45)

E = fporeεpore +
∑

i∈S

(1− fpore)ωiεi (46)

• the (spatially discretized) concentration-influence relations

∀i ∈ S εi = Ai : E +
∑

j∈S

ωjDij : ε
p
j (47)

εpore = Apore : E +
∑

j∈S

ωjDpore,j : ε
p
j (48)

whereby the discretized influence tensors Dpore,j, Dij , and Dii read as

Dpore,j =

{

− Apore : (1− fpore)A
∞
j : Pcyl,j

+

[

fporeApore : A
∞
pore : Psph + (1− fpore)Apore :

∑

k∈S

ωkA
∞
k : Pcyl,k − A

∞
pore : Psph

]

:
[

fpore(Chom − Cpore) : A
∞
pore : Psph

+ (1− fpore)(Chom − Csolid) :
∑

k∈S

ωkA
∞
k : Pcyl,k

]−1

: (1− fpore)
[

(I− Aj)
T + (Chom − Csolid) : A

∞
j : Pcyl,j

]

}

: Csolid

(49)
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Dij =

{

− Ai : (1− fpore)A
∞
j : Pcyl,j

+

[

fporeAi : A
∞
pore : Psph + (1− fpore)Ai :

∑

k∈S

ωkA
∞
k : Pcyl,k − A

∞
i : Pcyl,i

]

:
[

fpore(Chom − Cpore) : A
∞
pore : Psph

+ (1− fpore)(Chom − Csolid) :
∑

k∈S

ωkA
∞
k : Pcyl,k

]−1

: (1− fpore)
[

(I− Aj)
T + (Chom − Csolid) : A

∞
j : Pcyl,j

]

}

: Csolid

(50)

Dii =

{

[I− (1− fpore)Ai] : A
∞
i : Pcyl,i

+

[

fporeAi : A
∞
pore : Psph + (1− fpore)Ai :

∑

k∈S

ωkA
∞
k : Pcyl,k − A

∞
i : Pcyl,i

]

:
[

fpore(Chom − Cpore) : A
∞
pore : Psph

+ (1− fpore)(Chom − Csolid) :
∑

k∈S

ωkA
∞
k : Pcyl,k

]−1

: (1− fpore)
[

(I− Ai)
T + (Chom − Csolid) : A

∞
i : Pcyl,i

]

}

: Csolid

(51)

• the microscopic state equation for the solid needle phases

∀i ∈ S σi = Csolid : (εi − ε
p
i ) (52)

• the flow rule

∀i ∈ S ε̇
p
i =

NFact,max
∑

α=1

λ̇
(α)
i

∂G(α)

∂σi

(σi) (53)

associated to the Melan-Kuhn-Tucker conditions

∀α ∈ {1, 2, . . . , NFact,max}
λ̇
(α)
i ≥ 0

F (α)(σi) ≤ 0

λ̇
(α)
i × F (α)(σi) = 0

(54)
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Table 1: 15 different needle orientations according to integration
formulas of Stroud (1971)

j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
sin(θj) cos(φj) = +r +r −r −r +t +t −t −t +s +s −s −s 1 0 0
sin(θj) sin(φj) = +s −s +s −s +r −r +r −r +t −t +t −t 0 1 0
cos(θj) = +t +t +t +t +s +s +s +s +r +r +r +r 0 0 1
ω(θj, φj) =

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

with r = 1/2, s =
(√

5 + 1
)

/4, and t =
(√

5− 1
)

/4

• the macroscopic (homogenized) stiffness tensor

Chom = fporeCpore : Apore + (1− fpore)
∑

i∈S

ωiCsolid : Ai (55)

• and the macroscopic plastic strains

Ep = (1− fpore)C
−1
hom :

∑

i∈S

ωiA
T
i : Csolid : ε

p
i (56)

More precisely, we here employ two different sets S of Gaussian points:

• the Stroud’s integration formulas (Stroud, 1971), comprising 15 or 28
points (see Tables 1 and 2)

• the centroids and areas of triangles meshing the unit sphere, as de-
scribed in (Badel and Leblond, 2004). The triangular mesh of the unit
sphere is obtained from the refinement of a semi-dodecahedron, split-
ting each pentagon into five triangles; further refinement can then be
achieved by dividing each triangle into four smaller triangles. The cen-
troids of the triangles are chosen as Gaussian points, while the ratio
between the areas of the triangle and of the unit sphere is chosen as
Gaussian weight. We use 120 integration points.

5.2. Temporal discretization of governing equations

As the spatially discretized temporal differential equations (45)-(56) can-
not be solved analytically, approximative solutions will be obtained in an
iterative process, which is described in greater detail in Sections 6 and 7.
This process relates to discrete time instants tn and corresponding stresses
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and strains, such as E(tn) = En. Respective evaluations of (45)-(52) and
(56) yield

Σn = fporeσ
n
pore +

∑

i∈S

(1− fpore)ωiσ
n
i (57)

En = fporeε
n
pore +

∑

i∈S

(1− fpore)ωiε
n
i (58)

εni = Ai : E
n +

∑

j∈S

ωjDij : ε
p,n
j (59)

εnpore = Apore : E
n +

∑

i∈S

ωiDpore;i : ε
p,n
i (60)

Ep,n = (1− fpore)C
−1
hom :

∑

i∈S

ωiA
T
i : Csolid : ε

p,n
i (61)

σn
i = Csolid : [ε

n
i − ε

p,n
i ] (62)

σn
pore = Cpore : ε

n
pore (63)

Changes of stresses and strains during time interval ∆tn+1 = tn+1 − tn are
quantified in terms of increments

∆En+1 = En+1 −En (64)

∆Σn+1 = Σn+1 −Σn (65)

∆σn+1
i = σn+1

i − σn
i (66)

∆ε
p,n+1
i = ε

p,n+1
i − ε

p,n
i (67)

The latter increments, relating to microscopic plastic strains, need to be
related to the temporal derivatives in the evolution equations (53). Therefore,
we employ a backward Euler integration scheme: Except for time derivatives,
we hold all functional values fixed at time tn+1, and we then integrate the
flow rule (53) between time instant tn and tn+1, yielding

∀i ∈ S
∫ tn+1

tn
ε̇
p
idt =

NFact,max
∑

α=1

∫ tn+1

tn
λ̇(α)dt

∂G(α)

∂σi

(

σn+1
i

)

= ∆ε
p,n+1
i =

NFact,max
∑

α=1

∆λ
(α),n+1
i

∂G(α)

∂σi

(

σn+1
i

)

(68)
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Table 2: 28 different needle orientations according to integration
formulas of Stroud (1971)

j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sin(θj) cos(φj) = +t +t −t −t +s +s −s −s +r +r −r −r +r +r
sin(θj) sin(φj) = +t −t +t −t +r −r +r −r +s −s +s −s +r −r
cos(θj) = +t +t +t +t +r +r +r +r +r +r +r +r +s +s
ω(θj, φj) = a a a a b b b b b b b b b b
j = 15 16 17 18 19 20 21 22 23 24 25 26 27 28
sin(θj) cos(φj) = −u +v +v −v −v +v +v −v −v −r −r +u +u −u
sin(θj) sin(φj) = −v +u −u +u −u +v −v +v −v +r −r +v −v +v
cos(θj) = +v +v +v +v +v +u +u +u +u +s +s +v +v +v
ω(θj, φj) = c c c c c c c c c b b c c c

with r =
√

(

9− 4
√
3
)

/33, s =
√

(

15 + 8
√
3
)

/33, t =
√

1/3,

u =
√

(

15− 8
√
3
)

/33, v =
√

(

9 + 4
√
3
)

/33,

and a = 9/280, b =
(

122 + 9
√
3
)

/3360, c =
(

122− 9
√
3
)

/3360

with the corresponding Melan-Kuhn-Tucker conditions reading as

∀α ∈ {1, 2, . . . , NFact,max}
∆λ

(α),n+1
i ≥ 0

F (α)
(

σn+1
i

)

≤ 0

∆λ
(α),n+1
i × F (α)

(

σn+1
i

)

= 0

(69)

5.3. Iterative solution process I: macro-to-micro scale transitions

Inspired by the standard procedure in computational elastoplasticity (Simo
and Taylor, 1985; Simo and Hughes, 1998; Hellmich et al., 1999; Morin et al.,
2011a,b), a macroscopic strain history is presented in terms of finite strain
increments ∆En+1, with corresponding totally attained strains reading as

En+1 = En +∆En+1 (70)

These strains can be prescribed directly (displacement-driven situation), or
be the result of equilibrium considerations at the RVE or structural level
(force-driven situation). Given the full set of state variables at the end of the
n-th load step, Σn, En, Ep,n; we are left with computing the same full set
of variables for the end of the (n+ 1)-st step, based on the prescribed strain
increment ∆En+1. Therefore, these macroscopic strains are first downscaled
from the macro to the microlevel, under the assumption of the absence of
any additional plastic events (“trial state”), on the basis of (59) and (62)

σ
n+1,trial
i = Csolid :

{

Ai : E
n+1 +

∑

j∈S

[Dij − δijI] : ε
p,n
j

}

(71)
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Thereafter, it is checked whether this assumption of purely elastic behavior of
all solid phases is actually valid, by inserting the trial state of the microscopic
solid microstresses, σn+1,trial

i , into the yield criterion (69)2, yielding respective
trial values

∀i ∈ S, ∀α ∈ {1, 2, . . . , NFact,max} F (α),n+1,trial
i = F (α)

(

σ
n+1,trial
i

)

(72)

with NFact,max as the maximum number of potentially active yield surfaces
per solid phase. These values allow for discrimination between plasticiz-
ing and purely elastic phases; as well as between active and non-active
yield surfaces associated to these plasticizing phases: all solid phases with
F (α),n+1,trial
i ≤ 0 holding for all NFact,max yield surfaces associated to these

solid phases, behave purely elastically during time step ∆tn+1. On the other
hand, those with F (α),n+1,trial

i > 0, for at least one of the NFact,max yield
surfaces defining the multisurface criterion of each solid phase, define the set
of plasticizing needle-shaped solid phases, Scyl,plast. This set has Ncyl,plast el-
ements, i = 1, .., Ncyl,plast. Each element of this set is associated to a number

of active yield surfaces, NFact,i; always fulfilling F (α),n+1,trial
i > 0. These plas-

ticizing phases exhibit non-zero plastic strain increments ∆ε
p,n+1
i according

to flow rule (68), which are determined from fulfillment of the Melan-Kuhn-
Tucker conditions (69), while considering state equation (62) evaluated at
load step (n+ 1) and the definition of the trial state according to (71),

∀i ∈ Scyl,plast, ∀α ∈ {1, 2, . . . , NFact,i}

F (α)



σ
n+1,trial
i + Csolid :







∑

j∈Scyl,plast

NFact,j
∑

β=1

[Dij − δijI]∆λ
(β),n+1
j

∂G(β)

∂σj

(σn+1
j )









 = 0

(73)

Due to the nonlinear dependence of the phase-specific plastic flow directions
∂G(β)

∂σj
on the phase stresses σj , a solution for ∆λ

(β),n+1
j cannot be directly

gained from (73). Therefore, we solve (73) in an iterative manner, with iter-
ation steps labelled by k. Thereby, the approximations of the first iteration
step (k = 1) relate to the trial state and therefore read as

∆ε
p,n+1,1
i = 0 (74)

∆λ
(α),n+1,1
i = 0 (75)

σ
n+1,1
i = σ

n+1,trial
i (76)
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They are used for approximating the plastic flow direction, as the basis for
obtaining an improved estimate for the plastic multiplier ∆λ

(α),n+1,k+1
j , ac-

cording to the approximation scheme

∀i ∈ Scyl,plast, ∀α ∈ {1, 2, . . . , NFact,i}
F (α)

(

σ
n+1,trial
i

+ Csolid :







∑

j∈Scyl,plast

NFact,j
∑

β=1

[Dij − δijI]∆λ
(β),n+1,k+1
j

∂G(β)

∂σj

(σn+1,k
j )









 = 0

(77)

Solution of this non-linear equation (77) requires yet another iteration scheme
(described in the next section), providing new (improved) approximative so-

lutions ∆λ
(β),n+1,k+1
i , i = 1, . . . , Ncyl,plast, β = 1, . . . , NFact,i with correspond-

ing (improved) plastic strains

∀i ∈ {1, . . . , Ncyl,plast}

∆ε
p,n+1,k+1
i =

NFact,i
∑

α=1

∆λ
(α),n+1,k+1
i

∂G(α)

∂σi

(σn+1,k
i )

(78)

Update of the corresponding microscopic stresses requires another downscal-
ing process from the macro to the microlevel, according to

∀i ∈ {1, . . . , Ncyl,plast}
σ
n+1,k+1
i = σ

n+1,trial
i

+ Csolid :







∑

j∈Scyl,plast

NFact,j
∑

α=1

[Dij − δijI]∆λ
(α),n+1,k+1
j

∂G(α)

∂σj

(σn+1,k
j )







(79)

Thereafter, iteration step (k+1) is completed by checking whether the alter-
ations in the plastic flow stemming from the update of σn+1

i from iteration
step k to iteration step (k+1) become negligible, i.e. lower than a prescribed
tolerance value TOL,

∀i ∈ {1, . . . , Ncyl,plast}, ∀α ∈ {1, 2, . . . , NFact,i}
∥

∥

∥

∥

∥

∂G(α)

∂σi

(

σ
n+1,k+1
i

)

− ∂G(α)

∂σi

(

σ
n+1,k
i

)

∥

∥

∥

∥

∥

≤ TOL
(80)
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If this is not the case yet, the (k+1)-st approximations are used as input for
the next (i.e. (k+ 2)-nd) iteration, which is characterized by replacement of
k by (k + 1), and of (k + 1) by (k + 2), in (77), (78), (79) and (80).

5.4. Iterative process II: plastic flow - “return map”

In each iteration step k described in the preceding section, the non-linear
equation

∀i ∈ Scyl,plast, ∀α ∈ {1, 2, . . . , NFact,i}

F (α)

(

σ̃n+1
i = σ

n+1,trial
i +

+ Csolid :







∑

j∈Scyl,plast

NFact,j
∑

β=1

[Dij − δijI]∆λ
(β),n+1,k+1
j

∂G(β)

∂σj

(

σ
n+1,k
j

)







)

= 0

(81)

needs to be solved. This is done by a Newton iteration scheme, with iteration
steps labelled by l, reading as

Rn+1,k+1,l +
dRn+1,k+1,l

d(∆λn+1,k+1)
·∆(∆λ)n+1,k+1,l+1 = 0 (82)

Thereby, the vectorial terms in (82) are defined as follows: The plastic mul-
tiplier vector reads as

∆λn+1,k+1 =














































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The residual vector reads as

Rn+1,k+1,l =


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with NFact,i as the number of active surfaces of phase i; and its derivatives

dRn+1,k+1,l

d(λn+1,k+1)
=
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whereby

∂R
(β)
1

∂(∆λ
(α),n+1,k+1
i )

=
∂F (β)

∂σ̃n+1
1

(σ̃n+1
1 ) :
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∂(∆λ)
(α),n+1,k+1
i
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∂σ̃n+1
1

(σ̃n+1
1 ) : Csolid : [D1i − δ1iI] :

∂G(α)

∂σ̃i

(σn+1,k
i )

(86)

The solution vector of iteration (l + 1) reads as
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and the updated plastic multiplier vector as

∆λn+1,k+1,l+1 = ∆λn+1,k+1,l +∆(∆λ)n+1,k+1,l+1 (88)

If the converged solutions ∆(∆λ)
(α),n+1
i are all positive, the original guess

of active phases and surfaces according to the trial state definition (71) and

(72) was correct. If any ∆(∆λ)
(α),n+1
i are negative, the corresponding yield

surfaces are discarded from the sets Scyl,plast and {1, 2, . . . , NFact,i} and the
process (73) to (88) is repeated as long as all plastic multipliers are non-
negative.

6. Exemplification of multiscale elastoplasticity through upscaling
of Mohr-Coulomb criterion

We here exemplify the developments of Section 5 by assigning, to all
needle-shaped solid phases of Figure 1, a Mohr-Coulomb criterion in the
form

F(σ) = τ − (csolid − σ tanϕsolid) ≤ 0 (89)
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with τ = σnt and σ = σnn as the components of the traction vector T = σ ·n
in the so-called Mohr plane, which is spanned by the vectors n and t. t is in
this Mohr plane as well, arising from rotating n by (π/2); i.e. orthogonal to
n. Upon fulfillment of (89), plastic strains may occur only in terms of shear
components εpnt, i.e. only such strain components which are energetically
conjugated to τ = σnt. According to the general flow rule of (53), this may
be expressed by a plastic potential G which does not depend on the normal
stress component σ, hence being of the form

G(σ) = τ (90)

so that ∂G/∂σ = 0 and ∂G/∂τ = 1. In the principle stress state, (89) repre-
sents a pyramid with six faces, six edges and an apex; while (90) represents
a prism with six faces and edges, being oriented parallel to the hydrostatic
axis. Back-projection of trial stress states on these edges and faces of the
pyramid, along directions orthogonal to the edges and faces of the prism can
be conveniently performed on the basis of the following multisurface repre-
sentation of (89) and (90) in the principal stress space; comprising three yield
functions

F (1) = βσi,I − σi,III − σy

F (2) = βσi,I − σi,II − σy (91)

F (3) = βσi,II − σi,III − σy

with the friction parameter β and the compressive yield stress σy being re-
lated to the cohesion csolid and the angle of internal friction ϕsolid through

σy =
2csolid cosϕsolid
1− sinϕsolid

(92)

and

β =
1 + sinϕsolid
1− sinϕsolid

(93)

and the plastic potential functions

G(1) = σi,I − σi,III

G(2) = σi,I − σi,II (94)

G(3) = σi,II − σi,III
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whereby σi,I ≥ σi,II ≥ σi,III are the principal stresses of stress tensor σi.
(91) and (94) can be readily inserted into the general form of the algorithm
(70)-(88).
We explicitly note that the yield and potential functions (91) and (94) appear
as linear in the principal stress state, but that the corresponding principal
directions do change during the loading and back-projection steps, which ren-
ders the problem as fully non-linear. Depending on the degree of nonlinearity,
the accuracy of the trial state in correctly targeting the actually plastically
active solid phases and yield surfaces may reduce, which then prolongs the
computation time. In this context, the introduction of plastic stress regions
according to Clausen et al. (2007) turns out as helpful: These regions are
defined on the basis of two expressions, which relate to the delimiting lines of
semi-infinite triangular plane (to which the Mohr-Coulomb criterion degen-
erates in the principical stress space, once the principal stresses are ordered
according to σI ≥ σII ≥ σIII). They are

pI−II(σ) =
1

β + 1

(

σI −
σy

β − 1

)

−
(

σII −
σy

β − 1

)

+
1

β + 1

(

σIII −
σy

β − 1

) (95)

pI−III(σ) =
β

β + 1

(

σI −
σy

β − 1

)

−
(

σII −
σy

β − 1

)

+
β

β + 1

(

σIII −
σy

β − 1

) (96)

The aforementioned stress regions for categorization of the trial stress states
are:

• Stress region I relates to pI−II

(

σ
n+1,trial
i

)

≥ 0 and pI−III

(

σ
n+1,trial
i

)

≤
0: if the trial stress resides in this region, then we choose F (1) according
to (91) as active yield surface.

• Stress region II relates to pI−II

(

σ
n+1,trial
i

)

< 0 and pI−III

(

σ
n+1,trial
i

)

<

0: if the trial stress resides in this region, then we choose F (1) and F (2)

according to (91) as active yield surfaces.

• Stress region III relates to pI−II

(

σ
n+1,trial
i

)

> 0 and pI−III

(

σ
n+1,trial
i

)

>
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0: if the trial stress resides in this region, then we choose F (1) and F (3)

according to (91) as active yield surfaces.

• Stress region IV relates to all other cases, where we choose all three
yield surfaces as active.

Finally, the actually active yield surfaces are idenfitied as described at the
end of Section 5.3.

Next, we show the application of the algorithm described in Section 5 and
applied to Mohr-Coulomb plasticity earlier in the present chapter, for com-
puting the behavior of the RVE shown in Figure 1 with material proper-
ties collected in Table 3, under pure shear, Σ = Σ23(e2 ⊗ e3 + e3 ⊗ e2),
under uniaxial tension, Σ = Σ33 e3 ⊗ e3, Σ33 > 0, and under uniaxial com-
pression, Σ = Σ33 e3 ⊗ e3, Σ33 < 0.

Table 3: Properties of solid and pore material phases,
for the case of porous hydroxyapatite polycrys-
tals, see Section 7 for experimental details

Property Solid phases Pore phases

Bulk modulus ksolid = 82.6GPa kpore = 2.3GPa
Shear modulus µsolid = 44.9GPa µpore = 0GPa
Cohesion csolid = 82.2MPa
Friction angle ϕ = 57.8◦

Volume fraction fHA = 0.68 fpore = 0.32

First of all, it is interesting to study the effect of differ-
ent discretization schemes on the model predictions, see Fig-
ures 4(a), 5(a), and 6(a). Two realizations of the integration
scheme of Stroud (1971), with 15 and 28 integration points, re-
spectively, as well as the method of Badel and Leblond (2004)
with 120 integration points, deliver very similar results - in-
dicating the converged nature of the reported computational
results (see Table 4). For all investigated load cases, plasticity leads
to non-linear macroscopic stress-strain curves, and this non-linearity is asso-
ciated with the propagation of plasticity throughout the solid needle phases.
As all solid needle phases exhibit ideal plastic behavior, they
cannot undergo any unloading processes under macroscopic
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Figure 4: (a) Macroscopic stress-strain relation under pure shear
(depicted from the onset of plastic events), for different
discretizations according to Stroud (1971) and Badel and
Leblond (2004), IP... integration point; (b) spreading of plas-
ticity throughout solid needle-shaped phases, as function of
macroscopic shear stress; (c) evolution of micro-plastic re-
gion in the solid phase orientation space, as function of the
macroscopic pure shear stress as indicated in the color code

loading states. With increasing macroscopic stress, an increasing frac-
tion of the solid needle phases plasticize, as illustrated in Figures 4(b), 5(b),
and 6(b). The orientation of these increasing number of plasticizing phases,
quantified in terms of the angles θ and φ given in Figure 2, can be illus-
trated on the stereographic projection of a unit sphere onto a plane parallel
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Figure 5: (a) Macroscopic stress-strain relation under uniaxial
tension (depicted from the onset of plastic events), for dif-
ferent discretizations according to Stroud (1971) and Badel
and Leblond (2004), IP... integration point; (b) spreading of
plasticity throughout solid needle-shaped phases, as function
of macroscopic uniaxial tensile stress; (c) evolution of micro-
plastic region in the solid phase orientation space, as function
of the macroscopic uniaxial tensile stress as indicated in the
color code

to the base vectors e1 and e2, see Figures 4(c), 5(c), and 6(c). In such a
circular projection, different values for the co-latitudinal coordinate θ are as-
sociated with different concentric circles, the outermost circle being related
to θ = π/2; and different values for the longitudinal coordinate φ are associ-
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Figure 6: (a) Macroscopic stress-strain relation under uniaxial
compression (depicted from the onset of plastic events), for
different discretizations according to Stroud (1971) and Badel
and Leblond (2004), IP... integration point; (b) spreading of
plasticity throughout solid needle-shaped phases, as function
of macroscopic uniaxial compressive stress; (c) evolution of
micro-plastic regions in the solid phase orientation space, as
function of the macroscopic uniaxial compressive stress as in-
dicated in the color code

ated with different straight lines oriented orthogonal to the aforementioned
circles. Each macroscopic stress level indicated on the ordinates of the dia-
grams in Figures 4(b), 5(b), and 6(b) is associated with plastic regions on the
aforementioned projection area, seen in Figures 4(c), 5(c), and 6(c). These
plastic regions are indicated through the color code seen in Figures 4(c), 5(c),
and 6(c): at the onset of plastic events, these regions are indicated in red, and
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Table 4: Yield and ultimate macroscopic stresses [in
MPa] computed for uniaxial tension, uniaxial com-
pression, and pure shear: based on different dis-
cretization schemes and different numbers of in-
tegration points (#IP)

Discretization Load case Yield stress Ultimate stress

Stroud #IP=15
uniaxial tension Σ33 = 21.61 34.04

uniaxial compression Σ33 = -131.50 -314.50
pure shear Σ23 = 20.87 31.05

Stroud #IP=28
uniaxial tension Σ33 = 23.77 34.20

uniaxial compression Σ33 = -151.77 -319.16
pure shear Σ23 = 20.01 31.10

Leblond #IP=120
uniaxial tension Σ33 = 22.41 34.26

uniaxial compression Σ33 = -139.84 -313.84
pure shear Σ23 = 19.09 31.06

with increasing macroscopic stress level, they are indicated by more and more
different colors: first red and orange; then red, orange, and yellow; thereafter
red, orange, yellow, and green; and finally red, orange, yellow, green, and
blue, see Figures 4(c), 5(c), and 6(c). Thereby, these plastic regions obvi-
ously represent the orientations of all the solid needle-shaped phases which
are undergoing plastic events. Once the blue color scale is reached, all solid
phases plasticize, and the RVE would fail under a macroscopic stress-driven
test. Naturally, the evolution of the aforementioned plastic regions in Fig-
ures 4(c), 5(c), and 6(c) give interesting insights into the microstructural
events arising under macroscopic loading of the types pure shear, uniaxial
tension, and uniaxial compression: In pure shear (see Figure 4(c)), plasticity
starts in needles belonging to the shear plane and inclined by π/4 to the
e2-e3-axes, respectively, and propagates towards needles oriented off-plane,
but also less inclined from the axes e2 and e3. Under macroscopic uniaxial
tensile loading in e3-direction (θ = 0), the needle-shaped phases oriented in
loading directions are the first to plastify, and the subsequent plastification
process spreads axisymmetrically around e3, see Figure 5(c). In uniaxial
compression (see Figure 6(c)), plasticity starts in needles orthogonal to the
load direction, and while this plastic region on the unit sphere
projection area spreads, a second, independent non-contiguous
plastic region emerges around θ = 0, i.e. needles oriented in the
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loading direction start to plasticize as well. Finally, plasti-
fication events affect also the needle-shaped phases inclined
by π/4 from the loading direction, see Figure 6(c).

7. Application: Push-out test on osteonal bone

Bone tissue is a hierarchically organized material composed of three ele-
mentary components governing its mechanical behavior: mineral,
collagen, and water with non-collageneous organics. These elementary com-
ponents are arranged in different microstructures, from the nanometer scale
up to that of milimeters (Katz et al., 1984; Weiner and Wagner, 1998), see
Figure 7. The seemingly “compact”, so-called cortical shell surrounding the
macroscopic organ [see Figure 7(a)] appears, under greater magnification,
as a porous material itself, with cylindrical pores (called Haversian canals)
being surrounded by concentric layers of lamellar bone matrix (see Figure
7(b) for the corresponding microstructural unit called “osteon”). Each os-
teon consists of one Haversian canal surrounded by alternating collagen-rich
and collagen-poor layers of extravascular bone matrix (Marotti et al., 1994,
2013), and such an osteon is bounded by a so-called cement line
with up to 5 microns thickness (Skedros et al., 2005). This ce-
ment line is collagen-free, as was experimentally evidenced by
staining tests (Weidenreich, 1930; Weinmann and Sicher, 1955;
Sokoloff, 1973; Skedros et al., 2005). Conclusively, cement
lines contain hydroxyapatite and water with noncollageneous
organics, these components making up a polycrystalline mate-
rial as seen in Figure 7(c). This material can be suitably rep-
resented by the RVE of Figure 1, see Figure 7(d). Such an RVE
has been extensively used for the micromechanical modeling
of the extrafibrillar spaces within the bone ultrastructure
(Fritsch et al., 2009a; Vuong and Hellmich, 2011; Morin and
Hellmich, 2014).
The microscopic strength properties of the osteon can be determined through
push-out tests, first carried out by Ascenzi and Bonucci (1972) on bone from
human femoral shafts, and later by Bigley et al. (2006) on bone from the third
metapcarpal of a racehorse. During such tests, a punch with a diameter of
about 150 µm applies a compressive load on the osteon until its complete
debonding. The absence of collagen in the cement lines makes
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(b)

(c)

(d)(a)

1 cm
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0.5 µm

Figure 7: Hierarchical organization of bone: (a) photograph of
a whole bone; (b) scanning electron micrograph
of an osteon, being composed of alternating thick
(dense, collagen-rich) and thin (loose, collagen-
poor) lamellae, and delineated by a collagen-
free cement line (Marotti, 1993), (c) scanning
electron micrograph of the isolated cement line
(Davies, 2007), (d) micromechanical representa-
tion of collagen-free compartment of bone ultra-
structure, also referred to as “extrafibrillar
space” (Prostak and Lees, 1996); permission for im-
age reproduction requested (a) from Paul Cromp-
ton, University of Wales College of Medicine, (b)
from Springer-Verlag New York Inc. for Figures
1 of (Marotti, 1993), and (c) from Elsevier for
Figure 2B of (Davies, 2007)

them comparatively weak, and renders them as preferred lo-
cations of osteon debonding in the course of push-out tests.
Such a push-out test produces an pure shear stress in the cement line, which
we prescribe in the form Σ = Σ23(e2 ⊗ e3 + e3 ⊗ e2) on the RVE of Figure
1 with solid phases following a Mohr-Coulomb criterion; by using the algo-
rithm described in Section 5. As model input parameters, we need (i) the
elastic properties of of the needle-shaped phases and of the pores, (ii) the
strength properties of the plastic solid phases, and (iii) the volume fractions
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of pores (filled by water and non-collageneous organic matter)
and solid phases (made of hydroxyapatite, abbreviated as HA).
The elastic properties of the constituents were determined by experiments
performed on pure constituents: ultrasonic measurements on hydroxyapatite
allowed to identify the following isotropic properties (Katz and Ukraincik,
1971; Gilmore and Katz, 1982)

CHA = 3kHAI
vol + 2µHAI

dev (97)

with kHA = 82.6 GPa and µHA = 44.9 GPa, Ivol as the volumetric part of
the identity tensor I with components

Ivolijkl =
1

3
δijδkl (98)

and Idev as the deviatoric part of the identity tensor defined by Idev = I− Ivol

The elastic properties of the (undrained) pore fluid are approximated by that
of the water: Cpore = 3kH2OI

vol, with kH2O = 2.3 GPa.
The strength properties of hydroxyapatite, as defined through the two pa-
rameters of the Mohr-Coulomb criterion, are gained from tension and com-
pression experiments on different HA biomaterials (Peelen et al., 1978; Akao
et al., 1981; Shareef et al., 1993), as given in greater detail in (Fritsch
et al., 2009a). The Mohr-Coulomb parameters are chosen so as to minimize
the mean square error between model predictions (as functions of poros-
ity) and corresponding experimental results. They amount to: β = 12 and
σy = 570 MPa, or, according to Eq. (92) and (93), csolid = 82.2MPa
and ϕsolid = 57.8◦.
Finally, concerning the volume fractions, McCarthy et al.
(1990), for the third equine metacarpus, report 35 values each
for the macroscopic mass densities ρmacro, and for the vascular
porosities fvas, giving access to the extravascular mass densi-
ties as

ρexvas =
ρmacro − ρH2O × fvas

1− fvas
(99)

see Table 5 for corresponding numerical results. Then, re-
cent microCT investigations revealing a lacunar-canalicular
porosity per extravascular space of f exvaslac+can = 2.06% are consid-
ered (Schneider et al., 2007, 2011), so as to transform these ex-
travascular mass densities to the extracellular level, yield-
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ing the extracellular mass densities according to

ρexcel =
ρexvas − ρH2O × f exvaslac+can

1− f exvaslac+can

(100)

see Table 5 for corresponding numerical results. These ultra-
structural mass densities then enter the “universal” compo-
sition rules of Vuong and Hellmich (2011), who showed that
the composition of the extracellular bone matrix, in terms
of mineral, organics and fluid, follows bilinear laws, as be-
came evident from a wide variety of bone tissues tested in
over 80 years of research (Hammet, 1925; Burns, 1929; Gong
et al., 1964; Biltz and Pellegrino, 1969; Lees et al., 1979, 1983;
Lees, 1987; Lees and Page, 1992; Lees et al., 1995; Lees, 2003).
These rules are depicted in Figure 8, where the macroscopic-
to-ultrastructural mass density transition was based on vas-
cular porosities of 3% (Lees et al., 1979), and lacunar-canalicular
porosities of 2% (Schneider et al., 2007, 2011) in the case of
mammalian bone tissues, while the absence of such pores in
the case of tendons and otic bone tissues does not require
discrimination between macroscopic and ultrastructural den-
sity and concentration properties. The extracellular bone
matrix is made up by an arrangement of collageneous fibrils
and collagen-deficient extrafibrillar space, these two com-
partments being characterized by the same extracollageneous
mineral concentration (Hellmich and Ulm, 2003). This distribu-
tion rule, together with the rules identified by Morin et al.
(2013) and Morin and Hellmich (2013) for fibrillar swelling
and shrinkage due to hydration and mineralization, finally al-
lows for quantification of the intercrystalline porosity and
the mineral volume fractions inside an RVE of extrafibrillar
space, the one depicted in Figure 7(d); see Table 5 for corre-
sponding results.
Use of these volume fractions for such an RVE subjected to
pure shear until full plastification, yields the shear strength
values given in the last column of Table 5. Their mean value
of 31 MPa virtually perfectly agrees with the mean experimen-
tal value of 30.7MPa given by Bigley et al. (2006) for debond
shear strength of cement lines.
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Figure 8: Apparent mass densities (per volume of ex-
tracellular space) of water, hydroxyapatite, and
organic matter, versus overall mass density of ex-
tracellular bone matrix, across different species,
organs, and ages; in the line of Vuong and
Hellmich (2011)
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Table 5: Characterization of equine cortical bone sam-
ples of McCarthy et al. (1990): experimentally-
determined macroscopic mass densities and vascu-
lar porosities; extravascular and extracellular
mass densities according to Eq. (99) and (100);
volume fractions of hydroxyapatite crystal nee-
dle phase and of pore phase according to ”uni-
versal” composition rules reported in (Vuong and
Hellmich, 2011; Hellmich and Ulm, 2003; Morin
et al., 2013; Morin and Hellmich, 2013); and shear
strength values predicted by the micromechanics
model from Section 6, based on the volume frac-
tions and the material properties of Table 3.

ρmacro fvas ρexvas ρexcel fHA fpore Σult
23

[g/cm3] [-] [g/cm3] [g/cm3] [-] [-] [MPa]
2.03 0.10 2.14 2.17 0.74 0.26 32.5
2.02 0.08 2.11 2.13 0.72 0.28 31.7
2.01 0.11 2.13 2.16 0.74 0.26 32.2
2.01 0.07 2.09 2.11 0.71 0.29 31.2
2.00 0.09 2.10 2.12 0.72 0.28 31.5
2.00 0.07 2.08 2.10 0.71 0.29 31.0
2.00 0.06 2.06 2.09 0.70 0.30 30.7
1.98 0.12 2.11 2.14 0.73 0.27 31.8
1.98 0.12 2.11 2.14 0.73 0.27 31.8
1.98 0.10 2.09 2.11 0.71 0.29 31.3
1.98 0.10 2.09 2.11 0.71 0.29 31.3
1.97 0.10 2.08 2.10 0.71 0.29 31.0
1.97 0.12 2.10 2.13 0.72 0.28 31.6
1.96 0.11 2.08 2.10 0.71 0.29 31.0
1.96 0.10 2.07 2.09 0.70 0.30 30.8
1.95 0.14 2.10 2.13 0.72 0.28 31.6
1.95 0.09 2.04 2.07 0.69 0.31 30.3
1.95 0.12 2.08 2.10 0.71 0.29 31.1
1.95 0.18 2.16 2.18 0.75 0.25 32.7
1.95 0.11 2.07 2.09 0.70 0.30 30.8
1.95 0.14 2.10 2.13 0.72 0.28 31.6
1.93 0.12 2.06 2.08 0.70 0.30 30.6
1.93 0.09 2.02 2.04 0.67 0.33 29.5
1.93 0.13 2.07 2.09 0.70 0.30 30.9
1.92 0.12 2.05 2.07 0.69 0.31 30.4
1.92 0.10 2.02 2.04 0.67 0.33 29.6
1.92 0.12 2.05 2.07 0.69 0.31 30.4
1.92 0.11 2.03 2.06 0.69 0.31 30.0
1.91 0.12 2.03 2.06 0.69 0.31 30.0
1.91 0.22 2.17 2.19 0.75 0.25 32.9
1.91 0.18 2.11 2.13 0.72 0.28 31.7
1.90 0.25 2.20 2.23 0.77 0.23 33.5
1.90 0.12 2.02 2.04 0.68 0.32 29.6
1.82 0.09 1.90 1.92 0.57 0.43 24.9
1.76 0.30 2.09 2.11 0.71 0.29 31.2
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While this impressively confirms our modeling approach, we
wish to also base the experimental validation of the model-
predicted values of Table 5 on a more profound statistical ar-
gument. Therefore, we consider the aforementioned strength
predictions as validated if and only if the following statistical
question is anwered with “yes”. The question is: Does the sta-
tistical sample of 35 model-predicted shear strength values
belong to the same statistical population of shear strength
values as the statistical sample of 66 strength values which
were experimentally obtained by Bigley et al. (2006)? If we re-
construct the latter statistical sample of Bigley et al. (2006)
through log-normally distributed random variables with a mean
value of 30.7MPa and a standard deviation of 3.9MPa, i.e. with
the characteristics given explicitly by Bigley et al. (2006),
then an ANOVA test clearly provides a clear “yes” to the
aforementioned question (for 5 randomly reconstructed ex-
perimental samples, the corresponding F -values, with a mean
of 0.49, stays very clearly below the critical F -value of 3.94).
Consequently, we regard our micromechanical model of plas-
tic porous polycrystals as validated for cement lines in os-
teonal bone.

8. Summary and conclusions

While multiscale elastoplasticity remains a veritable challenge in the me-
chanics and physics of solids, the present paper contains several original
contributions providing a computationally efficient way to compute plastic
phenomena in porous hydrated polycrystals:

• The influence tensor concept pioneered by Dvorak and colleagues (Dvo-
rak and Benveniste, 1992; Dvorak, 1992; Dvorak et al., 1994) has been
extended to infinitely many, mutually interacting, needle-shaped
phases oriented in all space directions. This appears as a valuable
solution for elastoplastic upscaling in polycrystals; which overcomes
the elastoplastic stiffness overestimation associated with traditional mi-
cromechanics approaches comprising typically only a few (such as two)
phases with (assumedly) uniform plastic strains; see e.g. the discus-
sions in (Chaboche et al., 2001, 2005; Shojaei and Li, 2013). Similarly
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effective solutions have been already proposed in the context of the so-
called NTFA - non-uniform transformation field analysis (Michel and
Suquet, 2003, 2004; Roussette et al., 2009; Jiang et al., 2013; Fritzen
and Böhlke, 2011); however, the latter approaches have all been re-
lated to periodic (rather than polycrystalline) microstructures, and the
determination of associated plastic modes (replacing uniform plastic
strain fields) typically requires the introduction of coupled plastic flow
rules and auxiliary numerical simulations, based on the Finite Element,
or the Fast Fourier Transform Method. As with the Finite Element
Method, also our present approach needs consideration of discretiza-
tion issues (related, however, to the proper evaluation of integrals over
the unit sphere), while it is based on classical multisurface plasticity
(with no need to introduce additional plastic couplings).
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Figure 9: Comparison of spherical and cylindrical pore
shape representation in micromechanical model
for porous polycrystal; and comparison with ex-
periments, see (Fritsch et al., 2013) for experi-
mental sources.
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• The morphology depicted in Figure 1 is particularly well
suited for a wide class of porous polycrystals. This was
shown by Fritsch et al. (2009b); Sanahuja et al. (2010);
Fritsch et al. (2013); reporting that the homogenized Young’s
modulus normalized by the Young’s modulus of the solid
needle phases turned out to exclusively depend on the
porosity, and that this dependence was very well con-
firmed by experimental data on hydroxyapatite (de With
et al., 1981; Gilmore and Katz, 1982; Liu, 1998; Charrière
et al., 2001), gypsum (Ali and Singh, 1975; Phani, 1986;
Tazawa, 1998; Meille, 2001; Colak, 2006), piezoelectric ce-
ramics (Craciun et al., 1998), alumina (Coble and Kingery,
1956; Pabst et al., 2004), zirconia (Pabst et al., 2004), sil-
icon carbide (Reynaud et al., 2005), and silicon nitride
(Dı́az and Hampshire, 2004). In addition, such homogenized
elasticity predictions were shown to be in excellent agree-
ment with Finite Element simulations of “real” gypsum mi-
crostructures (Sanahuja et al., 2010). By comparison, ap-
proaches which may seem similarly adequate on the first
sight, such as the use of uniformly oriented acircular
pore phases instead of one spherical pore phase, yield
remarkably worse predictions, namely a significant over-
estimation of experimental data, see Figure 9. Further
confirming the choice of one spherical pore phase, the
micromechanical representation of Figure 1 also turned
out as very relevant for quasi-brittle strength predic-
tions (Fritsch et al., 2009b; Sanahuja et al., 2010); and the
present paper shows an equally sound capacity of this mi-
cromechanical representation when it comes to the realm
of elastoplastic property upscaling. Extension of the
method from uniformly oriented needle-shaped phases to
preference of certain orientations, as encountered e.g. in
the case of clay (Wenk et al., 2008) is quite straightfor-
ward. As was shown for axisymmetrically oriented nee-
dle phases in the context of elasticity (Fritsch et al.,
2006), and would be reflected by adding probability den-
sity functions inside the spherical integrals appearing in
Eqs. (16), (17), (22), (23), (25), (26), (31), (32), (33), (34), (35),
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(38), (39), (40), (41), (42), (43) as well as in their discretized
counterparts. This is beyond the scope of the present
manuscript.

• Involving infinitely many phases as part of the basic concept, our ap-
proach requires discretization down to an approriate number of phases,
for which we employ two different concepts, namely Stroud’s integra-
tion (Stroud, 1971) as well as the discretization method described in
(Badel and Leblond, 2004). The results related to all three choices
of discretization are in satisfactory agreement. In this context, we
reiterate that the consideration of different orientations is one of the
keys to the succcess of our new method, a feature which this method
shares with the so-called microplane models, as developed extensively
by Bažant and colleagues (Bažant and Oh, 1985; Bažant and Prat,
1988; Bažant et al., 2000). The latter models are also based on the
principle of virtual work, however, they restrict corresponding energet-
ical considerations to tangential planes on a unit hemisphere; rather
than to a 3D RVE as is typically done in continuum micromechanics
and described in Section 2.

• Upscaling of the elastoplastic constitutive relations from the solid phase
to the porous polycrystal scale is performed by adaptation of the well-
known return map algorithm originating from the nonlinear elastoplas-
tic Finite Element analysis (Simo and Hughes, 1998; Simo and Tay-
lor, 1985), based on an incremental load apposition. What is adopted
from the original algorithm is the trial state computed from a ficti-
tiously purely elastic deformation in the load step under investigation;
this trial step giving a first indication on which solid phases might
actually undergo plastic deformations. Whether this is actually the
case, is checked via implicit solution of the elastic constitutive equa-
tion in combination with fulfillment of the active yield criteria. In
contrast to the case encountered in the nonlinear Finite Element anal-
ysis, computation of elastoplastic (consistent) tangent is not required,
as the concentration-influence relations are explicitly known. We re-
gard this adoption of classical plasticity algorithms for micromechan-
ics approaches as original in the context of polycrystalline materials,
while we are aware of similar approaches for metal-ceramic compos-
ites with periodic microstructures (Vena et al., 2007); but also for
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to 120 solid needle phases arising from Badel-
Leblond discretization; residual vector R is de-
fined through Eq. (84)
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self-consistent homogenization based on spherical phase
representations (Zeng et al., 2014). The latter refer-
ence, however, rests on the use of suitably chosen elasto-
plastic tangents, while our concept explicitly accounts
for the effects of geometrically incompatible non-elastic
strains at the microscale, on the overall homogenized ma-
terial behavior, extending the transformation field anal-
ysis (Dvorak and Benveniste, 1992; Dvorak et al., 1994),
based on more recent work of Pichler and Hellmich (2010),
towards infinitely many, needle-shaped eigenstressed phases.
Realization of a return map algorithm for Mohr-Coulomb
plasticity is a quite peculiar undertaking. Our corre-
sponding developments described in Section 6 are some-
what inspired by the work of Clausen et al. (2007). How-
ever, the latter work considers cases where the principal
stress directions stay unaltered during the back projec-
tion of the trial stress state (which is related to one
point of the simulated structure), onto the correspond-
ing yield surface. Hence, this return mapping algorithm,
which is performed stress state per stress state, is asso-
ciated with the solution of a linear system of equations.
With respect to this situation, our solution described in
Section 5.4 is original with respect to two features: (i)
all trial stress states in all (active) needle phases are
back projected simultaneously, leading finally to a much
larger system of equations involving all plastic multipli-
ers from all yield surfaces related to all (active) needle
phases; and (ii) the principal stress directions change upon
back projection of the trial stress states onto the plas-
tic yield surfaces; accordingly the aforementioned system
of equations becomes nonlinear, and it is hence solved ac-
cording to the iteration scheme given by Eq. (82) - (88).
Depending on macroscopic loading type and loading level,
i.e. on the number of active needle-shaped solid phases,
between one and ten iteration steps are typically needed
in order to back-project all trial stress states onto the
phase-specific yield surfaces, see Figures 10(a)-(c).
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• As a rule the microstructural plastic events start in crystal phases ori-
ented in the direction of the dominant macroscopic tensile stress; in
the case of the latter being absent, the plasticity affects solid phases
being oriented perpendicular to the dominant macroscopic compressive
direction. Thereafter, the micro-plasticity spreads over all solid phase
needle directions. Ultimate loads refer to all solid needle plasticizing,
and when applied to the collagen-poor lamellae of osteonal bone, the
presented micromechanical concept predicts well the ultimate loads at-
tained in osteon push-out tests. Corresponding Mohr-Coulomb
plasticity of the hydroxypatite crystal phases thereby
may represent either sliding of hydrated interfaces sit-
uated within these phases as repeatedly discussed in mate-
rial mechanics (Bhowmik et al., 2007, 2009; Shahidi et al.,
2014; Qu et al., 2015a,b) or intrinsic dislocation phenom-
ena in hydroxyapatite (Viswanath et al., 2007; Saka et al.,
2008; Ievlev et al., 2013).

• As regards model validation, there are two principal op-
tions: comparison of micromechanics model results with
Finite Element simulations resolving the material microstruc-
tures down to minute detail; or with experimental re-
sults. Generation of trustworthy Finite Element mod-
els requires very detailed knowledge on the geometri-
cal characteristics of the object to be simulated. As
regards the extrafibrillar space of bone, the material
system investigated in Section 7, transmission electron
micrographs (Lees and Prostak, 1988; Lees et al., 1994;
Prostak and Lees, 1996; Zylberberg et al., 1998; Su et al.,
2003; McNally et al., 2012) have revealed microstructural
details down to the several nanometer scale, over ranges
spanning several hundreds of nanometers. However, full
3D quantification of structural features, e.g. by means
of X-ray-based Computed Tomography techniques which
have proved as particularly useful for the generation of
trustworthy Finite Element models (Dejaco et al., 2012),
is still out of reach. This is why we here compare our
homogenization results of Table 5 directly to the experi-
mental results of Bigley et al. (2006) for debonding shear
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strength of cement lines: Model predictions and experi-
ments agree virtually perfectly, as reported in the last
paragraph of Section 7. From a more qualitative view-
point, it is interesting that the seamless transition from
elastic to elastoplastic regimes in the stress-strain curves
of bone at the single micron scale, where polycrystals
as the one depicted in Figure 1 largely affect the mate-
rial behavior, is indeed observed experimentally, as recent
compressive tests on single micron-sized pillars have im-
pressively shown (Schwiedrzik et al., 2014; Luczynski et al.,
2015).

• For the sake of completeness, we may state that our ap-
proach targets at capturing the development of micro-
plastic strains stemming from non-associated plasticity,
and their macroscopic effects. This may be seen as an in-
teresting complement to the popular plastic homogeniza-
tion approaches based on limit analysis and variational
methods; considering, as a rule, microscopic strength cri-
teria, equilibrium at the micro and macro-scale, maximiza-
tion of dissipation, and sometimes associated plasticity.
Corresponding recent developments are reported in (Cheng
et al., 2014; Shen et al., 2015; Bignonnet et al., 2016).

• Potential future work may aim at going beyond the con-
straints of ideal plasticity at the solid needle phase level,
so as to extend the modeling approach towards catas-
trophic failure, such as it is eventually seen, for example,
in the osteon push-out tests of (Bigley et al., 2006). This
would imply careful study of so-called softening plas-
ticity formulations, considering valuable knowledge from
nonlocal and gradient plasticity theory (de Sciarra, 2004,
2008a,b, 2009).
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Kröner, E., 1958. Berechnung der elastischen Konstanten des Vielkristalls aus
den Konstanten des Einkristalls. Zeitschrift für Physik 151 (4), 504–518.

Kruch, S., Chaboche, J.-L., 2011. Multi-scale analysis in elasto-viscoplasticity
coupled with damage. International Journal of Plasticity 27, 2026–2039.

Laws, N., 1973. On the thermostatics of composite materials. Journal of the
Mechanics and Physics of Solids 21 (1), 9–17.

Lees, S., 1987. Considerations regarding the structure of the mammalian
mineralized osteoid from viewpoint of the generalized packing model. Con-
nective Tissue Research 16 (4), 281–303.

Lees, S., 2003. Mineralization of type I collagen. Biophysical Journal 85,
204–207.

58



Lees, S., Ahern, J., Leonard, M., 1983. Parameters influencing the sonic ve-
locity in compact calcified tissues of various species. Journal of the Acous-
tical Society of America 74 (1), 28 – 33.

Lees, S., Cleary, P., Heeley, J., Gariepy, E., 1979. Distribution of sonic plesio-
velocity in a compact bone sample. The Journal of the Acoustical Society
of America 66 (3), 641–646.

Lees, S., Hanson, D., Page, E. A., 1995. Some acoustical properties of the
otic bones of a fin whale. Journal of the Acoustical Society of America
99 (4), 2421–2427.

Lees, S., Page, E., 1992. A study of some properties of mineralized turkey
leg tendon. Connective Tissue Research 28 (4), 263–287.

Lees, S., Prostak, K., 1988. The locus of mineral crystallites in bone. Con-
nective Tissue Research 18 (1), 41 – 54.

Lees, S., Prostak, K., Ingle, V., Kjoller, K., 1994. The loci of mineral in turkey
leg tendon as seen by atomic force microscope and electron microscopy.
Calcified Tissue International 55 (3), 180 – 189.

Levin, V., 1967. Thermal expansion coefficient of heterogeneous materials.
Inzh. Zh. Mekh. Tverd. Tela 2 (1), 83–94.

Liu, D.-M., 1998. Preparation and characterisation of porous hydroxyapatite
bioceramic via a slip-casting route. Ceramics International 24 (6), 441 –
446.

Luczynski, K., Steiger-Thrirsfeld, A., Bernardi, J., Eberhardsteiner, J.,
Hellmich, C., 2015. Extracellular bone matrix exhibits hardening elasto-
plasticity and more than double cortical strength: Evidence from homoge-
neous compression of non-tapered single micron-sized pillars welded to a
rigid substrate. Journal of the Mechanical Behavior of Biomedical Materi-
als 52, 51 – 62.

Marotti, G., 1993. A new theory of bone lamellation. Calcified Tissue Inter-
national 53 (1), 47–56.

Marotti, G., Ferretti, M., Palumbo, C., 2013. The problem of bone lamella-
tion: An attempt to explain different proposed models. Journal of Mor-
phology 274 (5), 543–550.

59



Marotti, G., Muglia, M., Palumbo, C., Zaffe, D., 1994. The microscopic
determinants of bone mechanical properties. Italian Journal of Mineral
and Electrolyte Metabolism 8 (4), 167–175.

McCarthy, R., Jeffcott, L., McCartney, R., 1990. Ultrasound speed in equine
cortical bone: Effects of orientation, density, porosity and temperature.
Journal of Biomechanics 23 (11), 1139–1143.

McNally, E., Schwarcz, H., Botton, G., Arsenault, A., 2012. A model for the
ultrastructure of bone based on electron microscopy of ion-Milled sections.
PLoS One 7, e29258.

Meille, S., 2001. Etude du comportement méanique du plâtre pris en relation
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