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Abstract

Cloud platforms have emerged as a leading solution
for computation. In the meantime, large computations
have shifted from big parallel tasks to workflows of
smaller tasks with data dependencies between them.
Task placement is a major issue on Cloud platforms,
especially considering the impact of data exchanges on
cost and makespan. In this paper, we investigate the
consequences of network contention regarding the use
of existing scheduling policies on DaaS-based platforms
(DaaS for Data as a Service). We show here that the
legacy algorithms use inefficient network models. We
then modify those algorithms using a new model in-
spired by DaaS-based Cloud platforms. Thus, we man-
age to statically pack tasks so that a batch scheduler
could deploy many real-time submitted workflows on
a dynamic Cloud platform. Simulations of Fork-Join
workflows deployment using SimGrid show that our
algorithm reduces computation time as well as deploy-
ment costs.
Keywords: workflow, Cloud, scheduling, clustering

Part 1
Introduction

Nowadays, computing platforms are used to execute
increasingly complex operations composed of multiple
interdependent tasks. Examples of such workflows are
given in [1]. These can be submitted in real time by
multiple users. Meanwhile, computing platforms have
moved from institution-owned clusters to externalized
Clouds. This new computing paradigm calls for new
mechanisms to efficiently schedule tasks and provision
resources.
Previous scheduling mechanisms were designed to

statically schedule workflows on fixed computing clus-
ters, and focused on communication cost. On Cloud-
based platforms, recent approaches now focus on other
issues such as Virtual Machine (VM) provisioning, re-
source sharing among users and failure handling.

As Cloud instances can migrate and the topology of

the network is usually unknown, it is difficult to esti-
mate communication cost and to tweak task placement
accordingly. A usual solution is to deal with data lo-
cality and to migrate the environment.

Another argument against the use of task clustering
algorithms is that it requires knowledge of all the jobs.
In a dynamic context, the whole schedule would have
to be recomputed for every new job submitted to the
platform, leading to poor platform scalability. On the
other end of the spectrum, batch scheduling algorithms
are scalable in the context of many users submitting
many independent jobs in real time.

Still, many Cloud solutions rely on Data as a Service
(DaaS) tools for communication. Among such tools are
Amazon S3, Dropbox, NFS and others. On an other-
wise distributed infrastructure, DaaS are centralized el-
ements that somehow constrain the level of parallelism.
In fact, the capacity of a node to send and receive files
from the rest of the network is limited by the band-
width available between this node and the DaaS. Even
with a distributed structured DaaS, availability of a
specific piece of data to all nodes is bounded by the
capacity of the nodes to access the data on different
instances of the DaaS and consequently by the DaaS
inner synchronization mechanisms. The whole DaaS
can therefore be seen as a single entity potentially dis-
tributed among multiple machines.

To build an autonomous workflow manager for the
Cloud, we focused on task packing. Our idea was to
analyze each job workflow and to determine tasks pack-
ing for optimal placement without any prior knowledge
of the platform current deployment. The resulting in-
formation could be useful to a batch scheduler down-
stream. Furthermore, if this workflow analysis could
be done independently of the status of the platform,
then it would not be necessary to recompute it with
each subsequent change in the platform deployment,
therefore ensuring good scalability.

In this paper, we focus on static clustering algo-
rithms for workflows with data dependencies. We start
by building workflow and platform models (Section 3).
Later, we show how legacy algorithms behave on cloud
platform (Section 4), and propose an evolution based

1



Communication-aware task placement for workflow scheduling on DaaS-based Cloud 2017

on a Cloud-inspired network topology (Section 5). We
then see how this new clustering method can help to
pack tasks for efficient workflow deployment in the
Cloud (Section 6).

Part 2
Related work

Since the dawn of parallel and distributed systems, the
scheduling issue has been considered in many context
and with many different objectives, each relevant to
some platform specificity. In this section we will give
an overview of the existing approaches.

2.1
Clustering algorithms

The goal of clustering algorithms is to pack tasks into
clusters prior to any execution. Given a global vision
of the platform and the tasks to execute, a clustering is
a mapping of tasks to the nodes of the platform, with
all tasks being executed on the same node constituting
a cluster. With this approach, expensive computation
is needed to achieve a very efficient clustering, yet any
change on the platform or the tasks to execute would
lead to the whole clustering being recomputed.
In this category we find algorithm dealing with both

homogeneous platforms [2–5] and heterogeneous plat-
forms [6].

2.2
Batch scheduling for Cloud

The issue of the Cloud batch is the scheduling of many
independent tasks and services, submitted dynami-
cally, on heterogeneous platforms. One of the required
key features is to have the addition of new tasks to the
schedule be a very simple operation, thus ensuring the
scalability of the system. Other elements, such as tasks
priorities or energy consumption, can be used to make
the schedule fit ones’ objectives. On Cloud platforms,
batch schedulers also adjust the platform size in order
to meet all the deadlines while limiting the deployment
cost [7].
While some tools handle graph deployment, the few

that try to optimize placement based on data depen-
dencies have poor network modeling [8].

2.3
Workflow deployment on Cloud

It is still an open problem to efficiently consider the
constraints imposed by the real-time submission of
workflows while handling the dynamism of Cloud plat-
forms. All previous contributions focused on specific
issues while leaving other aspects unconsidered.

A survey showed that most contribution did not con-
sider the impact of data transfers [9]. Moreover, when
this issue was considered, it was on simplified DAGs
which failed to accurately model the whole extent of
real applications.

We have identified two recent contributions which
depict the current state of the art.

Mao et al. [10] dealt with a single workflow in which
the tasks have different resources requirements. Their
algorithm not only packs tasks but also determines
which type of nodes to deploy. However, this re-
sult does not account for multiple workflows. It also
does not handle contexts in which communications go
through a DaaS. We might be interested in investigat-
ing the underlying communication model in respect of
the targeted platforms’ behavior.

Malawski et al. [11] handled multiple dynami-
cally submitted workflows composed of single-threaded
tasks. In this work, the Cloud platform used for exe-
cution is dynamic but has an upper bound. There-
fore, some workflows – with a lesser priority – can
be dropped if the platform cannot be extended as re-
quired. Similarly to Mao et al., the communication
model used in this paper does not match our observa-
tions of DaaS-based platforms.

Part 3
Workflow and platform modeling for
communication-aware scheduling

Scheduling algorithms rely on specific definitions of re-
sources and of the way tasks are executed on these
resources. Before discussing the scheduling strategies
themselves, we have to define the different objects we
will be dealing with.

3.1
Generic network topology for DaaS-based Cloud

platforms

It is commonly accepted that characterizing platform
topology is a real issue on the Cloud. VM can migrate
and resources such as routers can be shared with other
users. Still, in an effort to build a scheduling policy
both task and data transfer-oriented, we need to un-
derstand and predict the behavior of data transfers on
this platform. As discussed in the introduction, com-
municating through a DaaS induces a centralization of
the communications.

Our analysis is that this centralization will lead to
contention at the links between a node and the DaaS.
While the DaaS is a critical element, commonly lo-
cated near the center of the network, the computing
stations can potentially be very far from it. This led
us to a model where a node ability to place and retrieve
data from the DaaS is constrained by the bandwidth
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Node 1 Node 2 Node 3 ... ... ... Node n

DaaS

Network Core

Figure 1: A generic model of DaaS-based network
topology.

between the node itself and the code of the network.
This topology is illustrated in Fig. 1.
This model is generic enough for it to be independent

of the actual Cloud deployment and of VM migrations,
as long as the nodes bandwidth is not overestimated.

3.2
Data-centric representation of workflows

Workflows are usually represented as weighted graphs
of tasks, with the weights on the nodes representing
the computational cost of the tasks (in flops – float-
ing point operations –) and the weights on the edges
representing the cost of the communications (in bits
of data transferred). However, as we moved to DaaS-
based Cloud platforms, our representation of workflows
needs to evolve accordingly.
While previous representations focused on the

amount of data to be transferred between tasks, a more
relevant approach would be to focus on data objects.

If we consider a fork-join distribution pattern, there
is a major difference between sending n different pieces
of data to n different agents and sending a single piece
of data to the same n different agents. While in the
second case we have a single upload from the initial
task to the DaaS and n parallel downloads from the
DaaS, in the first case we have a single task (the initial
task) uploading the n different pieces of data to the
DaaS at the same time, which would cause contention
between the initial task and the core of the network
where the DaaS is located.
Therefore, the first contribution of this paper is

an extended “data-centric” representation of workflows
which includes details about the different pieces of data
produced and consumed by the tasks. Our represen-
tation (Table 1) is an acyclic-oriented bipartite graph,
with nodes from one side representing weighted tasks
and nodes from the other representing pieces of data
weighted by their size. Edges have no weight and
only represent dependencies between pieces of data and
their producers/consumers. Fig. 2 shows how two very

different communication patterns have the same legacy
representation. According to our network model, we
expect bouts of network congestion when a single task
uploads or downloads multiple files. Thus, we can ex-
pect some contention for the final task downloads in
both cases (Fig. 2b and Fig. 2c). Yet, only the second
case (Fig. 2c) should undergo upload contention for the
initial task.

Part 4
Legacy communication-aware scheduling
algorithms behavior on current platforms

Historical static scheduling algorithms such as DCP [5]
were designed to take into account the impact of com-
munication latency on workflows deployment. In this
section we will see how they perform on DaaS-based
platforms and analyze why they do not stand up to
the task.

Table 1: Workflow and Clustering notations.
Notation Space Description
T Set of all tasks

ω(t) T 7→ R Computational cost of t

D Set of all pieces of data
d.src T Producer of data d
d.dst P(T ) Consumers of data d
ω(d) D 7→ R Communication cost of d

C T 7→ VMs Clustering

4.1
Contention on DaaS-based Cloud platforms

A common distribution pattern in workflows is the
fork-join mechanism. In such context, an initial task is
to send pieces of data to n independent tasks. After-
wards, those n tasks are sending back the results to a
final task. We assume here that the n pieces sent by
the initial tasks are different pieces of data of the same
size.

When scheduling such a DAG using DCP, the algo-
rithm takes action to achieve a high level of parallelism
and thus places most tasks on distinct nodes. How-
ever, when executing the resulting task placement on
a Cloud infrastructure, we see that communication be-
tween the first task and the DaaS (upload of n files to
the DaaS) and between the DaaS and the final task
(download of n files from the DaaS) drastically suffers
from contention. Fig. 3 shows that while DCP plans for
all transfers to be simultaneous, the network congestion
drastically reduces the performances of both upload to
the DaaS and download from the DaaS. This results in
transfer times about n times slower then predicted by
DCP.

This gap between the communication model under-
lying DCP and the reality of current distributed plat-
forms, in addition to the difficulty of handling the dy-
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Figure 2: Representation of a fork-join DAG with n = 5 independent jobs.
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Figure 3: Transfer times of 16 files from and to a DaaS:
(left to right) predicted by DCP, experimental for se-
quential transfers, experimental for parallel transfers.
Experiments were carried out using Grid’5000 testbed.
Used nodes were on the Sagittaire cluster and the DaaS
was a 10G chunk reserved on storage5k.

namic submission of workflows by users, explains why
such scheduling algorithms are not efficient for tasks
placement on Cloud platforms.

While other static scheduling algorithms have im-
proved on DCP in many aspects, communication mod-
elization is not among them. Algorithms like HEFT
or CPOP have the benefit of handling heterogeneous
platforms. However their design is based on the as-
sumption of a limited number of ressources and thus
do not match the cloud paradigm where new large in-
stances are always available. Focusing on DCP helps
us study the communication aspect of things without
getting in the trouble of dealing with specificities that
would not fit the cloud paradigm.

Algorithm 1 DCP static scheduling algorithm
C ← empty clustering . (one node per task)
compute BL and T L for each task using C
while ∃ unmarked dependency between tasks do

(u, v)← edge with the largest path length (most critical). Re-
solve ties by edge size (select largest).
C′ ← C.mergeClusters(u, v)
compute BL′ and T L′ for each task using C′

if DCP L(BL′, T L′) ≤ DCP L(BL, T L) then
(C, T L, BL)← (C′, T L′, BL′)

end if
mark (u, v)

end while
return C

4.2
Dissecting the network model underlying the

critical path computation

DCP relies on the computation of the critical path
and on the zeroing of critical dependencies (see Algo-
rithm 1). This critical path is determined through the
computation of the Bottom Level (BL) and Top Level
(TL) values for each task. Those values are used to
highlight the constraints from the DAG input to the
specified task and from this task to the DAG output.
In fact, those BL and TL computations account for
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a worst-case scenario with respect to communication
latency. This implies that the computation of those
values is based on an implicit communication model.

c(u, v) =

{
0 if C(u) = C(v)

ω(u→ v) otherwise
(1a)

T L(v) =


0 if v has no predecessor

max
u∈pred(v)

(T L(u) + ω(u) + c(u, v),

availT L(C, v))

(1b)

BL(u) =


ω(u) if u has no successor

ω(u) + max
v∈succ(u)

(c(u, v) + BL(v),

availBL(C, u))

(1c)

The critical path computation used in DCP static
scheduling algorithm is as shown in Eq. 1 (with u and
v tasks in a DAG of tasks – workflow –, ω a weighting
function on the tasks and data and C a linear clustering
of the DAG)
From those values we can compute other metrics:
• Dynamic Critical Path Length (Makespan):

DCPL = max
t∈T

(TL(t) + ω(t)) = max
t∈T

(BL(t))

• Absolute Earliest Start Time:
AEST (t) = TL(t)

• Absolute Latest Start Time:
ALST (t) = DCPL−BL(t)

• Path Length (equal to DCPL for critical tasks):
PL(t) = TL(t) + BL(t)

We see that these formulas do not consider the pos-
sible impact simultaneous transfers could have on one
another. In fact they disregard any form of contention.
At first it looks like it considers a complete clique net-
work where any pair of nodes can exchange data with-
out being affected by the rest of the network, but it
is in fact even stronger than that as any number of
transfers between the same two nodes can take place
at the same time without them having to share the
bandwidth.

While such a topology could have made sense when
dealing with small clusters, the gap with new dis-
tributed platforms is tremendous and explains the in-
capacity of DCP to efficiently predict communications.
This leads to poor performances of the resulting task
placements.

Part 5
DCP evolution for DaaS-based cloud

infrastructures

In the previous section, we discussed the behavior of
DCP and its inadequacy to efficiently schedule work-
flows on DaaS-based Cloud platforms. In this section
we will see how the models discussed in section 3 can
be used to improve DCP ability to schedule workflows
on modern platforms.

Task u

Task v

u∈e.src
v∉e.dst

u∉e.src
v∈e.dst

u∈e.src
v∈e.dst

Figure 4: Preview of the communications between two
tasks for a data-based workflow on a DaaS-based plat-
form (see Eq. 2).

5.1
A communication model for Cloud infrastructures

Using the unmodified structure of the DCP algorithm
(see Eq. 1), our objective is to use the platform and
workflow models developed in Section 3 to modify the
way communications affect workflow deployment.

In DCP equations (see Eq. 1), communications are
modeled by the c(u, v) formula. This is to be modified
in order to match our communication model.

c(u, v) = 0, if C(u) = C(v)

c(u, v) =
∑

d∈data
u∈d.src
v /∈d.dst

islocalC(d)=0

ω(d) (2a)

+
∑

d∈data
u∈d.src
v∈d.dst

ω(d) + max
d∈data
u∈d.src
v∈d.dst

ω(d) (2b)

+
∑

d∈data
u /∈d.src
v∈d.dst

islocalC(d,v)=0

ω(d) (2c)

The modification described in Eq. 2 involves the
computation of the worst case latency between tasks
depending on their placement. If tasks u and v are
placed on the same node, the communication cost be-
tween them is null (Eq. 2a). On the other hand, if u
and v are placed on different nodes, we have to con-
sider the upload time of all data produced by u and the
download time of all data required by v. The worst case
being when the tasks produced by u and required by
v are the last to be uploaded by u and the first to be
downloaded by v (Fig. 4).

In Eq. 2, the first sum (Eq. 2a) corresponds to the
upload by task u of all data not required by v. The sec-
ond line (Eq. 2b) corresponds to the interlaced upload
by task u and download by task v of all data produced
by u and consumed by v. Finally, the last sum (Eq. 2c)
corresponds to the download by task v of all required
data produced by tasks other than u. Those are also
visible in Fig. 4.

In the third sum of Eq. 2 (Eq. 2c) it is not necessary
to consider the download of data produced on the same
node. Similarly, in the first sum (Eq. 2a) we do not
consider the upload of data which are consumed locally
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(producer and consumers all on the same node). The
islocal predicate is computed as following.

islocalC(d, u) =

{
0, if C(d.src) = C(u)

1, otherwise
(3a)

islocalC(d) =
∏

v∈d.dst

islocalC(d, v) (3b)

This evaluation of the communication-induced de-
pendencies between two tasks corresponds to a worst-
case scenario. It is most likely that a specific ordering
of the communications could give us better results but,
as always in static scheduling, we put ourselves in the
worst-case scenario.

5.2
Modified top- and bottom-level computations

While DCP takes computation resources into account,
we also need to consider node-based networking re-
sources. If two tasks, with short computation time but
with large amount of data to upload, are placed on the
same node, the second task might be over before the
data produced by the first task have been sent to the
DaaS. The second task would therefore try to send data
using an already busy uplink. Keeping track of the
uplink and downlink availability is paramount when
scheduling multiple tasks on the same node. The mod-
ified formulas for critical path computation, account-
ing for each node network availability, are described in
Eq. 4 and graphically shown in Fig. 5.
Similarly to the way DCP deals with node avail-

ability, CPU (equivalent of node availability), uplink
and downlink availability are updated during the lin-
ear scheduling of tasks. Each time a task is placed, the
availability values of the concerned node, which are
used to determine deployment timings, are updated in
anticipation of the next task to be placed on this node.
Initially, all availability values (which can be seen as
time constraints on the task deployment) are initial-
ized to 0.

cup(u) =
∑

d∈data
u∈d.src

islocalC(d)=0

ω(d) (4a)

cdown(v) =
∑

d∈data
v∈d.dst

islocalC(d,v)=0

ω(d) (4b)

ctotal(u, v) =
∑

d∈data
u∈d.src
v /∈d.dst

islocalC(d)=0

ω(d) +
∑

d∈data
u∈d.src
v∈d.dst

ω(d)

+ max
d∈data
u∈d.src
v∈d.dst

ω(d) +
∑

d∈data
u /∈d.src
v∈d.dst

islocalC(d,v)=0

ω(d) (4c)

down

Task u

Task v

u

c own

c

TL+�+ctotal

availTL

availTL

availTL

�+ctotal+BL

�+ctotal+availBL

�+cup+availBL
�+availBL

down+cdown

up+ctotal

cpu

up

cpu

Figure 5: Preview of the critical path computation tak-
ing node constraints into account in DaaS-based plat-
forms (see Eq. 4).

T L(v) = max
u∈pred(v)

(T L(u) + ω(u) + ctotal(u, v),

avail
up
T L(C, u) + ctotal(u, v),

avail
down
T L (C, v) + cdown(v),

avail
cpu
T L (C, v)) (4d)

BL(u) = max
v∈succ(u)

(ctotal(u, v) + BL(v),

ctotal(u, v) + avail
down
BL (C, v),

cup(u) + avail
up
BL(C, u),

avail
cpu
BL (C, u)) + ω(u) (4e)

As previously mentioned, we retained the structure
of the DCP algorithm (Algorithm 1), to which we
added our tailor-made formulas to compute the criti-
cal path. This gave us a generic task placement scheme
which can deal with any DAG and which takes poten-
tial network congestion into account.

Part 6
Results and discussions

In the previous sections, we described a generic model
for DaaS-based platforms as well as a variant of DCP
that fits this model. In order to validate the rele-
vance of this clustering algorithm to deploy DAGs on
the Cloud, we are now going to compare it against
a fully distributed scheme (all tasks are deployed on
their own node, with no clustering) as well as against
DCP. This validation will also take into consideration
our DAG description model. We will consider two fork-
join cases which have the same description according
to the legacy representation (see Fig. 2) but for which
the new representation can help make more adequate
decisions. True values were obtained on a simulated
Cloud platform using SimGrid which has been shown
to efficiently model concurrency and link sharing in
large-scale networks [12].
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6.1
Comparison of clustering heuristics

Fig. 6 shows both predicted and experimental Gantt
charts obtained using different placement policies on
different platforms. DCP leads to a very high level
of communication parallelism to efficiently use many
nodes and achieve a low makespan. However, using
such a clustering on a simulated Cloud platform showed
that congestion limits the actual data parallelism, lead-
ing to a much longer makespan.
We also see that results obtained using our model are

very close to those simulated by SimGrid. This shows
that our model makes clustering decisions based on a
realistic approximation, leading to good results. The
lower level of parallelism given by our algorithm not
only reduces communication-induced latency but also
limits the number of nodes to deploy. Further results
also show that the different data distribution patterns
in single-data and multiple-data fork-join DAGs lead
to relevant clustering decisions.

6.2
Economical outcomes

While all deployments of a DAG, regardless of clus-
tering, correspond to the same tasks being executed
and therefore to the same amount of core-hours used,
changing the clustering can affect the deployment cost.
It is important to note that the main objective of static
clustering algorithms such as DCP is to reduce the
global makespan, assuming unlimited resources. In
a Cloud context, this translates to an assignment of
tasks to nodes, with a potentially very large number
of nodes deployed. In a context where nodes are billed
proportionally to the number of core-hours used, we
could hope that, as the same amount of computation
is achieved, the cost would roughly be the same, with
any difference being caused by constraints on the reser-
vation time (e.g. at least one hour).
However, these assumptions do not take into account

the time during which a node is retrieving data prior
to running a task or sending data after having run a
task. During this time, we have to pay for the node
even though we do not use its computing potential.
Avoiding network congestion and ensuring smooth data
transfers is a way of limiting this waste of CPU time.
Table 2 shows the number of nodes used, the makespan,
and the total deployment cost for our two models of
fork-join DAGs using different scheduling algorithms.
It is clearly visible that, in addition to reducing the
makespan of the DAG, using the right clustering algo-
rithm can help reduce deployment costs.

6.3
Computation to communication ratio

For our experiments, we used synthetic fork-join work-
flows where the computation time of each task was
equivalent to the transfer time of one piece of data
from/to the DaaS using the full bandwidth of the node.
This ratio between computation and transfer times
highlights congestion issues. In this case, single-node
clustering achieves good results, as parallelism rapidly
causes network congestion. With other ratios, we ob-
serve similar behaviors, with the DaaS-aware DCP be-
ing the fastest of all, only beaten on the cost aspect by
the very slow single-node approach.

6.4
Future work: cluster consolidation

While the absence of dependencies between some tasks
prevents both DCP and the DaaS-aware DCP from
merging them, doing so could have a positive ef-
fect on the cost while maintaining the lowest possi-
ble makespan. This step, called clustering consolida-
tion [10] is out of the scope of this paper. However,
further work should explore how to adapt existing al-
gorithms to our model.

Part 7
Conclusion

In this paper, we showed that the network topology
is a key factor in predicting communication patterns
and should therefore be considered by clustering al-
gorithms. By designing a generic network model, we
managed to improve the results of static scheduling
in the context of DaaS-based Cloud platforms. In
fact, the resulting clusters are both more efficient in
terms of makespan (primary objective) and in terms of
deployment cost compared to previous non-network-
aware clustering algorithms.

We expect to use those results as the first component
of an autonomous workflow manager. The next step is
to integrate the computed task packing into a Cloud
batch scheduler. With both components, we plan to
contribute to or to build a tool that would efficiently
deploy workflows on Cloud platforms and where the
generic platform model could easily be reconfigured to
adapt to changes in the platform paradigm.
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Figure 6: Comparison of the different clustering policies (Gantt charts and their associated makespan) for
multi-data fork-join DAG (n = 16). For each sub-figure, the X axis represents time (arbitrary units). Grey
rows represent cores. Boxes in those rows are, from top to bottom, downlink utilization, tasks execution and
uplink utilization.

Table 2: Cost and makespan details of different clustering policies for single-data and multi-data fork-join DAG.
DAG Algorithm #Nodes Makespan (t) Cost (core×t)

Single Data Fork-join,
as showcased in Fig. 2b,

with n = 16

One task per node 18 22.024 67.204
Single node 1 18.000 18.000

DCP 14 18.024 56.168
DaaS-aware DCP 2 13.012 20.012

Multiple Data Fork-join,
as showcased in Fig. 2c,

with n = 16

One task per node 18 37.024 82.204
Single node 1 18.000 18.000

DCP 14 33.803 70.156
DaaS-aware DCP 5 14.000 26.048
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organizations (see https://www.grid5000.fr). Plat-
form simulations were carried out using SimGrid [12].
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