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3. new features : extended study of the least mean square approach, error on just on term, understanding of pdf of error, new plots of PDF PDF2D, out to take into account analytic / implicit time integration 4. application to VOICE : where is the error, how bad is it, simple way to increase the accuracy (analytical method) or control the error (fft with filtering) 5. position of PoPe vs MMS or PDE net or L'oiseau : PoPe is fast, easy, exhaustive, non perturbative, etc... With PoPe, we are currently doing code verification throught analysis of the equations present in any simulations, equations forming the backbone of those simulations. Then we'll pass to model reduction...

PoPe method in a nutshell: decomposition onto a relevant basis plus an error

The Projection on Proper elements (PoPe) method [? ] is a code verification tool allowing to recover the equations that have generated a set of data. In terms of verification, this method is fundamentally different from classical ones, since it is based on simulations outputs, and it can be performed using simulations in any regime. Classic verification methods, instead, are based on specific code runs. This is the case of the code verification with the Method of Manufactured Solutions (MMS), which is carried out using a target analytical solution (see e.g. [? ], [? ]). This solution is usually not fully representative of typical outputs of numerical simulations. For example the target analytical solution is generally smooth in space and time with respect to the discretization while broad spectra of fluctuations appear in simulations with turbulence. Moreover, the verification method is applied generally in a simplified geometries, using simplified boundary conditions. The PoPe method allows a more generalized process of verification. In particular, PoPe can be used purely for the code verification, if the full set of equations implemented in the code is considered, or alternatively as a tool for model reduction, if the aim is to find the dominant operators in the model. Moreover, PoPe can also be understood as an "a posteriori" procedure of error checking.

In order to explain the method, we describe the application of PoPe to the following density equation extracted of a 3D plasma code (TOKAM3X [? ]), eq. ( 1) :

∂ t N = ∇ • (D N ∇ ⊥ N ) -∇ • (Γ b) -∇ • (N u E ) -∇ • (N u ion ∇B ) + S N (1) 
We can immediately rewrite (1) in a more compact form, using the "th" subscript for "theoretical", and naming {O i } th the five operators at the right hand side of (1):

{∂ t N } th = w i th {O i } th (2) 
where Einstein's convention on indexes has been used. Operators are listed in (3) for i ∈ [START_REF] Boris | A universal instability of many-dimensional oscillator systems[END_REF]5], and they are associated to five theoretical weights w i th listed in eq.(4):

{O i } th = { ∇ • (D N ∇ ⊥ N ), ∇ • (Γ b), ∇ • (N u E ) ∇ • (N u ion ∇B ), S N } (3) w th = [+1, -1, -1, -1, +1] (4) 
The first, necessary steps of the code verification with the PoPe method, are:

1. Measurement of {∂ t N } ef , the effective ("ef " subscript) time derivative computed with highly accurate finite differences from the outputs of a given code. In this example we use a fourth order centered derivative approach :

{∂ t N } ef (t) = 2 j=-2 c(j)N (t + j∆t) + O(∆t 4 ) (5) c(-2 : 2) = [+1, -8, 0, +8, -1]/(12∆t) (6) 
2. Computation of each of the operators in eq.( 1), labeled {O} i ol for i ∈ [1, 5], using highly accurate off-line ("ol" subscript) post-treatments. We can actually write:

{O i } th -{O i } ol {O i } th -{O i } ef (7) so that {O i } ol {O i } th compared to {O i } ef .
3. Linear projection of {∂ t N } ef onto {O} i ol , thus recovering the effective weights w i ef and an effective residual ef linearly independent of {O} i ol .

{∂ t N } ef = w i ef {O} i ol + ef (8) 
This latter projection can simply performed by solving the following linear system based on the least mean square algorithm:

A t A w ef = A t {∂ t N } ef (9) 
where the matrix A is defined as

A(p, i) ≡ {O(p) i } ol ( 10 
)
and it is of size P × I. Each column of the matrix A is the evaluation of the i th operator from the set of I operators in the tested equation. These evaluations are performed for P points labeled by the index p. P is defined by the discretization used to solve the equation with the code that we want to verify in the first place. Usually P I, so that a large number of points can be considered in order to reduce the statistical error in the estimation of w ef . The residual is then recovered by explicitly computing:

{∂ t N } ef -A w ef = ef (11) 
This procedure leads to the interpretation of the effective time derivative of a given code ({∂ t N } ef ) as the sum of weighted (by w i ef ) operators ({O} i ol ) plus a residual ( ef ) which has no linear dependency on the operators of the equations. Ideally, w ef = w th and ef = 0. This decomposition is relevant since effective weights define the nature of the equation, so they control the behavior of the system (theoretically and numerically). A simple error, such as the use of a diffusion coefficient two times higher than the one theoretically wanted, would immediately be identified by PoPe with w 1 ef = 2w i th , without necessarily impacting ef . The control of weights would be absolute if {O i } ef , operators effectively calculated by the code, were "exact". As we discretize solutions over a finite number of degrees of freedom, each of them having a finite accuracy, operators {O i } ef usually differ from theoretical expression of operators {O i } th . The theoretical expression of operators being not usually accessible, we do not compare {O i } ef to {O i } th but rather to {O i } ol , a set of operators computed off-line using a greater accuracy than for {O i } ef , as expressed in (7). This point is important to be able to associate the residual ef to an error in the code and not to an error in the verification process. Finally, using {O i } ol = {O i } th for simplification, we can introduce a more general definition of the effective residual ef , the total residual to ("to" subscript for "total") defined as :

to ≡ {∂ t N } ef -{∂ t N } th (12) = w i ef -w i th {O} i ol + ef (13) 
This total residual contains a part linearly dependent on the operators as seen in equation (13). Also, here we clearly identify δ i = w i ef -w i th as the error on weights of the equations. Nevertheless, using only (12) we do not need to solve any linear system to obtain to . 2 Strange attractor verification

The strange attractor model

The model we consider to present the Pope verification method is the simple model of a particle submitted to two electrostatic waves with opposite pulsation and identical wave vector. Alternatively it can be understood as the model for a compass in an alternating magnetic field and neglecting other fields. The phase space motion is thus two dimensional (2D) with one dimension for the position of the particle x and one for the momentum J.

The normalised evolution equations for dx/dt and dJ/dt are :

dx dt = J (14a) dJ dt = -2π B sin 2π(x + t) + sin 2π(x -t) -ν J (14b) 
The parameter B, the normalised electric potential of the electrostatic waves, is directly connected to the Chirikov overlap parameter [START_REF] Boris | A universal instability of many-dimensional oscillator systems[END_REF] 

σ C since the characteristic island width δ i is δ i = 2 √ B and the distance between the resonances is ∆ = 2 so that σ C = 2 √ B.
A fluid viscosity term governs the contraction of the phase space volume to zero. The trajectory of the system is presented in a standard fashion with stroboscopy at time interval 2, the period of the driving force, figure [START_REF] Boris | A universal instability of many-dimensional oscillator systems[END_REF].

The case of the strange attractor is chosen because it combines simplicity of the numerical integration and sensitivity to initial conditions that render verification slightly more challenging since any error, including numerical errors, governs an exponential separation between trajectories. The chosen numerical time stepping schemes are order 2 and order 4 Runge Kutta (RK2 and RK4 respectively). The corresponding slopes for order 2 and order 4 analysis are indicated by dash dot lines, respectively blue for order 2 and black for order 4. The dashed black line is indicative of the slope N 1 which fits the loss of accuracy when N is too large. .

Method of Manufactured Solution for the strange attractor

The standard verification is readily performed with a change in the model. The tested equation is chosen to be:

dJ dt = -sin t (15a)
for which the solution is known, J M (t) = cos(t) for initial conditions J = -1 at t = -π.

One can then compute the error E RK = max(|J RK (t) -J M (t)|) t where J RK is the value of J computed with the Runge Kutta scheme, and where we retain the largest error when during one period of time. Changing the time step h according to h = 2π/N with N = 2 n then allows one to check the accuracy of the implemented Runge Kutta scheme, figure (2). On can thus observe that the error behaves with the appropriate order until the number of steps is so large that the numerical noise, typically proportional to the number of steps N becomes larger than the error governed by the numerical scheme. Since sin(t) is comparable to the right hand side of Eq.(14b), one can thus state that this check is a verification of the code yielding the trajectories of the strange attractor. It is to be noticed however that there is a mismatch of a a factor 2π between the frequency of interest and that used for the MMS. In the present case, this has little impact on the conclusion. However, when the implementing the MMS test is more demanding it can happen that the MMS verification is not performed with the relevant parameters of the production runs. Another caveat is that the difference between the MMS case and the actual production version is so important that they correspond in practise to two different versions of the code, hence leading to issues related to the update of the MMS version and checking that the implementations of the numerical schemes are identical. 

PoPe verification scheme for the strange attractor

The PoPe verification is based on data mining using data of production runs. From the data it is possible to reconstruct values operators depending on the saves fields. In the case of the strange attractor the series of values of x k , J k and t k , where the index k identifies the number in a time series, hence x k = x(t k ) and J k = J(t k ). Provided the time series are saved with the same time step has that used by the numerical scheme, one can proceed to verification. Let us concentrate on Eq.(14b). Computing the various operators using the output data is straightforward fo the right hand side. For the time derivative, one has to rebuild the time derivative using various schemes. We have used here finite difference up to order 8. Similarly to the Runge Kutta integration these derivatives are checked by comparing the derivative of sin(t) to cos(t), figure (3). The measured errors E f d are observed to compare well with the expected orders until the number of operations is too large so that the numerical noise overwhelms the accuracy of the schemes.

Let Jo8 = dJ/dt| o8 be the time derivative of J reconstructed using the data with the finite difference scheme of order 8. Let RHS d be the computed right hand side using the data. One thus readily expects Jo8 ≈ RHS d . As can be observed on figure (4) LHS, the data is aligned on the diagonal with very little spread, hence a small residue R o8 = dJ/dt| o8 -RHS d . The latter, normalised by RHS d is plotted on figure (4) RHS. One can also notice that the error exhibits a point symmetry with respect to the origin, and, that there is an underlying structure of the error. The latter stems from a combination of the numerical error of the code generating the data and of the reconstruction scheme at the data mining stage. Provided the error of the latter is small with respect to the former, one then has determined an error attached to the code, and relevant of the considered production run. 

Residue of the order 2 Runge Kutta scheme

One can analyse the residue of the Runge Kutta scheme by considering the partial differential equation Eq.( 16)

dy dt = f (y) ( 16 
)
For the order 2 Runke Kutta, one first determines the intermediate point at t + h/2.

y(t + 1 2 t) = y(t) + h 2 f (y(t)) (17a) 
The Runge Kutta time step is then:

y(t + h) = y(t) + hf (y(t + 1 2 h)) (17b) 
y RK2 (t + h) = y(t) + h f (y(t)) + +∞ j=1 ( 1 2 h) j j! d j t f (y) = y(t) + h d dt y + 1 2 h d dt 2 y + 1 2 1 2 h 2 d dt 3 y + . . . (18a) 
This expression can be compared to the standard Taylor expansion:

y(t + h) = y(t) + +∞ j=1 h j j! d dt j y = y(t) + h d dt y + h 2 2 d dt 2 y + h 3 6 d dt 3 y + . . . (18b) 
The difference between the (18b) and (18a) is therefore:

y RK2 (t + h) -y(t + h) = - 1 24 h 3 d dt 3 y + . . . (18c) 
From this expression one can obtain the difference the time derivative reconstructed from the RK2 scheme and the exact value:

f (y RK2 (t + h)) -f (y(t + h)) = - 1 24 h 3 f (y) d dt 3 y + . . . ( 19 
)
dy dt RK2 - dy dt ≈ - 1 24 h 3 f (y) d dt 3 y (20)
3 Understanding the limits of numerical schemes and PoPe method

Considering recent developements and applications of PoPe onto not fully explicit numerical schemes, the constraint of computing each terms used within the PoPe method at a higher accuracy than in the code studied reveals to be sometimes a difficult point we study in this section. First we explore the impact of ∆t 0, focusing on the meaning of the order of a numerical scheme in such condition. Studying a 0D one-field fast vs slow dynamic model we show the nature of an equation can changed. Time scale separation is also studied in a 0D two-fields model where a fix point search is introduced instead of a classical implicit time integration approach.

Subresolution in simulations and verifications : ∆t 0

As described previously, PoPe relies on accurate computations of equation's operators and the time derivative of the unknown to recover the equations embedded in a set of data. This was achieved by using derivatives of higher order than the numerical scheme of a tested code. If the constraint on the accuracy of the off line computations can not be achieved, the error recovered by PoPe could either come from the code tested or from the verification / reduction procedure. Here we focus on the time derivative part of the problem. Going to high order for the time derivative is generally easy as PoPe analysis are performed after a simulation : one has then access to points in the "futur" and the "past" to perform a time derivative at a given time. Centered finite difference approaches can thus be used, without the constraint of derivatives to be causal in this context. Up to now, only codes using small ∆t compare to fast dynamics have be verified or reduced. Nevertheless, many simulations tools use implicit schemes or even analytic time integrations in order to used large integration time step without becoming unstable or losing accuracy. This section explores the impact of under resolution in the time dimension, focusing on ∆t 0 used in an implicit scheme, even when this scheme is developed under the hypothesis of ∆t → 0. It raises the question : when does error of order O(∆t) or O(∆t 2 ) become significant and change the system of equations we believe we solve ?

High frequency forcing term in a 0D one-field SOL model : Effective equations vs theoretical equations A simple 0D one-field Scrape Of Layer (SOL) model eq.( 22) is derived from an usual 1D model eq.( 21) for this study :

∂ t n(x, t) = -V cos(ωt)∂ x n + D∂ 2 x n -νn (21) 
This model include a high frequency operator, the advection V cos(ωt)∂ x n, and two low frequency operators, the diffusion D∂ 2

x n and the sink νn. Defining n(x, t) as k n k (t)e kx leads to :

∂ t n k (t) = (-kV cos(ωt) + k 2 D -ν) n k (t) (22) = L(t) n k (t)
L(t) is non linear with respect to t. In order to take into account the high frequency term, the integration time step ∆t would have to be chosen lower than ω -1 . Still, if one is only interested in an averaged response of n k using ∆t 0 is tempting. When approaching limits of a numerical model, one has to ask himself what error would be acceptable, if using a large ∆t is not breaking important physical properties, such as causality property.

Using the following general time discretization depending on two time steps, eq.( 23), we have access to explicit first order (α = 1), implicit first order (α = 0) and semi explicit -implicite second order (α = 1/2) schemes.

n k (t + ∆t) -n k (t) ∆t = α L(t) n k (t) +(1 -α) L(t + ∆t) n k (t + ∆t) n k (t + ∆t) = n k (t) 1 + ∆t α L(t) 1 -∆t (1 -α) L(t + ∆t) ( 23 
)
Then unrolling what time integration schemes do, for example an implicit scheme in eq. (24,25), we can determine expressions of the effective equation eq.( 26).

n(t + ∆t) = n(t) + ∆tL(t + ∆t) n(t + ∆t) (24) n(t + 2∆t) = n(t + ∆t) + ∆tL(t + 2∆t) n(t + 2∆t) = n(t) + ∆t(L(t + 2∆t) n(t + 2∆t) + L(t + ∆t) n(t + ∆t)) = n(t) + ∆t 2 i=1 L(t + i∆t) n(t + i∆t) (25) ∂ t n(t + ∆t) = n(t + 2∆t) -n(t) 2∆t = L(t + ∆t + ∆t/2) n(t + ∆t + ∆t/2) + O(∆t) (26) 
A simple Taylor's expansion shows a +∆t/2 time discrepancy into the futur between the actual equation solved by the code and the theoretical model, the system is then non causal. On Fig. 5, looking at the effective evolution of the system {∂ t n(t)} ef (plotted in red), the theoretical time derivative {∂ t n(t)} th (in green), the total residual to = {∂ t n(t)} ef -{∂ t n(t)} th (in blue) and the effective residual ef = {∂ t n(t)} ef -{∂ t n(t)} P o (in black) we recover the ∆t/2 discrepancy in simulation using the implicit scheme. When PoPe is performed on a list of operators taking into account this ∆t/2 time delay, the synchronism is recovered, see Fig. 6.

Figure 6: PoPe analysis of an implicit simulation. {partial t n(t)} ef (red) and {∂ t n(t)} th (green) are here synchronized because the theoretical model tested embedded the ∆t/2 time delay. Then to (blue) and ef (black) significantly decrease compared to Fig. 5. This time delay can then be understood in tow ways :

1. we can use only the theoretical equation in PoPe, we do not introduce any time delay, then residuals are important : PoPe diagnoses a poor solving.

2. we can test a more adequate equation, which is not physical as it is not causal, but take into account numerical approximation. PoPe would diagnose a better solving than previously with respect to this second model but this model is not the one we wanted to solve in the first place.

In terms of operators' weight, the introduction of a time delay leads to a sensible improvement when ∆t becomes high but still, the system loses track of the high frequency term behind a given value of ∆t ω -1 . On fig. 7, we plot the value of weights with respect to the integration time step. Red curves are obtained from explicit simulations, green from implicit, blue from semi explicit-implicit and black are theoretical values of weights. The red dashed line is extracted from a series of implicit simulations that have been analyzed with a time delay included in PoPe. We can see on the first window (left) that the value of the first weight for ∆t < 10 -2 is correct. Then, for 10 -2 < ∆t < .5 weights are oscillating as the sinus contribution is only partially recovered because of stroboscopic effects. For ∆t > .5 no contribution is recovered at all. The second window zoom on the transition between "correct answer" and "stroboscopic regime". Here one can see an improvement of the detection of the sinus when a time delay is introduced in the model tested (red dash) but still this improvement is not valid on a large range of ∆t as the stroboscopic regime is still reached for a ∆t only three times higher than previously. One the third window (right), one can see that the slow scale dynamic is well recovered up to ∆t = 1.

In PoPe it is important to project on a list of operators that at least contains the right subset of operators to reconstruct the measured evolution. If one operator is missing, some information is forced onto other operators or left into the residual if this information is orthogonal to other operators. With PoPe we have an effective way to discover actual equations and thus find out any bias introduced by numerical schemes when large ∆t are used, leading in the present example to a time delay introduced by the leading error term in O(∆t).

Fast dynamic vs slow dynamic in a 0D two-fields SOL model : How to take into account an equilibrium hypothesis A 0D two-fields SOL model based on the communication of two tanks is here used to investigate equilibrium hypothesis.

∂ t nc(t) = -ν 1 nc(t) + σns(t) + S (27) ∂ t ns(t) = +ν 1 nc(t) -σns(t) -ν 2 ns(t) (28) 
This model include a high frequency with ν 2 t 1 and a low frequency with ν 1 t 1. Searching for analytical equilibrium we define nc ns and ns nc the solution of nc (respectively ns) at equilibrium with ns (respectively nc) :

∂ t nc(t) = 0 ⇔ nc ns = (σns + S)/ν 1 (29) ∂ t ns(t) = 0 ⇔ ns nc = (ν 1 nc)/(σ + ν 2 ) (30) 
One can define as well nc eq and ns eq , equilibra reached by nc and ns for t → ∞ :

nc eq = S/ν 2 (σ + ν 2 )/ν 1 (31) ns eq = S/ν 2 (32) 
Using the following general time discretization depending on two time steps, eq.(33,34), we have again access to explicit first order (α = 1), implicit first order (α = 0) and semi explicit -implicit second order (α = 1/2) schemes :

nc(t + ∆t) -nc(t) ∆t = (33) -ν 1 ( α nc(t + ∆t) + (1 -α) nc(t) ) + σ ( α ns(t + ∆t) + (1 -α) ns(t) ) + S ns(t + ∆t) -ns(t) ∆t = (34) + ν 1 ( α nc(t + ∆t) + (1 -α) nc(t) ) -σ ( α ns(t + ∆t) + (1 -α) ns(t) ) -ν 2 ( α ns(t + ∆t) + (1 -α) ns(t) )
The following matrix formulation is used to perform numerical simulation :

A lef t nc(t + ∆t) ns(t + ∆t) = A right nc(t) ns(t) + ∆t S 0 (35) nc(t + ∆t) ns(t + ∆t) = (A -1 right A lef t ) -1 ( nc(t) ns(t) + A -1 right ∆t S 0 ) (36) 
With A lef t and A right defined using P a matrix containing physical parameters and I the identity matrix :

P = ν 1 -σ -ν 1 σ + ν 2 A lef t = I + ∆tP A right = I -(1 -α)∆tP
An other implicit scheme is introduced in order to perform multiple implicit iteriations in a unique step. Given the following intermediated variables :

A = (A -1 right A lef t ) -1 B = A -1 right (37) 
The system eq. ( 36) is the rewritten as :

nc(t + ∆t) ns(t + ∆t) = A( nc(t) ns(t) + B ∆t S 0 ) (38) 
The following recurrence relation is then found :

nc(t + n∆t) ns(t + n∆t) = A n nc(t) ns(t) + n i=1 A i B ∆t S 0 (39) 
A log-log plot, Fig. 8, is well suited to see both fast and slow response for ν 2 = 10 5 , ν 1 = 1, σ = 1 and S = 1. The variable ns (green curve) converge at t eq ns = 2 × 10 -4 toward ns nc (blue) the equilibrium of ns with respect to nc. The variable nc converged toward nc ns and nc eq at the same time, at about t eq nc = 2. Both convergence regimes are exponential but the ratio of their rate is equal to ν 2 /ν 1 = 10 5 which allows the strong time scale separation of t eq nc /t eq ns = 10 5 . At very small ∆t all schemes are stable and converged toward a unique solution, Fig. 9 top left window. When ∆t increases, we can see that the error of the explicit scheme tends to make the explicit solution ( ) to converge faster toward equilibrium than the others approaches. The explicit is not stable anymore for ∆t = 1.28 × 10 -5 while the error of the semi explicit-implicit approach remains small (o) and both implicit methods tends to answer with a small inertia. The semi explicit-implicit approach, while stable, tends to oscillate without exploding for ∆t > 1.28 × 10 -5 . For low values of ns or nc oscillations can lead to negative values, values which are not acceptable as not physical. Both implicit method are still stable and do not oscillate but inertia still increases when ∆t increases. For intermediate ∆t, higher than t eq ns and smaller than t eq nc /30 we can see the regular implicit method (o) tends toward the equilibrium in two steps (the initial condition ns = 10 -3 at t = 0 can not be plot on a log-log plot). Some inertia remains when ns(t = 0) ns nc or ns(t = 0) ns nc . On the contrary, the 4 embedded implicit steps approach bypass those intermediate steps which are not physical and it reaches equilibrium in only 1 iteration. The error is exactly the same than a solution computed with the regular implicit method but with ∆t/4 when comparing solutions at t = ∆t.

Figure 10: Solutions computed with + implicit, × 4 embedded implicit steps. ∆t = 10 -3 up to ∆t = 64 × 10 -3 . The 4 embedded implicit steps method converges in one iteration while the regular implicit method always needs 2 iterations.

The n = 4 embedded steps implicit approach has an obvious drawback which is the condition number of the linear system one has to solve, see Fig. 11. A 2 embedded steps approach exhibits a smaller condition number than an implicit approach for ∆t = 10 -4 and also increases the convergence rate towards equilibrum. Anyway, this search of a fix point using an iterative approach to bypass inertia of an implicit method could be performed using any other fix point search algorithm.

Figure 11: Condition number of the linear system solved using an implicit approach (red), semi explicit-implicit (green), explicit even if not used this way (blue), 2 embedded implicit steps (black dashed) and 4 embedded implicit steps.

Figure 1 :

 1 Figure 1: Poincaré section of the strange attractor generated by Eqs.(14) with σ C = 3.5, hence B ≈ 3.0625, and ν = 0.2 .

Figure 2 :

 2 Figure 2: Error E RK obtained with the Manufactured Method Solution for the Runga Kutta schemes, order 2 blue open circles and order 4 black open squares. The corresponding slopes for order 2 and order 4 analysis are indicated by dash dot lines, respectively blue for order 2 and black for order 4. The dashed black line is indicative of the slope N 1 which fits the loss of accuracy when N is too large..

Figure 3 :

 3 Figure 3: Error E f d obtained by comparing the derivative of sin(t) to cos(t) obtained with finite difference, order 2 blue open circles and order 4 black open squares, order 6 blue full circles and order 8, full black squares. The theoretical decay rates are also indicated dash dot and dashed lines. The dashed black line with positive slope N 1 fits the loss of accuracy when N is too large..

Figure 4 :

 4 Figure 4: Left Hand Side (LHS) figure: Derivative dJ/dt reconstructed with the 8th order finite difference scheme versus the right hand side of Eq.(14b). Right Hand side (RHS) figure: the order 8 residue, namely dJ/dt minus the RHS d value, normalised by RHS d . One can notice the antisymmetric pattern .

Figure 5 :

 5 Figure 5: PoPe analysis of an implicit simulation. {partial t n(t)} ef (red) and {∂ t n(t)} th (green) are not synchronized. The effective derivative being in advance in time with respect to the theoretical one test in PoPe. Then to (blue) and ef (black) are far from being null. The high frequency is defined by ω = 21π.

Figure 7 :

 7 Figure 7: Weights recovered by PoPe for with different numerical schemes and different ∆t. Red : explicit simulations; green : implicit; blue : semi implicit; black : theoretical values of weights. The red dashed line is a series of implicit simulations analysed with a time delay included in PoPe. Red, green and blue curves are mainly superposed. On the left, weight of the forcing operator. In the center, zoom of the weight of the forcing operator. On the right, weight of the dissipative and crook operators as both operators are proportional to n k (t).

Figure 8 :

 8 Figure 8: Behavior of the system eq.(33,34) for ν 2 = 10 5 , ν 1 = 1, σ = 1 and S = 1.

Figure 9 :

 9 Figure 9: Solutions computed with + implicit, explicit, o semi explicit-implicit, × embedded 4 implicit steps. ∆t = 10 -7 , 6.4 × 10 -6 , 1.28 × 10 -5 , 2.56 × 10 -5

Acknowledgements

This work has been carried out thanks to the support of the A*MIDEX project (number ANR-11-IDEX-0001-02) funded by the "Investissements d'Avenir" French Government program, managed by the French National Research Agency (ANR). This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission