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Asymptotic behavior in chemical reaction-diffusion systems

with boundary equilibria

Michel Pierre∗, Takashi Suzuki†, Haruki Umakoshi‡

December 6, 2017

Abstract

We consider the asymptotic behavior for large time of solutions to reaction-diffusion systems modeling
reversible chemical reactions. We focus on the case where multiple equilibria exist. In this case, due to
the existence of so-called ”boundary equilibria”, the analysis of the asymptotic behavior is not obvious.
The solution is understood in a weak sense as a limit of adequate approximate solutions. We prove that
this solution converges in L1 toward an equilibrium as time goes to infinity and that the convergence is
exponential if the limit is strictly positive.

Keywords. reaction diffusion systems, asymptotic behavior of solution, convergence to the equilibrium.
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1 Introduction and main results

The purpose of our work is to analyze the asymptotic behavior of the global solutions for reaction-diffusion
systems arising in reversible chemical kinetics and with multiple equilibria. We consider the following
reversible reaction process for a set of chemical species Ai (i = 1, ..., n)

α1A1 + ...+ αnAn 
 β1A1 + ...+ βnAn.

We assume that this takes place in a bounded regular domain Ω ⊂ RN with spatial diffusion phenomena.
According to the mass action law for the reactive terms and to Fick’s law for the diffusion (see e.g. [1]), the
concentrations ui = ui(t, x) will be assumed to satisfy the following reaction diffusion system for i = 1, ..., n
and for all T ∈ (0,∞) ∂tui − di∆ui = (βi − αi)(kf

∏n
j=1 u

αj
j − kr

∏n
j=1 u

βj
j ) in QT := Ω× (0, T ),

∂νui(x, t) = 0 on ΓT := ∂Ω× (0, T ),
ui(x, 0) = ui0(x) ≥ 0 in Ω,

(1)

where ∂ν denotes the exterior normal derivative to ∂Ω, kf , kr ∈ (0,∞) and αi, βi are nonnegative integers.
Actually we will more generally assume that αi, βi ∈ {0, 1} ∪ [2,∞) (so that the nonlinear reactive function
is still of class C2). We denote

I := {i ∈ {1, ..., n};αi − βi > 0}, J := {j ∈ {1, ..., n};αj − βj < 0}, (2)
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and we naturally assume I 6= ∅, J 6= ∅, I ∪ J = {1, ..., n}.
We are interested here in the asymptotic behavior as t → +∞ of the global solutions to this system.

However, the question of existence of global solutions is delicate and we need to recall some facts. First, let
us introduce the standard approximate system where 1 ≤ i ≤ n and ε ∈ (0, 1)

∂tu
ε
i − di∆uεi = f εi (u

ε) in QT ,
∂νu

ε
i = 0 on ΓT ,

uεi(·, 0) = uεi0 ≥ 0 in Ω,
(3)

{
f εi (u) = fi(u)

1+ε
∑n
j=1 |fj(u)| , u

ε
i0 = inf{ui0, ε−1}, fi(u) := (βi − αi)F (u),

F (u) := kf
∏n
j=1 u

αj
j − kr

∏n
j=1 u

βj
j .

(4)

Notice that f ε = (f ε1, ..., f
ε
n) is locally Lipschitz continuous, quasi-positive and uniformly bounded by 1/ε.

By standard arguments, existence and uniqueness of a classical nonnegative solution uε to (3) holds for all
T > 0.

It is proved in [13] that uε converges as ε→ 0 (up to a subsequence) to a so-called renormalized solution to
(1). Let us recall the main facts proved in [13] and that we will use in this paper. For this, let us introduce :

Li(s) := s(log s−1+µi)+e−µi ≥ 0 for all s ∈ [0,∞), µi := [log kf − log kr]/[n(αi−βi)], i = 1, ..., n, (5)

and for all r ∈ (0,∞), let Tr ∈ C2([0,∞); [0,∞)) with{
0 ≤ T ′r(s) ≤ 1, T ′′r (s) ≤ 0 for all s ∈ [0,∞),
Tr(s) = s for s ∈ [0, r], T ′r(s) = 0 for s ∈ [2r,∞).

(6)

Proposition 1.1 Assume that u0 = (u01, ..., u0n) belongs to L1(Ω)n and satisfies for all i = 1, ..., n,

ui0(x) ≥ 0 a.e.x ∈ Ω, and

∫
Ω
ui0| log ui0| <∞.

Then, along a subsequence as ε ↓ 0 and for all i = 1, ..., n, T ∈ (0,∞)

uεi → ui a.e. in Q∞ and in L1(QT ), ∇
√
uεi → ∇

√
ui weakly in L

2(QT ). (7)

Moreover, the limit u = (u1, ..., un) satisfies the following properties:
(I) (entropy inequality){

ui, ui log ui ∈ L∞
(
0,∞;L1(Ω)

)
,
√
ui ∈ L2

(
0,∞;H1(Ω)

)
, and a.e.t,∫

Ω

∑n
i=1 Li(ui(t)) +

∫ t
0

∫
Ω[
∑n

i=1 di
|∇ui|2
ui
−
∑n

i=1 fi(u)[µi + log(ui)] ≤
∫

Ω

∑n
i=1 Li(ui0).

(8)

(II) (a renormalized property) For vi := ui + η
∑

j 6=i uj , η ∈ (0, 1],{
∂tTr(vi)− di∆Tr(vi) = G1 +G2 +∇ ·G3,
∂νTr(vi) = 0 on ∂Ω, Tr(vi)(0) = Tr(vi0), vi0 := ui0 + η

∑
j 6=i uj0 ,

(9)

where
G1 := T ′r(vi)[fi(u) + η

∑
j 6=i fj(u)] ∈ L∞(Q∞),

G2 := −η
∑

j 6=i(dj − di)T ′′r (vi)∇vi∇uj − T ′′r (vi)|∇vi|2 ∈ L1
(
0,∞;L1(Ω)

)
,

G3 := η
∑

j 6=i(dj − di)T ′r(vi)∇uj ∈ L2
(
0,∞;L2(Ω)

)
.

(10)
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We will come back to this proposition with more comments on its meaning and on its proof (see the beginning
of Section 2 ). But let us continue with the main purpose of this paper. Let us define the equilibrium set
associated with u0 ∈ L1(Ω)+n and which contains the expected asymptotic limits. Note that they are
constant functions.

Eu0 := {e = (e1, ..., en) ∈ [0,∞)n; e satisfies (E1) and (E2)},
(E1) kf

∏
i e
αi
i − kr

∏
i e
βi
i = 0,

(E2) ei
αi−βi +

ej
βj−αj = Ai +Bj , Ai := ui0

αi−βi , ∀ i ∈ I, Bj :=
uj0

βj−αj , ∀ j ∈ J,
(11)

where for v ∈ L1(Ω), we denote v := −
∫

Ω v = |Ω|−1
∫

Ω v.

The main result of this paper is the following.

Theorem 1.2 Under the assumptions of Proposition 1.1, there exists u∞ ∈ Eu0 such that the solution
u(t) = (u1(t), ..., un(t)) satisfies

u(t)→ u∞ in L1(Ω)n as t→ +∞. (12)

If moreover u∞ ∈ (0,∞)n, then the convergence is exponential: there exist C, λ ∈ (0,∞) such that

‖u(t)− u∞‖L1(Ω)n ≤ Ce−λt.

Remark 1.3 The main interest of this result is that it applies to systems with boundary equilibria, that
is when Eu0 is not reduced to a single point in (0,∞)n and contains equilibria e whose components ei do
vanish for some i. It says moreover that, if for a given u0 the limit u∞ ∈ (0,∞)n, then the convergence is
exponential even if Eu0 contains a boundary equilibrium. The convergence together with the exponential
rate is well-known for the associated ODE system (see e.g. [14]), but it is quite more delicate for the full
PDE system.

It is known for the systems considered here and more generally for so-called complex balanced systems,
that there exists a unique element of Eu0 belonging to (0,∞)n for all u0 ∈ L1(Ω)+n with positive initial mass
(i.e. with mini∈I Ai + minj∈J Bj > 0, see [16]). For a subclass of these systems, Eu0 may even be reduced to
this only positive equilibrium for all such u0 with positive initial mass. Exponential convergence has been
proved for such kinds of systems, first for some particular nonlinearities, then for general ones, see [7], [8],
[11], [21], [12], [10].

Among the systems (1) considered here, Eu0 is reduced to its positive equilibrium for positive initial
masses when chemical species are ”separated”

α1A1 + ...αmAm 
 βm+1Am+1 + ...+ βnAn. (13)

This means there exists m ∈ {1, ..., n} such that αj = 0, βi = 0, j = m + 1, ..., n, i = 1, ...,m. Exponential
convergence towards the positive equilibrium then holds (see [21], [12], [10]).

It may now happen that Eu0 is reduced to its only positive equilibrium for some u0 with initial mass,
but not all. It is then interesting to find conditions on u0 so that this property holds. This is the purpose
of Proposition 1.4 below. It may also happen that u∞ ∈ (0,∞)n while Eu0 contains also a boundary
equilibrium (see Remark 1.5). Theorem 1.2 then states that the convergence is again exponential. We also
refer to [12], [10] for results on the asymptotic behavior of some specific systems with boundary equilibria,
including models for more than two chemical reactions.

The analysis of the asymptotic behavior of global-in-time solutions for system (1) is mainly studied by
the entropy method introduced and widely exploited in [7], [8] and then extended in the references [11],
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[21], [12], [10]. Here, the proof does also exploit the entropy estimates, but is different and consists in the
following steps.

1) We prove that the trajectories t→ u(t) are relatively compact in L1(Ω)n. This part is strongly based

on the study of the compactness of the trajectories of t→ wi,r(t) := Tr

(
ui(t) + η

∑
j 6=i uj(t)

)
for η ∈ (0, 1)

small and where Tr(·) : [0,∞)→ [0,∞) are usual regularizations of the truncations s ∈ [0,∞)→ min{s, r}.
Letting r → +∞ and η → 0 carries the compactness of these truncated trajectories, valid for all r, η, over
to u(t) itself. Similar techniques were also used in [20] to study the asymptotic behavior in the case of
nonhomogeneous boundary conditions. Here we use also some of the renormalized properties of u proved in
[13].

This first step requires only part of the structure of System (1) and could be extended to quite more
general systems.

2) Next we prove the convergence in C
(
[0, T ];L1(Ω)

)
as tm → +∞ of the translated functions τ ∈

[0, T ]→ wi,r(tm + τ) where wi,r(tm) converges in L1(Ω). Again, this property, valid for all r, η, carries over
to τ → um(tm+τ) as well. Together with the estimates coming from the decrease of entropy, we deduce that
all L1(Ω)n–limit points are constant functions and that the limit points are unique. Whence the asymptotic
convergence in L1(Ω)n.

3) Finally, coupling with previous approaches, we recover that, when the limit u∞ in (12) is positive, then
the asymptotic convergence is exponential, this even if Eu0 contains boundary equilibria. This is essentially
a consequence of Lemma 2.9.

When the solution is uniformly bounded (i.e. supt ‖u(t)‖L∞ < +∞), one can prove that the asymptotic
limit is positive as soon as ui0 > 0 for all i = 1, ...n, and the convergence is therefore exponential. This
is probably true in general but this does not seem easily extendable to very weak solutions with so poor
regularity as those of Proposition 1.1 (see Section 3 and Remark 3.1.)

We can however state a sufficient condition on the data u0 so that Eu0 be reduced to its unique positive
equilibrium. Let us define for all i = 1, ..., n, σi := min{αi, βi} and K := {k ∈ {1, ..., n};σk > 0}. Then, the
function F may be rewritten

F (X) =
(
Πk∈KX

σk
k

)
H(X), H(X) := kfΠi∈IX

αi−βi
i − krΠj∈JX

βj−αj
j , (14)

where I, J were defined in (2). Let us also denote for u0 ∈ L1(Ω)+n

Ai :=
ui0

αi − βi
, ∀ i ∈ I, Bj :=

uj0
βj − αj

, ∀ j ∈ J.

If I ∩K = ∅ (resp. J ∩K = ∅), we set mini∈I∩K Ai := +∞ (resp. minj∈J∩K Bj := +∞). Note that, in the
separate case (13), K = ∅ so that mini∈I∩K Ai = +∞ = minj∈J∩K Bj .

Proposition 1.4 Let u0 ∈ L1(Ω)+n. In addition to the assumptions of Theorem 1.2, suppose that

min
i∈I

Ai < min
i∈I∩K

Ai, min
j∈J

Bj < min
j∈J∩K

Bj , min
i∈I

Ai + min
j∈J

Bj > 0. (15)

Then, Eu0 has no boundary equilibrium, i.e. Eu0 = {Z}, Z ∈ (0,∞)n, H(Z) = 0 and u(t) converges expo-
nentially to Z in L1(Ω)n.

Remark 1.5 As already noticed, the assumption (15) holds in the separate case (13). But it holds in many
more situations like the following elementary one (given as an example)

α1A1 +A2 
 β1A1 +A3, α1 > β1,
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when 0 < (α1 − β1)u20 < u10. On the other hand, when 0 < u10 ≤ (α1 − β1)u20, then Eu0 contains 2
elements:

Eu0 =
{(

0 , u20 − (α1 − β1)−1u10 , (α1 − β1)−1u10 + u30

)
, Z

}
where Z ∈ (0,∞)3.

2 Proof of Theorem 1.2

Preliminary remarks. Let us first make some comments on Proposition 1.1 which is proved in [13]. Note
that the entropy inequality (8) can be directly proved for the solution uε of the approximate problem (3).
For this we use

∂t

∫
Ω
Li(u

ε
i(t)) =

∫
Ω

(log uεi + µi)∂tu
ε
i =

∫
Ω

(log uεi + µi)[di∆u
ε
i + f εi (u

ε)]. (16)

Then, after an integration by parts for the term with ∆uεi , we sum over i to get the estimate (8) with uε

in place of u. Then, as proved in [13], this is preserved for the limit u of uε as ε → 0 along an adequate
subsequence. The point is that (recall the definitions of F, µi in (4), (5) )∑

i

[log uεi(t) + µi]f
ε
i (u

ε(t)) = −
[
1 + ε

∑
j

|fj(uε)|
]−1 [

log kfΠi(u
ε
i)
αi − log krΠi(u

ε
i)
βi
]
F ≤ 0. (17)

This implies the following estimates

sup
t

∫
Ω
uεi(t) + uεi(t)| log uεi(t)|,

∫
Q∞

|∇
√
uεi |

2,

∫
Q∞

[
log kfΠi(u

ε
i)
αi − log krΠi(u

ε
i)
βi
]
F ≤ C, (18)

with C ∈ (0,+∞) independent of ε. This is strongly used in [13] to prove the convergence of uε a.e. and in
L1
loc([0,∞);L1 (Ω)). Actually, by using known a priori L2-estimates on uεi , we could show as in [19] that the

convergence also holds in L2
loc

(
[0,∞);L2(Ω)

)
. The estimates (18) are preserved at the limit for u by using

Fatou’s lemma for the first and the third and by weak L2-convergence of ∇uεi for the second one. Thus

ess sup
t

∫
Ω
ui(t) + ui(t)| log ui(t)|,

∫
Q∞

|∇
√
ui|2,

∫
Q∞

[
log kfΠi(ui)

αi − log krΠi(ui)
βi
]
F < +∞. (19)

We deduce from the second estimate that, ∇uiχ[ui≤2r] is bounded in L2
(
0,∞;L2(Ω)

)
for all r ∈ (0,∞) .

Indeed,

+∞ > C ≥
∫ +∞

0

∫
Ω

|∇ui|2

ui
≥
∫ +∞

0

∫
[ui≤2r]

[∇ui|2

2r
. (20)

As a consequence, since vi = ui + η
∑

j 6=i uj ,∇Tr(vi) = T ′r(ui + η
∑

j 6=i uj)
(
∇ui + η

∑
j 6=i∇uj

)
,∫ +∞

0

∫
Ω
|∇Tr(vi)|2 ≤

∫ +∞

0

∫
[ui≤2r]

2|∇ui|2 +
∑
j 6=i

∫ +∞

0

∫
[uj≤2r/η]

2nη2|∇uj |2 ≤ C(r, η) < +∞. (21)

The L1-estimate on G2 and the L2-estimate on G3 in (10) of Proposition 1.1 follow. The L∞-estimate on
G1 is obvious by the definition of Tr and the local boundedness of the fi.

Next the equation (9) has to be understood in a variational sense: for all ψ ∈ C∞
(
[0,∞)× Ω

)
and all

T ∈ (0,∞)∫
Ω
Tr(vi)(T )ψ(T )− Tr(vi)(0)ψ(0) +

∫
QT

−Tr(vi)∂tψ + di∇Tr(vi)∇ψ =

∫
QT

[G1 +G2 +∇ ·G3]ψ. (22)
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We will exploit quite a lot this identity which is a consequence of the fact that the limit u is a so-called
renormalized solution of (1) as defined in [13], Definition 1. In order to obtain it, we choose ξ(u) :=
Tr(ui + η

∑
j 6=i uj), b ≡ 0, g ≡ 0, Ai = diI in this definition.

The identity (22) can also be written in terms of the heat semigroup (Sdi(t))t≥0 with homogeneous

Neumann boundary conditions on L1(Ω) (see e.g. the appendix in [2] for the equivalence of definitions). We
can write,

Tr(vi(t)) = Sdi(t)Tr(vi0) +

∫ t

0
Sdi(t− s)[G1(s) +G2(s)]ds+ w3(t), vi0 := ui0 + η

∑
j 6=i

uj0, (23)

and w3 is the variational solution of (see e.g. [6], Chapter XVIII for more details)
w3 ∈ C

(
[0,∞);L2(Ω)

)
∩ L2

(
0,∞;H1(Ω)

)
,

∂tw3 − di∆w3 = ∇ ·G3 ∈ L2
(
0,∞;H−1(Ω)

)
,

∂νw3 = 0 on Σ∞, w3(0) = 0.
(24)

Let us recall some useful properties of this semigroup that we will use later (see e.g. Lemma 1.3 in [22]):
‖Sdi(t)w‖Lp(Ω) ≤ ‖w‖Lp(Ω), ∀ p ∈ [1,∞], t ≥ 0, w ∈ Lp(Ω),

‖Sdi(t)w − −
∫

Ωw‖L1(Ω) ≤ Ce−λt‖w‖L1(Ω) for some C, λ ∈ (0,∞),

‖Sdi(t)[w − −
∫

Ωw]‖Cα(Ω) ≤ C(1 + t−β)e−λt‖w − −
∫

Ωw‖L∞(Ω) for some α, β ∈ (0, 1), C, λ ∈ (0,∞).

(25)

Note also that [t → Tr(vi(t))] ∈ C
(
[0,∞);L1(Ω)

)
(according for instance to (23), (25) ). One can actually

deduce that u ∈ C
(
[0,∞);L1(Ω)n

)
: this is checked below in Lemma 2.5.

Note finally that if supε∈(0,1) ‖F (uε)‖L1(QT ) < +∞ for all T > 0, or even if F (u) ∈ L1(QT ) for all T > 0,

then u is a weak solution of (1), that is ui(t) = Sdi(t)ui0 +
∫ t

0 Sdi(t−s)fi(u(s))ds for all t ∈ [0,∞), i = 1, ..., n,
see [17], [18], [13]. This L1-estimate does hold if F is at most quadratic (see e.g. [9]). In some cases, classical
global solutions may even be obtained (see [15], [3], [4]), but it is an open problem for the general system
(1).
End of preliminary remarks.

Let us prepare the proof of Theorem 1.2 by several lemmas.

Lemma 2.1 For all r ∈ (0,∞), η ∈ (0, 1), the trajectory {Tr
(
vi(t)

)
, t ≥ 0} is relatively compact in L1(Ω).

Remark 2.2 A subset F ⊂ L1(Ω) is said to be relatively compact, if its closure is compact. It is well-known
that it is equivalent to saying that, from any sequence in F , one can extract a subsequence which converges
in L1(Ω). It is also equivalent to saying that F is precompact, which means that, for all ε > 0, there exists
a finite number of functions fi ∈ L1(Ω), i = 1, ..., Nε such that F ⊂ ∪Nεi=1B(fi, ε), where B(fi, ε) is the open
ball centered at fi and of radius ε in L1(Ω).

Proof of Lemma 2.1. Let us introduce the variational solutions τ 7→ wTj (τ), j = 1, 2, 3 on [0,∞) of{
∂τw

T
j − di∆wTj = G1(T + ·), G2(T + ·), respectively ∇ ·G3(T + ·),

∂νw
T
j = 0 on Σ∞, w

T
j (0) = 0.

(26)

When T = 0, we will write w0
j = wj , j = 1, 2, 3 (which is compatible with (24) ). We then have

wj(t) = Sdi(t− T )wj(T ) + wTj (t− T ) for all t ≥ T ≥ 0. (27)

Tr
(
vi(t)

)
= Sdi(t)Tr(vi0) + w1(t) + w2(t) + w3(t) for all t ∈ [0,∞). (28)

See (23), (26) for this last formula.
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Goal 2.3 We will show that, as t→ +∞,

• w2(t) has a limit in L1(Ω).

• w3(t) has a limit in L2(Ω) and therefore in L1(Ω).

• {w1(t); t ≥ 0} is relatively compact in L∞(Ω) and therefore in L1(Ω).

Since Sdi(t)Tr(vi,0) converges to −
∫

Ω Tr(vi,0) in L1(Ω) as t → +∞ (see (25)), and according to (28), the
compactness property announced in the Lemma 2.1 will follow.

Study of w2. From the definition of wT2 , we have for all τ ∈ [0,∞)

‖wT2 (τ)‖L1(Ω) ≤
∫ τ

0
‖G2(T + s)‖L1(Ω)ds =

∫ T+τ

T
‖G2(s)‖L1(Ω)ds ≤

∫ ∞
T
‖G2(s)‖L1(Ω)ds. (29)

Thus, using (27), we deduce for 0 ≤ T ≤ t ≤ t+ h

‖w2(t+ h)− w2(t)‖L1(Ω) ≤ ‖Sdi(t+ h− T )w2(T )− Sdi(t− T )w2(T )‖L1(Ω) + 2

∫ ∞
T
‖G2(s)‖L1(Ω)ds.

But, we know that Sdi(s)w2(T ) converges as s→ +∞ to −
∫

Ωw2(T ) in L1(Ω) (see (25 )). Thus, the previous
inequality implies

lim sup
t,t+h→+∞

‖w2(t+ h)− w2(t)‖L1(Ω) ≤ 2

∫ ∞
T
‖G2(s)‖L1(Ω)ds, for all T > 0.

As a consequence, since G2 ∈ L1
(
0,∞;L1(Ω)

)
, w2(t) has a limit in L1(Ω) as t→ +∞.

Study of w3. Note that ∇ ·G3 ∈ L2
(
0,∞;H−1(Ω)

)
and G3 · ν = 0 on (0,∞)× ∂Ω (in a variational sense).

Multiplying the equation (26) in wT3 by wT3 and integrating on [0, τ ] lead to{ 1
2

∫
Ωw

T
3 (τ)2 + di

∫ τ
0

∫
Ω |∇w

T
3 |2 =

∫ τ
0

∫
Ωw

T
3∇ ·G3(T + ·) = −

∫ τ
0

∫
ΩG3(T + ·) · ∇wT3

≤
∫ τ

0

∫
Ω
di
2 |∇w

T
3 |2 + C(di)

∫ τ
0

∫
ΩG3(T + ·)2 ≤

∫ τ
0

∫
Ω
di
2 |∇w

T
3 |2 + C(di)

∫∞
T

∫
ΩG3(·)2

We deduce that, for all fixed T > 0

‖wT3 (τ)‖2L2(Ω) ≤ 2C(di)

∫ ∞
T
‖G3(s)‖2L2(Ω)ds for all T > 0. (30)

Thus, using (27), we deduce for 0 ≤ T ≤ t ≤ t+ h

‖w3(t+h)−w3(t)‖L2(Ω) ≤ ‖Sdi(t+h−T )w3(T )−Sdi(t−T )w3(T )‖L2(Ω) +2

[
2C(di)

∫ ∞
T
‖G3(s)‖2L2(Ω)ds

]1/2

.

But, we know that Sdi(s)w3(T ) converges as s→ +∞ to −
∫

Ωw3(T ) in L2(Ω) (see (25 )). Thus, the previous
inequality implies

lim sup
t,t+h→+∞

‖w3(t+ h)− w3(t)‖L2(Ω) ≤ 2

[
2C(di)

∫ ∞
T
‖G3(s)‖2L2(Ω)ds

]1/2

, for all T > 0.

As a consequence, since G3 ∈ L2
(
0,∞;L2(Ω)

)
, w3(t) has a limit in L2(Ω) as t→ +∞.
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Study of w1. Recall that w1 is solution on (0,∞) of{
∂tw1 − di∆w1 = G1,
∂νw1 = 0, w1(0) = 0.

(31)

First we have, ∂t
∫

Ωw1(t) =
∫

ΩG1(t) and therefore −
∫

Ωw1(t) =
∫ t

0
−
∫

ΩG1(s)ds. It follows that

w1(t)−−
∫

Ω
w1(t) =

∫ t

0
Sdi(t− s)

[
G1(s)−−

∫
Ω
G1(s)

]
ds.

Remember the regularizing effect (see (25) )

‖Sdi(τ)[u0 −−
∫

Ω
u0]‖Cα(Ω) ≤ C(1 + τ−β)e−λτ‖u0 −−

∫
Ω
u0‖L∞(Ω),

for some α, β ∈ (0, 1) and C, λ ∈ (0,∞). This implies

‖w1(t)−−
∫

Ω
w1(t)‖Cα(Ω) ≤

∫ t

0
C[1 + (t− s)−β]e−λ(t−s)‖G1(s)−−

∫
G1(s)‖L∞(Ω)ds.

Since G1 ∈ L∞(Q∞), we deduce that

sup
t
‖w1(t)−−

∫
Ω
w1(t)‖Cα(Ω) ≤ 2C‖G1‖L∞(Q∞) sup

t

∫ t

0
[1 + (t− s)−β]e−λ(t−s)ds < +∞

so that {w1(t)− −
∫

Ωw1(t), t ≥ 0}) is relatively compact in L∞(Ω).
But, by (28), w1 = Tr(vi)−Sdi(t)Tr(vi0)−w2−w3 where each of these four functions is in L∞

(
0,∞;L1(Ω)

)
.

Thus so is w1. As a consequence, −
∫

Ωw1(t) lies in a compact set of R. It follows that w1(t) =
[
w1(t)− −

∫
Ωw1(t)

]
+

−
∫

Ωw1(t) is relatively compact in L∞(Ω). This ends the proof of Goal 2.3 and therefore of Lemma 2.1. �

Lemma 2.4 Any L1(Ω)-limit point of Tr(vi(t)) as t→ +∞ is a constant function.

Proof. Let V∞ be an L1(Ω)-limit point of Tr(vi(t)) as t→ +∞. Let (tm)m be a sequence of times with

lim
m→+∞

tm = +∞, Tr(vi(tm))→ V∞ in L1(Ω).

Let T > 0 and V m(τ) := Tr(vi(tm + τ)) for τ ∈ [0, T ]. We will prove that, at least up to a subsequence,

V m → V in C
(
[0, T ];L1(Ω)

)
as m→ +∞. (32)

Then V will in particular satisfy V (0) = V∞. Moreover, we know from (21) that∫ T

0

∫
Ω
|∇V m|2 =

∫ tm+T

tm

∫
Ω
|∇Tr(vi)|2 ≤

∫ ∞
tm

∫
Ω
|∇Tr(vi)|2 → 0 as m→ +∞.

By lower-semicontinuity of the norm for the weak-L2-convergence of ∇V m to ∇V ,
∫ T

0

∫
Ω |∇V |

2 = 0, that
is ∇V (t) = 0 a.e. t ∈ [0, T ]. This implies that V (t, ·) is a constant function for a.e. t and therefore for all
t ∈ [0, T ] since V ∈ C

(
[0, T ];L1(Ω)

)
. It is in particular the case for V (0) = V∞, whence the statement of

the lemma.
Thus let us prove (32). Let us introduce the same decomposition as in the previous proof, using the

equation (9) and the notation (26), namely

V m(τ) = Tr(vi(tm + τ)) = Sdi(τ)(Tr(vi(tm)) + wtm1 (τ) + wtm2 (τ) + wtm3 (τ). (33)
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From the estimates in the previous proof (see (29), (30)) we have,

lim
m→∞

{
sup

τ∈[tm,∞)
‖wtm2 (τ)‖L1(Ω)

}
= 0 = lim

m→∞

{
sup

τ∈[tm,∞)
‖wtm3 (τ)‖L2(Ω)

}
.

Let T > 0. The function wtm1 is solution on [0, T ] of

∂τw
tm
1 − di∆w

tm
1 = G1(tm + ·), ∂νw

tm
1 = 0, wtm1 (0) = 0.

Since G1 is bounded in L∞ ((tm, tm + T )× Ω), wtm1 is relatively compact in L∞ ((0, T )× Ω) and therefore in
C([0, T ];L1(Ω)). On the other hand, by the property of L1-contraction of the semigroup, Sdi(·)(Tr(vi(tm))
converges in C

(
[0, T ];L1(Ω)

)
to Sdi(·)V∞. Going back to (33), together with the convergence (resp. com-

pactness) in C
(
[0, T ];L1(Ω)

)
of wtm2 , wtm3 (resp. wtm1 ), we deduce that, up to a subsequence, V m converges

in C
(
[0, T ];L1(Ω)

)
to some function V . This proves (32) and ends the proof of Lemma 2.4.

�

Lemma 2.5 The solution u defined in Proposition 1.1 is in C
(
[0,∞);L1(Ω)n

)
with u(0) = u0. The tra-

jectory {u(t); t ∈ [0,∞)} is relatively compact in L1(Ω)n and any limit point as t → +∞ is a constant
function.

Proof. Throughout this proof, we simply write ‖·‖ for ‖·‖L1(Ω). To prove the continuity of t→ u(t) ∈ L1(Ω),
we write for a.e. t, s ≥ 0{

‖ui(t)− ui(s)‖ ≤ hi(t) + hi,r(t) + ‖Tr(vi(t))− Tr(vi(s))‖+ hi,r(s) + hi(s),
hi(t) := ‖ui(t)− vi(t)‖, hi,r(t) := ‖vi(t)− Tr(vi(t))‖ ≤

∫
Ω(ui(t) + η

∑
j 6=i uj(t)− r)+.

(34)

Recall that, for all i (see (19) ),

ess sup
t≥0

{‖ui(t)‖+ ‖ui(t) log ui(t)‖} < +∞.

Thus, for some various C ∈ (0,∞) independent of i, t, η, r where r ≥ 1

a.e.t, hi(t) ≤ η
n∑
j=1

‖uj(t)‖ ≤ η C, (35)

a.e.t, hi,r(t) ≤
∫

Ω
(ui(t)− r)+ + η

n∑
j=1

‖uj(t)‖ ≤
1

log r

∫
Ω
ui(t)| log ui(t)|+ η C ≤ (

1

log r
+ η)C. (36)

We deduce from (34), (35), (36)

a.e.t, ‖ui(t)− ui(s)‖ ≤ 2ηC + 2[(log r)−1 + η]C + ‖Tr(vi(t))− Tr(vi(s))‖.

By continuity of s→ Tr(vi(s)) at s = t, it follows that

a.e.t, ess lim sup
s→t

‖ui(t)− ui(s)‖ ≤ 2ηC + 2[(log r)−1 + η]C.

Whence the expected continuity of a representative of u by letting η → 0, r → +∞. We obtain in a similar
way that

‖ui(t)− ui0‖ ≤ 2ηC + 2[(log r)−1 + η]C + ‖Tr(vi(t))− Tr(vi0)‖.
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Then using that Tr(vi(t)) tends to Tr(vi0) in L1(Ω) as t→ 0, we deduce that ui(0) = ui0.
Let us now prove the compactness property. By Lemma 2.1, we know that {Tr(vi(t); t ∈ [0,∞)} is

relatively compact (or precompact, see Remark 2.2) in L1(Ω) for all i, r ∈ (0,∞), η ∈ (0, 1], where vi =
ui + η

∑
j 6=i uj . For any f ∈ L1(Ω), we may write

‖ui(t)− f‖ ≤ hi(t) + hi,r(t) + ‖Tr(vi(t))− f‖, (37)

where hi, hi,r are defined in (34). We deduce from (35), (36)

‖ui(t)− f‖ ≤ [(log r)−1 + 2η]C + ‖Tr(vi(t))− f‖. (38)

Let ε ∈ (0, 1). Let us choose (and fix) r large enough and η small enough so that (log r)−1+2η ≤ ε/4C. By
precompactness of {Tr(vi(t)), t ∈ [0,∞), i = 1, ..., n}, there exists a finite number fk ∈ L1(Ω), k = 1, ...,Kε

such that
Tr(vi(t)) ∈ ∪Kεk=1B (fk, ε/2) , for all t ∈ [0,∞) and all i.

Together with the estimate (38) and the choice of r, η, this implies

ui(t) ∈ ∪Kεk=1B (fk, ε) , for all t ∈ [0,∞) and all i.

Whence the precompactness announced in Lemma 2.5.
Now since any limit point of Tr(vi(t)) as t→ +∞ is a constant function for all r, η, i, the same property

follows for all limit points of ui(t) itself. �

Lemma 2.6 There exists u∞ ∈ Eu0, as defined in (11), such that u(t) converges to u∞ in L1(Ω)n as
t→ +∞, where u is the solution defined in Proposition 1.1.

Proof. By Lemma 2.5, we know that the trajectory {u(t), t ≥ 0} is relatively compact in L1(Ω)n. We will
prove the uniqueness of the limit points as t → +∞. It will follow that u(t) converges toward this unique
limit point as t→ +∞.

Let u∞ ∈ L1(Ω)n be a limit point. Let (tm) be a sequence of times such that tm → +∞, u(tm) → u∞

in L1(Ω)n as m → +∞. Let us consider again the functions τ ∈ [0, T ] → um(τ) := u(tm + τ). As in
the proof of the previous lemma, we write again more simply ‖ · ‖ := ‖ · ‖L1(Ω) and we recall the notation
V m(τ) = Tr(vi(tm + τ))). We may write

‖umi (τ)− upi (τ)| ≤ hi(tm + τ) + hi,r(tm + τ) + ‖V m(τ)− V p(τ)‖+ hi(tp + τ) + hi,r(tp + τ),

where the functions hi, hi,r are defined in (34). We proved in Lemma 2.4 that V m is converging in
C
(
[0, T ];L1(Ω)

)
. Using the estimates (35), (36), we deduce

lim sup
m,p→+∞

{ sup
τ∈[0,T ]

‖umi (τ)− upi (τ)‖} ≤ 2ηC + 2[(log r)−1 + η]C.

Letting η → 0, r → +∞, we deduce that umi converges in C
(
[0, T ];L1(Ω)

)
to some Ui. We saw in Lemma

2.4 that the limit V of V m does not depend on the x-variable. This being true for all i, η, r, it implies the
same property for the limit U = (U1, ..., Un) of um, i.e. U(τ) ∈ [0,∞)n for all τ . Note also that U(0) = u∞.

Now we use the estimate (19) which implies

lim
m→+∞

∫ T

0

∫
Ω

[
log kfΠi(u

m
i )αi − log krΠi(u

m
i )βi

] [
kfΠi(u

m
i )αi − krΠi(u

m
i )βi

]
= 0.
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Up to a subsequence, we may assume that um converges a.e. (τ, x) to U . Using Fatou’s lemma and the
nonnegativity of the integrand, we deduce

F (U(τ)) = kfΠi Ui(τ)αi − krΠi Ui(τ)βi = 0 a.e.τ ∈ [0, T ], and even ∀ τ ∈ [0, T ], (39)

by continuity of U . This holds in particular for U(0) = u∞, namely

kfΠi(u
∞
i )αi − krΠi(u

∞
i )βi = 0. (40)

Now we use the invariant quantities (11). The invariance holds for the approximate solution uε of Problem
(3) since

∂t

∫
Ω

(βj − αj)uεi(t) + (αi − βi)uεj(t) =

∫
Ω

(βj − αj)f εi (uε) + (αi − βi)f εj (uε) = 0,

so that
uεi(t)

αi − βi
+

uεj(t)

βj − αj
= Ai +Bj for all i ∈ I, j ∈ J, t ≥ 0.

By convergence of a subsequence as ε → 0 of uε(t) for a.e. t in L1(Ω), the identities are valid at the limit
for u(t), at least a.e. t, but even for all t ≥ 0 by continuity of u. By translation, they hold for um(τ), and
by convergence in L1(Ω)n as m→ +∞, they also hold for U(τ) and in particular for U(0) = u∞, namely

u∞i
αi − βi

+
u∞j

βj − αj
= Ai +Bj for all i ∈ I, j ∈ J. (41)

Let us prove that these relations, together with (40), are satisfied by only a finite number of points in
[0,∞)n. Let X ∈ [0,∞)n satisfy

F (X) = kfΠiX
αi
i − krΠiX

βi
i = 0,

Xi

αi − βi
+

Xj

βj − αj
= Ai +Bj for all i ∈ I, j ∈ J. (42)

As already noticed in (14), the function F may be rewritten

F (X) =
(
Πk∈KX

σk
k

)
H(X) :=

(
Πk∈KX

σk
k

) [
kfΠi∈IX

αi−βi
i − krΠj∈JX

βj−αj
j

]
,

where σi := min{αi, βi, i = 1, ..., n},K := {k ∈ {1, ..., n};σk > 0}. In the following, we assume, without loss
of generality, that 1 ∈ I. Then, the identities in (42) allow to solve all Xi, Xj in terms of X1, namely

Xj = (βj−αj)
[
A1 +Bj − (α1 − β1)−1X1

]
, ∀ j ∈ J, Xi = (αi−βi)

[
(α1 − β1)−1X1 +Ai −A1

]
, ∀ i ∈ I.

(43)

Now F (X) = 0 implies one of the two situations:
Case 1: Πk∈KX

σk
k = 0.

Case 2: H(X) = kfΠi∈IX
αi−βi
i − krΠj∈JX

βj−αj
j = 0.

Case 1: assume for instance, without loss of generality, that X1 = 0. All Xi, i ∈ I,Xj , j ∈ J are then
uniquely determined by the relations (43).

Case 2: let us denote h(X1) := H(X) = kfΠi∈IX
αi−βi
i − krΠj∈JX

βj−αj
j where each of the Xi, Xj are given

in terms of X1 as in (43). Since all Xi are increasing functions of X1 and all Xj are decreasing function of
X1, h is an increasing function of X1 ∈ [X−1 , X

+
1 ] where

X−1 := (α1 − β1)(A1 −min
i∈I

Ai)
+ ≤ X+

1 := (α1 − β1)(A1 + min
j∈J

Bj).
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Moreover h(X−1 ) ≤ 0, h(X+
1 ) ≥ 0. Thus there exists a unique X1 ∈ [X−1 , X

+
1 ] such that h(X1) = 0 and

therefore a unique X ∈ [0,∞)n solution of (42) in this Case 2.
A main consequence is that the set X∞ ⊂ [0,∞)n of solutions X of (42) is finite : the above analysis

proves that X∞ has at most |K|+ 1 elements where |K| is the number of elements of K. According to (40),
(41), u∞ ∈ X∞. Since u∞ is arbitrary as a limit point, we deduce that

ω(u0) = {u∞ ∈ L1(Ω)n; ∃ tm → +∞, u(tm)→ u∞ in L1(Ω)n as m→ +∞} ⊂ X∞.

Since u ∈ C
(
[0,∞);L1(Ω)n

)
, it is known that ω(u0) is connected. Since X∞ has a finite number of points,

it follows that ω(u0) is reduced to one point. Moreover this point belongs to Eu0 since it satisfies (42).
This ends the proof of Lemma 2.6.

�

Remark 2.7 In the Case 2 of the previous proof, it is easy to check that

min
i∈I

Ai + min
j∈J

Bj > 0 ⇒ h(X−1 ) < 0, h(X+
1 ) > 0. (44)

Thus, in this case, there exists a unique X1 ∈ (X−1 , X
+
1 ) satisfying h(X1) = 0. Moreover, we check that all

Xi, Xj given by (43) are then strictly positive. In other words, there exists a unique Z ∈ (0,∞)n such that

H(Z) = 0,
Zi

αi − βi
+

Zj
βj − αj

= Ai +Bj for all i ∈ I, j ∈ J. (45)

�

The convergence part of Theorem 1.2 is a consequence of Lemma 2.6. It remains to show that the
convergence is exponential when the limit as t→ +∞ of u(t) in L1(Ω)n belongs to (0,∞)n. This will be a
consequence of the two following lemmas.

For w ∈ L1(Ω)+n with wi logwi ∈ L1(Ω) for all i = 1, ..., n, we denote (see (5) )

E(w) := −
∫

Ω

n∑
i=1

Li(wi), Li(s) = s(log s− 1 + µi) + e−µi , ∀ s ∈ [0,∞).

Lemma 2.8 For the solution u defined in Proposition 1.1, we have

d

dt
E(u(t)) ≤ −D(u(t)), (46)

in the sense of distributions on (0,∞), where

D(u) := 4

n∑
i=1

−
∫

Ω
di|∇
√
ui|2 +−

∫
Ω

[log kfΠn
i=1u

αi
i − log krΠ

n
i=1u

βi
i ][kfΠn

i=1u
αi
i − krΠ

n
i=1u

βi
i ], (47)

Recall the writing

F (X) =
(
Πk∈KX

σk
k

)
H(X) =

(
Πk∈KX

σk
k

) [
kfΠi∈IX

αi−βi
i − krΠj∈JX

βj−αj
j

]
as introduced in (14) for X ∈ [0,∞)n. We also denote

√
X := (

√
Xi)1≤i≤n ∈ [0,∞)n.
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Lemma 2.9 Let u ∈ L1(Ω)+n with ui log ui ∈ L1(Ω),
√
ui ∈ H1(Ω) for all i = 1, ..., n. Let us denote

Ai :=
ui

αi − βi
for all i ∈ I, Bj :=

uj
βj − αj

for all j ∈ J. (48)

Assume that V := mini∈I Ai + minj∈J Bj > 0. Let Z ∈ (0,∞)n be defined by (45). Then,

D(u) ≥ C
(
Πk∈Ku

σk
k

)
[E(u)−E(Z)], (49)

where C ∈ (0,∞) depends only V , on U := maxni=1 ui and on the data |Ω|, αi, βi, µi, i = 1, ..., n.

We postpone the proof of these two lemmas and show how they imply Theorem 1.2.

Proof of Theorem 1.2
The convergence part is a direct consequence of Lemma 2.6.
For the exponential rate, let us assume that u∞ := limt→+∞ u(t) ∈ (0,∞)n. Then (see (14) ) F (u∞) = 0

implies in fact H(u∞) = 0. Let us recall the invariance property

ui(t)

αi − βi
+

uj(t)

βj − αj
= Ai +Bj for all i ∈ I, j ∈ J, Ai :=

ui0
αi − βi

, Bj :=
uj0

βj − αj
. (50)

Since limt→+∞ ui(t) = u∞i > 0 for all i ∈ I and limt→+∞ uj(t) = u∞j > 0 for all j ∈ J , it follows that
V:=mini∈I Ai + minj∈J Bj > 0. In particular u∞ = Z as defined in (45). Then by (46), (49), we deduce

d

dt
[E(u(t))−E(Z)] ≤ −C (Πk∈Kuk(t)

σk) [E(u(t))−E(Z)] .

By assumption, there exists T ∈ (0,∞) such that Πk∈Kuk(t)
σk ≥ Πk∈Ke

σk
k /2 =: Λ > 0 for all t ≥ T . This

implies

E(u(t))−E(Z) ≤ e−CΛ(t−T )[E(u(t))−E(Z)]. (51)

Let us finally prove that, for some other constant C ∈ (0,∞) (depending only on V,U and the data
|Ω|, αi, βi, µi as in Lemma 2.9, and like all constants C used in this proof)

‖u(t)− Z‖L1(Ω)n ≤ C [E(u(t))−E(Z)] (52)

This will end the proof of Theorem 1.2 since by (51)

E(u(t))−E(Z) ≤ Ĉe−λ t, λ := CΛ, Ĉ := sup
t

E(u(t)).

The proof of (52) is made as usual by using the Cziszár-Kullback-Pinsker estimate (see Theorem 31 in
[5]): [

−
∫

Ω
|ui(t)− ui(t)|

]2

≤ 4ui(t)−
∫

Ω
ui(t) log

ui(t)

ui(t)
≤ C−

∫
Ω
ui(t) log

ui(t)

ui(t)
. (53)

On the other hand, we use the structure of the entropy E. We check that

−
∫

Ω
Li(ui)− Li(Zi) = −

∫
Ω
ui log

ui
ui

+ (ui − Zi)(µi + logZi) + ui

(
log

ui
Zi
− 1

)
+ Zi,
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so that

E(u(t))−E(Z) =
∑
i

−
∫

Ω
ui log

ui
ui

+ (ui − Zi)(µi + logZi) + ui

(
log

ui
Zi
− 1

)
+ Zi. (54)

Using the estimate s(log s− 1) + 1 ≥ C(M)(s− 1)2 for s ∈ [0,M ], we also have

|ui − Zi|2 = Z2
i

∣∣∣∣uiZi − 1

∣∣∣∣2 ≤ CZ2
i

[
ui
Zi

(
log

ui
Zi
− 1

)
+ 1

]
≤ C

[
ui

(
log

ui
Zi
− 1

)
+ Zi

]
. (55)

Using (53), (55), then (54), and summing over i = 1, ..., n lead to

‖u(t)− Z‖2L1(Ω)n ≤ C
∑
i

‖ui(t)− ui(t)‖2L1(Ω) + ‖ui(t)− Zi‖2L1(Ω) ≤ C|Ω|
2 [E(u(t))−E(Z)−R] ,

with R =
∑
i

(ui − Zi)(µi + logZi).

It turns out that R = 0 (whence (52) ). Indeed, by (45), (50), we have (ui − Zi) = (αi − βi)A1 for all
i = 1, ..., n so that (recall the definition of µi in (5) )

R = A1

n∑
i=1

(αi − βi)(µi + logZi) = A1 log
(
kfΠn

i=1Z
αi
i /krΠ

n
i=1Z

βi
i

)
= 0.

�

Remark 2.10 For a future use, we notice the identity deduced from (54) and from R = 0: for all u ∈
L1(Ω)+n with

√
ui ∈ H1(Ω), ui log ui ∈ L1(Ω), i = 1, ..., n,

E(u)−E(Z) = −
∫

Ω

∑
i

ui log
ui
ui

+ ui

(
log

ui
Zi
− 1

)
+ Zi, (56)

where Z is defined in (45) and

Ai :=
ui

αi − βi
for all i ∈ I, Bj :=

uj
βj − αj

for all j ∈ J.

Remark 2.11 It is clear from the previous proof that, to obtain the exponential rate, it is sufficient to
assume that u∞k > 0 for all k ∈ K. See also the comments given in Remark 3.1.

Proof of Lemma 2.8. This inequality is essentially proved in [21]. Let us just recall here the main
ingredients of the proof.

For the approximate and regular solution uε of (3), we know that

d

dt
E(uε) +Dε(u

ε) = 0, (57)

with Dε(u) = 4−
∫

Ω

n∑
i=1

di|∇
√
ui|2 +−

∫
Ω

F (u)

1 + ε
∑

i |fj(u)|
log

kf
∏n
i=1 u

αi
i

kr
∏n
i=1 u

βi
i

≥ 0. (58)

The equality (57) means that for all φ ∈ C∞0 ([0,∞))+

φ(0)E(uε0) +

∫ ∞
0

φ′(t)E(uε(t)) dt =

∫ ∞
0

φ(t)Dε(u
ε(t)) dt. (59)
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By Proposition 1.1, we know that u is obtained as a limit of uε along a subsequence εp → 0. We easily
obtain that ∫ ∞

0
φ(t)D(u(t)) ≤ lim inf

εp→0

∫ ∞
0

φ(t)Dεp(u
εp(t)) dt.

This is a consequence of the weak convergence of ∇
√
u
εp
i to ∇√ui in L2(QT ) for all T ∈ (0,∞) and of

Fatou’s Lemma applied to the other integral.
The next (more difficult) point is to prove that, at least up to a subsequence

E(uεp(t))→ E(u(t)) a.e.t ∈ (0,∞) as εp → 0, (60)

Since E(uε(t)) ≤ E(uε0) ≤ C < +∞, (60) allows to pass to the limit in (59) to obtain

φ(0)E(u0) +

∫ ∞
0

φ′(t)E(u(t)) dt ≥
∫ ∞

0
φ(t)D(u(t)) dt,

which is the claim of Lemma 2.8. The main point in the proof of (60) is the fact that uε is bounded in
L2 ((τ, T )× Ω)) for all 0 < τ < T < +∞ as proved in Lemma 4 of [19]. Together with the a.e convergence
of uε, this implies the convergence of subsequences of u

εp
i log u

εp
i in L1 ((τ, T )× Ω)) and therefore in L1(Ω)

for a.e. t ∈ (0,∞).
�

Proof of Lemma 2.9. In this proof, the meaning of the constants C will vary from one line to the other,
but it depends only on the quantities U, V , defined in the Lemma 2.9 and on the various data. By (56), we
have

E(u)−E(Z) = −
∫

Ω

∑
i

ui log
ui
ui

+ ui

(
log

ui
Zi
− 1

)
+ Zi.

By the logarithmic Sobolev inequality (see e.g. Theorem 17 in [5])

−
∫

Ω

∑
i

ui log
ui
ui
≤ C−

∫
Ω

∑
i

|∇
√
ui|2.

Using the definition of D(u) in (47) and the fact that Πk∈Ku
σk ≤ C, we deduce

−
∫

Ω

∑
i

ui log
ui
ui
≤ C D(u) ≤ C D(u)/Πk∈Ku

σk
k .

It remains to prove that, similarly

L(u, Z) :=

n∑
i=1

ui

(
log

ui
Zi
− 1

)
+ Zi ≤ C D(u)/Πk∈Ku

σk
k . (61)

Let us enumerate the steps to be proved to reach this inequality.

(Step 1) L(u, Z) ≤ C
n∑
i=1

|
√
ui −

√
Zi|2. (62)

(Step 2)

n∑
i=1

|
√
ui−

√
Zi|2 ≤ C Hm

(√
u
)2

where Hm(X) =
√
kf Πi∈IX

αi−βi
i −

√
kr Πj∈JX

βj−αj
j . (63)

(Step 3) Fm
(√
u
)2 ≤ C −∫

Ω
Fm
(√
u
)2

+

n∑
i=1

|∇
√
ui|2, Fm(X) :=

(
Πk∈KX

σk
k

)
Hm(X). (64)
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(Step 4) −
∫

Ω
Fm
(√
u
)2 ≤ −∫

Ω
F (u)

[
log kfΠi=1u

αi
i − log krΠ

n
i=1u

βi
i

]
. (65)

Using these four steps yields (61), and therefore Lemma 2.9. Indeed, combining them leads to

L(u, Z) ≤ C Hm

(√
u
)2

=
C Fm

(√
u
)2

Πk∈Ku
σk
k

≤ C

Πk∈Ku
σk
k

−
∫

Ω

F (u)
[
log kfΠi=1u

αi
i − log krΠ

n
i=1u

βi
i

]
+

n∑
i=1

|∇
√
ui|

2 =
C D(u)

Πk∈Ku
σk
k

.

Let us now prove successively these four steps.

Proof of Step 1. We use the inequality s(log s− 1) + 1 ≤ C(M)|
√
s− 1|2 for s ∈ [0,M ] to obtain:

ui(log
ui
Zi
− 1) + Zi ≤ C Zi|

√
ui
Zi
− 1)|2 ≤ C |

√
ui −

√
Zi|2.

Then we sum over i = 1, ..., n.

Proof of Step 2. It is sufficient to prove

n∑
i=1

|ui − Zi|2 ≤ C H(u)2. (66)

Indeed, assuming this estimate (66), we deduce (again with different constants C as explained above)

n∑
i=1

|
√
ui−

√
Zi|2 =

∑
i

|ui − Zi|2

(
√
ui +

√
Zi)2

≤ C H(u)2 = C Hm

(√
u
)2 [√

kfΠi∈Iu
αi−βi

i +

√
krΠj∈Ju

βj−αj

j

]
≤ CHm

(√
u
)2
.

To obtain (66), we write the variation of H as follows, with ξ(s) := (1− s)Z + su,

H(u) = H(u)−H(Z) =

∫ 1

0
∇H(ξ(s)) · (u− Z)ds = A1

∫ 1

0
∇H(ξ(s)) · γds =: A1θ, (67)

where
u− Z = A1γ, γ := (αi − βi)1≤i≤n, A1 := (u1 − Z1)/(α1 − β1),

due to the identity (see (45), (48) ),

ui − Zi
αi − βi

=
u1 − Z1

α1 − β1
for all i ∈ I, uj − Zj

βj − αj
= −u1 − Z1

α1 − β1
for all j ∈ J.

To obtain (66), it is sufficient to prove that θ ≥ C > 0. Indeed

n∑
i=1

|ui − Zi|2 =
∑
i

(αi − βi)2A2
1 ≤ A2

1 max
1≤i≤n

(αi − βi)2 = C A2
1,

so that, by (67), H(u)2 ≥ Cθ2
∑n

i=1 |ui − Zi|2. But θ =
∫ 1

0 ∇H(ξ(s)) · γds where

∇H(ξ(s)) · γ =
∑
i∈I

kf (αi − βi)2ξi(s)
−1Πl∈Iξl(s)

αl−βl +
∑
j∈J

kr(βj − αj)2ξj(s)
−1Πl∈Jξl(s)

βl−αl .

This quantity is positive and bounded from below by a positive number depending on min1≤i≤n Zi and of
V = min{mini∈I Ai + minj∈J Bj} which is assumed to be positive in Lemma 2.9.
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Proof of Step 3. This inequality is actually valid for any C2 function G in place of Fm. This is proved in
Lemma 2.12 below. The condition αi, βi ∈ {0, 1} ∪ [2,+∞) implies that Fm is C2 on [0,∞)n. Actually, it
would be sufficient for our purpose to assume αi, βi ∈ {0}∪ [1,∞). In this case, Fm would be C1 on [0,∞)n

and C2 only on (0,∞)n. But, since Lemma 2.9 is used only in the case when the limit of u(t) is in (0,∞)n,
we can avoid the difficulty near 0.

Proof of Step 4. Note that

Fm(
√
u)2 =

(
Πk∈Ku

σk
k

) [√
kfΠi∈Iu

αi−βi
i −

√
Πi∈Ju

βj−αj
j

]2

=

[√
kfΠn

i=1u
αi
i −

√
krΠn

i=1u
βi
i

]2

.

Thus Step 4 is a consequence of the scalar inequality

(
√
X −

√
Y )2 ≤ (X − Y ) log

X

Y
for all X, Y ∈ (0,∞).

We apply it to X := kfΠn
i=1u

αi
i , Y := krΠ

n
i=1u

βi
i and the estimate (65) follows.

Lemma 2.12 Let G ∈ C2([0,∞)n;R). Then, there exists a constant C depending only on U := max1≤i≤n
√
ui

and on G := maxr∈[0,U+1)n{|G(r)|, ‖∇G(r)‖, ‖D2G(r, r)‖} such that

G
(√
u
)2 ≤ C−∫

Ω
G(
√
u)2 +

n∑
i=1

|∇
√
ui|2 for all u ∈ L1(Ω)+n, (68)

where
√
u = (

√
ui )1≤i≤n.

Proof. This proof follows closely the steps of the proof of Lemma 13 in [21]. All constants C may differ
from each other, but will depend only on the two values U,G defined in the lemma. Let us introduce
σ = σ(x) ∈ Rn for x ∈ Ω by

√
u =
√
u+ σ. First, we have

G(
√
u)2 = G(

√
u+ σ)2 =

(
G(
√
u) +∇G(

√
u) · σ +M

)2
,

where M =
∫ 1

0 (1− s)D2G(
√
u+ sσ)[σ, σ] ds. Using (∇G(

√
u) · σ +M)2 ≥ 0, this implies

G(
√
u)2 ≥ G(

√
u)2 + 2G(

√
u)∇G(

√
u) · σ + 2G(

√
u)M.

By Young’s inequality and the estimate |∇G(
√
u ) · σ| ≤ C‖σ‖, we have

2G(
√
u)∇G(

√
u) · σ ≥ −1

2
G(
√
u)2 − 2(∇G(

√
u) · σ)2 ≥ −1

2
G(
√
u)2 − C‖σ‖2.

It follows from the two previous inequalities and |G(
√
u )| ≤ C that

G(
√
u)2 ≥ 1

2
G(
√
u)2 − C(‖σ‖2 + |M |). (69)

Next, since
√
u ≥ 0 implies σ ≥ −

√
u in Rn, we have the partition Ω = Ω1 ∪ Ω2 where

Ω1 = {x ∈ Ω | −
√
ui ≤ σi(x) ≤ 1, ∀ 1 ≤ i ≤ n},

Ω2 = ∪1≤i≤n{x ∈ Ω | σi(x) > 1}.
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For x ∈ Ω1, s ∈ [0, 1], one has: 0 ≤
√
ui + sσi ≤ 1 +

√
ui, so that

|M | ≤
∫ 1

0
(1− s)‖D2G(

√
u+ sσ)‖ ds · ‖σ‖2 ≤ C‖σ‖2, x ∈ Ω1.

Together with (69), we deduce∫
Ω1

G(
√
u)2 dx ≥

∫
Ω1

[
1

2
G(
√
u)2 − C‖σ‖2

]
dx. (70)

We also have∫
Ω2

G(
√
u)2 dx = |Ω2|G(

√
u)2 ≤ G(

√
u)2

n∑
i=1

∣∣[σ2
i > 1]

∣∣
with ∣∣[σ2

i > 1]
∣∣ =

∫
[σ2
i>1]

dx ≤
∫

[σ2
i>1]

σ2
i dx ≤

∫
Ω
σ2
i dx,

which implies∫
Ω2

G(
√
u)2 dx ≤ G(

√
u)2

∫
Ω
‖σ‖2 dx ≤ C

∫
Ω
‖σ‖2 dx. (71)

By (70)-(71), we obtain

G(
√
u)2 = −

∫
Ω
G(
√
u)2 dx ≤ C−

∫
Ω

[G(
√
u)2 + ‖σ‖2] dx. (72)

Then, using in particular the Schwarz inequality ”
√
ui ≥ −

∫
Ω

√
ui ”, we have

−
∫

Ω

σ2
i = −

∫
Ω

ui − 2
√
ui
√
ui + ui ≤ 2

{
−
∫
ui −

(
−
∫

Ω

√
ui

)2
}

= 2−
∫

Ω

(
√
ui −−

∫
Ω

√
ui

)2

.

Using Poincaré-Wirtinger’s inequality implies that

−
∫

Ω
σ2
i = 2−

∫
Ω

(
√
ui −−

∫
Ω

√
ui

)2

≤ C−
∫

Ω
|∇
√
ui|2.

Whence (68) by plugging the sum of these inequalities for i = 1, ..., n into (72). �

3 Proof of Proposition 1.4 and some more comments

Proof of Proposition 1.4. Recall that the set Eu0 is defined by the relations{
e ∈ [0,∞)n, F (e) = 0, ei

αi−βi +
ej

βj−αj = Ai +Bj , ∀ i ∈ I, ∀j ∈ J,
Ai := ui0

αi−βi , ∀ i ∈ I, Bj :=
uj0

βj−αj ∀ j ∈ J.
(73)

And (see (14) ),

F (e) =
(
Πk∈Ke

σk
k

)
H(e), H(e) = kfΠi∈Ie

αi−βi
i − krΠj∈Je

βj−αj
j .
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By assumption, mini∈I Ai + minj∈J Bj > 0. Thus, for e ∈ Eu0 , if ei∗ = 0 for some i∗ ∈ I, then ej > 0 for

all j ∈ J . This implies H(e) = −krΠj∈Je
βj−αj
j 6= 0. Since F (e) = 0, necessarily, i∗ ∈ K.

On the other hand, since
ei

αi − βi
− ei∗
αi∗ − βi∗

= Ai −Ai∗ ∀ i ∈ I,

ei∗ = 0 implies also that Ai ≥ Ai∗ for all i ∈ I so that mini∈I Ai = 0 = mini∈I∩K Ai. This is a contradiction
with the assumption of Proposition 1.4. Therefore ei∗ = 0, i∗ ∈ I is impossible for e ∈ Eu0 . This implies
that ei > 0 for all i ∈ I. We prove similarly that ej > 0 for all j ∈ J . Therefore e ∈ (0,∞)n and, since
H(e) = 0, necessarily Eu0 = {Z} where Z is defined in (45).

By Theorem 1.2, the convergence toward u∞ = Z is then exponential.
�

Remark 3.1 When mini∈I Ai + minj∈J Bj > 0, it follows from the expression of F (e) =
(
Πk∈Ke

σk
k

)
H(e)

that (see (45) )
e ∈ Eu0 , ek > 0 ∀ k ∈ K, ⇒ e = Z ∈ (0,∞)n,

Thus positivity on K is enough to deduce e ∈ (0,∞)n and e = Z. And in this case, convergence is
exponential.

Actually here are some possible situations.

1. If K = ∅ and mini∈I Ai + minj∈J Bj > 0, then Eu0 = {Z} and u(t) converges to Z exponentially.

2. If K = ∅ and there exist i∗ ∈ I, j∗ ∈ J with ui∗ = 0 = uj∗ , then ui∗(t) = 0 = uj∗(t) for all t ≥ 0. This
implies, F (u(t)) = 0 so that, for all i, ui is the solution of the linear heat equation with initial data
ui0 and ui(t) converges exponentially to ui0 as t→ +∞ (see (25) ).

3. If K 6= ∅ and there exists k ∈ K such that uk0 = 0, then uk(t) = 0 for all t ≥ 0 and again F (u(t)) = 0
and ui is again solution of the linear equation for all i.

4. If K 6= ∅ and there exist i∗ ∈ I, j∗ ∈ J with ui∗ = 0 = uj∗ , then the situation is ’linear’ as in 2 and 3.

5. If K 6= ∅, then the condition mini∈I Ai + minj∈J Bj > 0 is not sufficient to claim that u∞ ∈ (0,∞)n.
Indeed, we may choose uk0 = 0 for some k ∈ K, and ui0 > 0 for all i 6= k. Then, by the point 3 above,
u∞k = 0 while mini∈I Ai + minj∈J Bj > 0.

6. It is natural to think that if ui0 > 0 for all i = 1, ..., n , then u∞ ∈ (0,∞)n. This is the case if
‖u(t)‖L∞(Ω) is bounded as t → +∞. Indeed, in this case, we get compactness of the trajectory in
L∞(Ω)n thanks to the Cα-estimate recalled in (25) and we can argue as follows.

Assume by contradiction that, for instance, 1 ∈ I and u∞1 = 0. It implies that 1 ∈ K and u∞j > 0 for
all j ∈ J . We deduce that

H(u(t)) = kfΠi∈Iui(t)
αi−βi − krΠj∈Juj(t)

βj−αj → −krΠj∈J(u∞j )βj−αj < 0 as t→ +∞,

and this convergence is uniform. Thus −H(u(t, x)) ≥ η > 0 for t large enough and for all x ∈ Ω.
Consequently, for t large enough (recall that 1 ∈ I so that β1 − α1 < 0)

∂t

∫
Ω
u1(t) =

∫
Ω

(β1 − α1)Πk∈Kuk(t)
σkH(u(t)) ≥ 0.

Then limt→+∞
∫

Ω u1(t) = 0 is possible only if there exists T < +∞ such that u1(T ) ≡ 0. But this is
not possible either since

∂t

∫
Ω
u1(t) ≥ −C

∫
Ω
u1(t), C := (α1 − β1) sup

t

∥∥u1(t)σ1−1Πk∈K,k 6=1uk(t)
σkH(u(t))

∥∥
L∞(Ω)

.
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Therefore
∫

Ω u1(t) ≥ e−Ct
∫

Ω u10 > 0 for all t > 0. �

Unfortunately, it is not clear how to extend such a proof to the weak solutions as defined in Proposition
1.1.
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