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Introduction and main results

The purpose of our work is to analyze the asymptotic behavior of the global solutions for reaction-diffusion systems arising in reversible chemical kinetics and with multiple equilibria. We consider the following reversible reaction process for a set of chemical species A i (i = 1, ..., n)

α 1 A 1 + ... + α n A n β 1 A 1 + ... + β n A n .
We assume that this takes place in a bounded regular domain Ω ⊂ R N with spatial diffusion phenomena.

According to the mass action law for the reactive terms and to Fick's law for the diffusion (see e.g. [START_REF] Bothe | On the Maxwell-Stefan approach to multicomponent diffusion[END_REF]), the concentrations u i = u i (t, x) will be assumed to satisfy the following reaction diffusion system for i = 1, ..., n and for all T ∈ (0, ∞)

   ∂ t u i -d i ∆u i = (β i -α i )(k f n j=1 u α j j -k r n j=1 u β j j ) in Q T := Ω × (0, T ), ∂ ν u i (x, t) = 0 on Γ T := ∂Ω × (0, T ), u i (x, 0) = u i0 (x) ≥ 0 in Ω, (1) 
where ∂ ν denotes the exterior normal derivative to ∂Ω, k f , k r ∈ (0, ∞) and α i , β i are nonnegative integers. Actually we will more generally assume that α i , β i ∈ {0, 1} ∪ [2, ∞) (so that the nonlinear reactive function is still of class C 2 ). We denote I := {i ∈ {1, ..., n}; α i -β i > 0}, J := {j ∈ {1, ..., n}; α j -

β j < 0}, (2) 
and we naturally assume I = ∅, J = ∅, I ∪ J = {1, ..., n}.

We are interested here in the asymptotic behavior as t → +∞ of the global solutions to this system. However, the question of existence of global solutions is delicate and we need to recall some facts. First, let us introduce the standard approximate system where 1 ≤ i ≤ n and ∈ (0, 1)

   ∂ t u i -d i ∆u i = f i (u ) in Q T , ∂ ν u i = 0 on Γ T , u i (•, 0) = u i0 ≥ 0 in Ω, (3) 
f i (u) = f i (u) 1+ n j=1 |f j (u)| , u i0 = inf{u i0 , -1 }, f i (u) := (β i -α i )F (u), F (u) := k f n j=1 u α j j -k r n j=1 u β j j . (4) 
Notice that f = (f 1 , ..., f n ) is locally Lipschitz continuous, quasi-positive and uniformly bounded by 1/ . By standard arguments, existence and uniqueness of a classical nonnegative solution u to (3) holds for all T > 0.

It is proved in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF] that u converges as → 0 (up to a subsequence) to a so-called renormalized solution to [START_REF] Bothe | On the Maxwell-Stefan approach to multicomponent diffusion[END_REF]. Let us recall the main facts proved in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF] and that we will use in this paper. For this, let us introduce : L i (s) := s(log s -1 + µ i ) + e -µ i ≥ 0 f or all s ∈ [0, ∞), µ i := [log k f -log k r ]/[n(α i -β i )], i = 1, ..., n, [START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF] and for all r ∈ (0, ∞), let

T r ∈ C 2 ([0, ∞); [0, ∞)) with 0 ≤ T r (s) ≤ 1, T r (s) ≤ 0 for all s ∈ [0, ∞), T r (s) = s for s ∈ [0, r], T r (s) = 0 for s ∈ [2r, ∞). (6) 
Proposition 1.1 Assume that u 0 = (u 01 , ..., u 0n ) belongs to L 1 (Ω) n and satisfies for all i = 1, ..., n, u i0 (x) ≥ 0 a.e.x ∈ Ω, and

Ω u i0 | log u i0 | < ∞.
Then, along a subsequence as ↓ 0 and for all i = 1, ..., n, T ∈ (0, ∞)

u i → u i a.e. in Q ∞ and in L 1 (Q T ), ∇ u i → ∇ √ u i weakly in L 2 (Q T ). (7) 
Moreover, the limit u = (u 1 , ..., u n ) satisfies the following properties: (I) (entropy inequality)

u i , u i log u i ∈ L ∞ 0, ∞; L 1 (Ω) , √ u i ∈ L 2 0, ∞; H 1 (Ω)
, and a.e.t,

Ω n i=1 L i (u i (t)) + t 0 Ω [ n i=1 d i |∇u i | 2 u i -n i=1 f i (u)[µ i + log(u i )] ≤ Ω n i=1 L i (u i0 ). (8) 
(II) (a renormalized property) For v i := u i + η j =i u j , η ∈ (0, 1],

∂ t T r (v i ) -d i ∆T r (v i ) = G 1 + G 2 + ∇ • G 3 , ∂ ν T r (v i ) = 0 on ∂Ω, T r (v i )(0) = T r (v i0 ), v i0 := u i0 + η j =i u j 0 , (9) 
where

   G 1 := T r (v i )[f i (u) + η j =i f j (u)] ∈ L ∞ (Q ∞ ), G 2 := -η j =i (d j -d i )T r (v i )∇v i ∇u j -T r (v i )|∇v i | 2 ∈ L 1 0, ∞; L 1 (Ω) , G 3 := η j =i (d j -d i )T r (v i )∇u j ∈ L 2 0, ∞; L 2 (Ω) . (10) 
We will come back to this proposition with more comments on its meaning and on its proof (see the beginning of Section 2 ). But let us continue with the main purpose of this paper. Let us define the equilibrium set associated with u 0 ∈ L 1 (Ω) +n and which contains the expected asymptotic limits. Note that they are constant functions.

     E u 0 := {e = (e 1 , ..., e n ) ∈ [0, ∞) n ; e satisf ies (E1) and (E2)}, (E1) k f i e α i i -k r i e β i i = 0, (E2) e i α i -β i + e j β j -α j = A i + B j , A i := u i0 α i -β i , ∀ i ∈ I, B j := u j0 β j -α j , ∀ j ∈ J, (11) 
where for v ∈ L 1 (Ω), we denote v :

= -Ω v = |Ω| -1 Ω v.
The main result of this paper is the following.

Theorem 1.2 Under the assumptions of Proposition 1.1, there exists u ∞ ∈ E u 0 such that the solution

u(t) = (u 1 (t), ..., u n (t)) satisfies u(t) → u ∞ in L 1 (Ω) n as t → +∞. ( 12 
)
If moreover u ∞ ∈ (0, ∞) n , then the convergence is exponential: there exist C, λ ∈ (0, ∞) such that

u(t) -u ∞ L 1 (Ω) n ≤ Ce -λt . Remark 1.3
The main interest of this result is that it applies to systems with boundary equilibria, that is when E u 0 is not reduced to a single point in (0, ∞) n and contains equilibria e whose components e i do vanish for some i. It says moreover that, if for a given u 0 the limit u ∞ ∈ (0, ∞) n , then the convergence is exponential even if E u 0 contains a boundary equilibrium. The convergence together with the exponential rate is well-known for the associated ODE system (see e.g. [START_REF] Gentil | Asymptotic Behavior of a general reversible chemical reaction-diffusion equation[END_REF]), but it is quite more delicate for the full PDE system. It is known for the systems considered here and more generally for so-called complex balanced systems, that there exists a unique element of E u 0 belonging to (0, ∞) n for all u 0 ∈ L 1 (Ω) +n with positive initial mass (i.e. with min i∈I A i + min j∈J B j > 0, see [START_REF] Horn | Necessary and suffcient conditions for complex balancing in chemical kinetics[END_REF]). For a subclass of these systems, E u 0 may even be reduced to this only positive equilibrium for all such u 0 with positive initial mass. Exponential convergence has been proved for such kinds of systems, first for some particular nonlinearities, then for general ones, see [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds[END_REF], [START_REF] Desvillettes | Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations[END_REF], [START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF], [START_REF] Pierre | Asymptotic behavior of solutions to chemical reaction-diffusion systems[END_REF], [START_REF] Fellner | Explicit exponential convergence to equilibrium for mass action reaction-diffusion systems with detailed balance condition[END_REF], [START_REF] Desvillettes | Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks[END_REF].

Among the systems (1) considered here, E u 0 is reduced to its positive equilibrium for positive initial masses when chemical species are "separated"

α 1 A 1 + ...α m A m β m+1 A m+1 + ... + β n A n . (13) 
This means there exists m ∈ {1, ..., n} such that α j = 0, β i = 0, j = m + 1, ..., n, i = 1, ..., m. Exponential convergence towards the positive equilibrium then holds (see [START_REF] Pierre | Asymptotic behavior of solutions to chemical reaction-diffusion systems[END_REF], [START_REF] Fellner | Explicit exponential convergence to equilibrium for mass action reaction-diffusion systems with detailed balance condition[END_REF], [START_REF] Desvillettes | Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks[END_REF]).

It may now happen that E u 0 is reduced to its only positive equilibrium for some u 0 with initial mass, but not all. It is then interesting to find conditions on u 0 so that this property holds. This is the purpose of Proposition 1.4 below. It may also happen that u ∞ ∈ (0, ∞) n while E u 0 contains also a boundary equilibrium (see Remark 1.5). Theorem 1.2 then states that the convergence is again exponential. We also refer to [START_REF] Fellner | Explicit exponential convergence to equilibrium for mass action reaction-diffusion systems with detailed balance condition[END_REF], [START_REF] Desvillettes | Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks[END_REF] for results on the asymptotic behavior of some specific systems with boundary equilibria, including models for more than two chemical reactions.

The analysis of the asymptotic behavior of global-in-time solutions for system (1) is mainly studied by the entropy method introduced and widely exploited in [START_REF] Desvillettes | Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds[END_REF], [START_REF] Desvillettes | Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations[END_REF] and then extended in the references [START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF], [START_REF] Pierre | Asymptotic behavior of solutions to chemical reaction-diffusion systems[END_REF], [START_REF] Fellner | Explicit exponential convergence to equilibrium for mass action reaction-diffusion systems with detailed balance condition[END_REF], [START_REF] Desvillettes | Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks[END_REF]. Here, the proof does also exploit the entropy estimates, but is different and consists in the following steps.

1) We prove that the trajectories t → u(t) are relatively compact in L 1 (Ω) n . This part is strongly based on the study of the compactness of the trajectories of t → w i,r (t) := T r u i (t) + η j =i u j (t) for η ∈ (0, 1) small and where T r (•) : [0, ∞) → [0, ∞) are usual regularizations of the truncations s ∈ [0, ∞) → min{s, r}. Letting r → +∞ and η → 0 carries the compactness of these truncated trajectories, valid for all r, η, over to u(t) itself. Similar techniques were also used in [START_REF] Pierre | Global-in-time behavior of weak solution to reaction diffusion system with inhomogeneous dirichlet boundary condition[END_REF] to study the asymptotic behavior in the case of nonhomogeneous boundary conditions. Here we use also some of the renormalized properties of u proved in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF].

This first step requires only part of the structure of System (1) and could be extended to quite more general systems.

2) Next we prove the convergence in C [0, T ]; L 1 (Ω) as t m → +∞ of the translated functions τ ∈ [0, T ] → w i,r (t m + τ ) where w i,r (t m ) converges in L 1 (Ω). Again, this property, valid for all r, η, carries over to τ → u m (t m +τ ) as well. Together with the estimates coming from the decrease of entropy, we deduce that all L 1 (Ω) n -limit points are constant functions and that the limit points are unique. Whence the asymptotic convergence in L 1 (Ω) n .

3) Finally, coupling with previous approaches, we recover that, when the limit u ∞ in ( 12) is positive, then the asymptotic convergence is exponential, this even if E u 0 contains boundary equilibria. This is essentially a consequence of Lemma 2.9.

When the solution is uniformly bounded (i.e. sup t u(t) L ∞ < +∞), one can prove that the asymptotic limit is positive as soon as u i0 > 0 for all i = 1, ...n, and the convergence is therefore exponential. This is probably true in general but this does not seem easily extendable to very weak solutions with so poor regularity as those of Proposition 1.1 (see Section 3 and Remark 3.1.)

We can however state a sufficient condition on the data u 0 so that E u 0 be reduced to its unique positive equilibrium. Let us define for all i = 1, ..., n, σ i := min{α i , β i } and K := {k ∈ {1, ..., n}; σ k > 0}. Then, the function F may be rewritten

F (X) = Π k∈K X σ k k H(X), H(X) := k f Π i∈I X α i -β i i -k r Π j∈J X β j -α j j , (14) 
where I, J were defined in [START_REF] Bothe | Quasi-steady-state approximation for a reaction-diffusion with fast intermediate[END_REF]. Let us also denote for

u 0 ∈ L 1 (Ω) +n A i := u i0 α i -β i , ∀ i ∈ I, B j := u j0 β j -α j , ∀ j ∈ J. If I ∩ K = ∅ (resp. J ∩ K = ∅)
, we set min i∈I∩K A i := +∞ (resp. min j∈J∩K B j := +∞). Note that, in the separate case ( 13), K = ∅ so that min i∈I∩K A i = +∞ = min j∈J∩K B j .

Proposition 1.4 Let u 0 ∈ L 1 (Ω) +n . In addition to the assumptions of Theorem 1.2, suppose that

min i∈I A i < min i∈I∩K A i , min j∈J B j < min j∈J∩K B j , min i∈I A i + min j∈J B j > 0. ( 15 
)
Then, E u 0 has no boundary equilibrium, i.e.

E u 0 = {Z}, Z ∈ (0, ∞) n , H(Z) = 0 and u(t) converges expo- nentially to Z in L 1 (Ω) n .
Remark 1.5 As already noticed, the assumption (15) holds in the separate case [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF]. But it holds in many more situations like the following elementary one (given as an example)

α 1 A 1 + A 2 β 1 A 1 + A 3 , α 1 > β 1 ,
when 0 < (α 1 -β 1 )u 20 < u 10 . On the other hand, when 0 < u 10 ≤ (α 1 -β 1 )u 20 , then E u 0 contains 2 elements:

E u 0 = 0 , u 20 -(α 1 -β 1 ) -1 u 10 , (α 1 -β 1 ) -1 u 10 + u 30 , Z where Z ∈ (0, ∞) 3 .
2 Proof of Theorem 1.2

Preliminary remarks. Let us first make some comments on Proposition 1.1 which is proved in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF]. Note that the entropy inequality (8) can be directly proved for the solution u of the approximate problem [START_REF] Cañizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF]. For this we use

∂ t Ω L i (u i (t)) = Ω (log u i + µ i )∂ t u i = Ω (log u i + µ i )[d i ∆u i + f i (u )]. (16) 
Then, after an integration by parts for the term with ∆u i , we sum over i to get the estimate [START_REF] Desvillettes | Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations[END_REF] with u in place of u. Then, as proved in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF], this is preserved for the limit u of u as → 0 along an adequate subsequence. The point is that (recall the definitions of F, µ i in ( 4), ( 5)

) i [log u i (t) + µ i ]f i (u (t)) = -1 + j |f j (u )| -1 log k f Π i (u i ) α i -log k r Π i (u i ) β i F ≤ 0. ( 17 
)
This implies the following estimates

sup t Ω u i (t) + u i (t)| log u i (t)|, Q∞ |∇ u i | 2 , Q∞ log k f Π i (u i ) α i -log k r Π i (u i ) β i F ≤ C, (18) 
with C ∈ (0, +∞) independent of . This is strongly used in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF] to prove the convergence of u a.e. and in L 1 loc ([0, ∞); L 1 (Ω)). Actually, by using known a priori L 2 -estimates on u i , we could show as in [START_REF] Pierre | Global existence for a class of quadratic reactiondiffusion systems with nonlinear diffusions and L 1 initial data[END_REF] that the convergence also holds in L 2 loc [0, ∞); L 2 (Ω) . The estimates (18) are preserved at the limit for u by using Fatou's lemma for the first and the third and by weak L 2 -convergence of ∇u i for the second one. Thus

ess sup t Ω u i (t) + u i (t)| log u i (t)|, Q∞ |∇ √ u i | 2 , Q∞ log k f Π i (u i ) α i -log k r Π i (u i ) β i F < +∞. ( 19 
)
We deduce from the second estimate that,

∇u i χ [u i ≤2r] is bounded in L 2 0, ∞; L 2 (Ω) for all r ∈ (0, ∞) . Indeed, +∞ > C ≥ +∞ 0 Ω |∇u i | 2 u i ≥ +∞ 0 [u i ≤2r] [∇u i | 2 2r . ( 20 
)
As a consequence, since

v i = u i + η j =i u j , ∇T r (v i ) = T r (u i + η j =i u j ) ∇u i + η j =i ∇u j , +∞ 0 Ω |∇T r (v i )| 2 ≤ +∞ 0 [u i ≤2r] 2|∇u i | 2 + j =i +∞ 0 [u j ≤2r/η] 2nη 2 |∇u j | 2 ≤ C(r, η) < +∞. ( 21 
)
The L 1 -estimate on G 2 and the L 2 -estimate on G 3 in (10) of Proposition 1.1 follow. The L ∞ -estimate on G 1 is obvious by the definition of T r and the local boundedness of the f i .

Next the equation ( 9) has to be understood in a variational sense: for all ψ ∈ C ∞ [0, ∞) × Ω and all T ∈ (0, ∞)

Ω T r (v i )(T )ψ(T ) -T r (v i )(0)ψ(0) + Q T -T r (v i )∂ t ψ + d i ∇T r (v i )∇ψ = Q T [G 1 + G 2 + ∇ • G 3 ]ψ. ( 22 
)
We will exploit quite a lot this identity which is a consequence of the fact that the limit u is a so-called renormalized solution of (1) as defined in [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF], Definition 1. In order to obtain it, we choose ξ(u) := T r (u i + η j =i u j ), b ≡ 0, g ≡ 0, A i = d i I in this definition.

The identity [START_REF] Winkler | Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model[END_REF] can also be written in terms of the heat semigroup (S d i (t)) t≥0 with homogeneous Neumann boundary conditions on L 1 (Ω) (see e.g. the appendix in [START_REF] Bothe | Quasi-steady-state approximation for a reaction-diffusion with fast intermediate[END_REF] for the equivalence of definitions). We can write,

T r (v i (t)) = S d i (t)T r (v i0 ) + t 0 S d i (t -s)[G 1 (s) + G 2 (s)]ds + w 3 (t), v i0 := u i0 + η j =i u j0 , (23) 
and w 3 is the variational solution of (see e.g. [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technonlogy[END_REF], Chapter XVIII for more details)

   w 3 ∈ C [0, ∞); L 2 (Ω) ∩ L 2 0, ∞; H 1 (Ω) , ∂ t w 3 -d i ∆w 3 = ∇ • G 3 ∈ L 2 0, ∞; H -1 (Ω) , ∂ ν w 3 = 0 on Σ ∞ , w 3 (0) = 0. ( 24 
)
Let us recall some useful properties of this semigroup that we will use later (see e.g. Lemma 1.3 in [START_REF] Winkler | Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model[END_REF]):

   S d i (t)w L p (Ω) ≤ w L p (Ω) , ∀ p ∈ [1, ∞], t ≥ 0, w ∈ L p (Ω), S d i (t)w --Ω w L 1 (Ω) ≤ Ce -λt w L 1 (Ω) f or some C, λ ∈ (0, ∞), S d i (t)[w --Ω w] C α (Ω) ≤ C(1 + t -β )e -λt w --Ω w L ∞ (Ω) f or some α, β ∈ (0, 1), C, λ ∈ (0, ∞). ( 25 
) Note also that [t → T r (v i (t))] ∈ C [0, ∞); L 1 (Ω) (according for instance to (23), ( 25 
) ). One can actually deduce that u ∈ C [0, ∞); L 1 (Ω) n : this is checked below in Lemma 2.5. Note finally that if sup ∈(0,1) F (u ) L 1 (Q T ) < +∞ for all T > 0, or even if F (u) ∈ L 1 (Q T ) for all T > 0, then u is a weak solution of (1), that is u i (t) = S d i (t)u i0 + t 0 S d i (t-s)f i (u(s)
)ds for all t ∈ [0, ∞), i = 1, ..., n, see [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction-diffusion systems[END_REF], [START_REF] Pierre | Global existence in reaction-diffusion systems with control of mass: a survey[END_REF], [START_REF] Fischer | Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems[END_REF]. This L 1 -estimate does hold if F is at most quadratic (see e.g. [START_REF] Desvillettes | About global existence for quadratic systems of reactiondiffusion[END_REF]). In some cases, classical global solutions may even be obtained (see [START_REF] Goudon | Regularity analysis for systems of reaction-diffusion equations[END_REF], [START_REF] Cañizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF], [START_REF] Caputo | Solutions of the 4-species quadratic reaction-diffusion system are bounded and C ∞ -smooth, in any space dimension[END_REF]), but it is an open problem for the general system (1). End of preliminary remarks.

Let us prepare the proof of Theorem 1.2 by several lemmas. Lemma 2.1 For all r ∈ (0, ∞), η ∈ (0, 1), the trajectory {T r v i (t) , t ≥ 0} is relatively compact in L 1 (Ω). Remark 2.2 A subset F ⊂ L 1 (Ω) is said to be relatively compact, if its closure is compact. It is well-known that it is equivalent to saying that, from any sequence in F, one can extract a subsequence which converges in L 1 (Ω). It is also equivalent to saying that F is precompact, which means that, for all > 0, there exists a finite number of functions

f i ∈ L 1 (Ω), i = 1, ..., N such that F ⊂ ∪ N i=1 B(f i , ), where B(f i ,
) is the open ball centered at f i and of radius in L 1 (Ω).

Proof of Lemma 2.1. Let us introduce the variational solutions

τ → w T j (τ ), j = 1, 2, 3 on [0, ∞) of ∂ τ w T j -d i ∆w T j = G 1 (T + •), G 2 (T + •), respectively ∇ • G 3 (T + •), ∂ ν w T j = 0 on Σ ∞ , w T j (0) = 0. ( 26 
)
When T = 0, we will write w 0 j = w j , j = 1, 2, 3 (which is compatible with (24) ). We then have

w j (t) = S d i (t -T )w j (T ) + w T j (t -T ) f or all t ≥ T ≥ 0. ( 27 
) T r v i (t) = S d i (t)T r (v i0 ) + w 1 (t) + w 2 (t) + w 3 (t) f or all t ∈ [0, ∞). (28) 
See ( 23), (26) for this last formula.

Goal 2.3 We will show that, as t → +∞,

• w 2 (t) has a limit in L 1 (Ω).

• w 3 (t) has a limit in L 2 (Ω) and therefore in L 1 (Ω).

• {w 1 (t); t ≥ 0} is relatively compact in L ∞ (Ω) and therefore in L 1 (Ω).

Since S d i (t)T r (v i,0 ) converges to -Ω T r (v i,0 ) in L 1 (Ω) as t → +∞ (see ( 25)), and according to (28), the compactness property announced in the Lemma 2.1 will follow.

Study of w 2 . From the definition of w T 2 , we have for all τ ∈ [0, ∞)

w T 2 (τ ) L 1 (Ω) ≤ τ 0 G 2 (T + s) L 1 (Ω) ds = T +τ T G 2 (s) L 1 (Ω) ds ≤ ∞ T G 2 (s) L 1 (Ω) ds. (29) 
Thus, using (27), we deduce for 0

≤ T ≤ t ≤ t + h w 2 (t + h) -w 2 (t) L 1 (Ω) ≤ S d i (t + h -T )w 2 (T ) -S d i (t -T )w 2 (T ) L 1 (Ω) + 2 ∞ T G 2 (s) L 1 (Ω) ds.
But, we know that S d i (s)w 2 (T ) converges as s → +∞ to -Ω w 2 (T ) in L 1 (Ω) (see ( 25)). Thus, the previous inequality implies lim sup t,t+h→+∞

w 2 (t + h) -w 2 (t) L 1 (Ω) ≤ 2 ∞ T G 2 (s) L 1 (Ω) ds, f or all T > 0.
As a consequence, since G 2 ∈ L 1 0, ∞; L 1 (Ω) , w 2 (t) has a limit in L 1 (Ω) as t → +∞.

Study of w 3 . Note that ∇ • G 3 ∈ L 2 0, ∞; H -1 (Ω) and G 3 • ν = 0 on (0, ∞) × ∂Ω (in a variational sense).

Multiplying the equation (26) in w T 3 by w T 3 and integrating on [0, τ ] lead to

1 2 Ω w T 3 (τ ) 2 + d i τ 0 Ω |∇w T 3 | 2 = τ 0 Ω w T 3 ∇ • G 3 (T + •) = - τ 0 Ω G 3 (T + •) • ∇w T 3 ≤ τ 0 Ω d i 2 |∇w T 3 | 2 + C(d i ) τ 0 Ω G 3 (T + •) 2 ≤ τ 0 Ω d i 2 |∇w T 3 | 2 + C(d i ) ∞ T Ω G 3 (•) 2
We deduce that, for all fixed T > 0

w T 3 (τ ) 2 L 2 (Ω) ≤ 2C(d i ) ∞ T G 3 (s) 2 L 2 (Ω) ds f or all T > 0. ( 30 
)
Thus, using (27), we deduce for 0

≤ T ≤ t ≤ t + h w 3 (t+h)-w 3 (t) L 2 (Ω) ≤ S d i (t+h-T )w 3 (T )-S d i (t-T )w 3 (T ) L 2 (Ω) +2 2C(d i ) ∞ T G 3 (s) 2 L 2 (Ω) ds 1/2
.

But, we know that S d i (s)w 3 (T ) converges as s → +∞ to -Ω w 3 (T ) in L 2 (Ω) (see (25 )). Thus, the previous inequality implies lim sup t,t+h→+∞

w 3 (t + h) -w 3 (t) L 2 (Ω) ≤ 2 2C(d i ) ∞ T G 3 (s) 2 L 2 (Ω) ds 1/2
, f or all T > 0.

As a consequence, since G 3 ∈ L 2 0, ∞; L 2 (Ω) , w 3 (t) has a limit in L 2 (Ω) as t → +∞.

Study of w 1 . Recall that w 1 is solution on (0, ∞) of

∂ t w 1 -d i ∆w 1 = G 1 , ∂ ν w 1 = 0, w 1 (0) = 0. ( 31 
)
First we have,

∂ t Ω w 1 (t) = Ω G 1 (t) and therefore -Ω w 1 (t) = t 0 - Ω G 1 (s)ds. It follows that w 1 (t) -- Ω w 1 (t) = t 0 S d i (t -s) G 1 (s) -- Ω G 1 (s) ds.
Remember the regularizing effect (see ( 25) )

S d i (τ )[u 0 -- Ω u 0 ] C α (Ω) ≤ C(1 + τ -β )e -λτ u 0 -- Ω u 0 L ∞ (Ω) ,
for some α, β ∈ (0, 1) and C, λ ∈ (0, ∞). This implies

w 1 (t) -- Ω w 1 (t) C α (Ω) ≤ t 0 C[1 + (t -s) -β ]e -λ(t-s) G 1 (s) --G 1 (s) L ∞ (Ω) ds. Since G 1 ∈ L ∞ (Q ∞ ), we deduce that sup t w 1 (t) -- Ω w 1 (t) C α (Ω) ≤ 2C G 1 L ∞ (Q∞) sup t t 0 [1 + (t -s) -β ]e -λ(t-s) ds < +∞ so that {w 1 (t) --Ω w 1 (t), t ≥ 0}) is relatively compact in L ∞ (Ω).
But, by (28),

w 1 = T r (v i )-S d i (t)T r (v i0 )-w 2 -w 3
where each of these four functions is in L ∞ 0, ∞; L 1 (Ω) . Thus so is w 1 . As a consequence, -Ω w 1 (t) lies in a compact set of R. It follows that w 1 (t) = w 1 (t) --Ω w 1 (t) + -Ω w 1 (t) is relatively compact in L ∞ (Ω). This ends the proof of Goal 2.3 and therefore of Lemma 2.1.

Lemma 2.4 Any L 1 (Ω)-limit point of T r (v i (t)) as t → +∞ is a constant function.

Proof. Let V ∞ be an L 1 (Ω)-limit point of T r (v i (t)) as t → +∞. Let (t m ) m be a sequence of times with

lim m→+∞ t m = +∞, T r (v i (t m )) → V ∞ in L 1 (Ω).
Let T > 0 and V m (τ ) := T r (v i (t m + τ )) for τ ∈ [0, T ]. We will prove that, at least up to a subsequence,

V m → V in C [0, T ]; L 1 (Ω) as m → +∞. ( 32 
)
Then V will in particular satisfy V (0) = V ∞ . Moreover, we know from ( 21) that

T 0 Ω |∇V m | 2 = tm+T tm Ω |∇T r (v i )| 2 ≤ ∞ tm Ω |∇T r (v i )| 2 → 0 as m → +∞.
By lower-semicontinuity of the norm for the weak-L 2 -convergence of ∇V m to ∇V ,

T 0 Ω |∇V | 2 = 0, that is ∇V (t) = 0 a.e. t ∈ [0, T ]. This implies that V (t,
•) is a constant function for a.e. t and therefore for all t ∈ [0, T ] since V ∈ C [0, T ]; L 1 (Ω) . It is in particular the case for V (0) = V ∞ , whence the statement of the lemma.

Thus let us prove (32). Let us introduce the same decomposition as in the previous proof, using the equation ( 9) and the notation (26), namely

V m (τ ) = T r (v i (t m + τ )) = S d i (τ )(T r (v i (t m )) + w tm 1 (τ ) + w tm 2 (τ ) + w tm 3 (τ ). ( 33 
)
From the estimates in the previous proof (see ( 29), (30)) we have,

lim m→∞ sup τ ∈[tm,∞) w tm 2 (τ ) L 1 (Ω) = 0 = lim m→∞ sup τ ∈[tm,∞) w tm 3 (τ ) L 2 (Ω) .
Let T > 0. The function w tm 1 is solution on [0, T ] of

∂ τ w tm 1 -d i ∆w tm 1 = G 1 (t m + •), ∂ ν w tm 1 = 0, w tm 1 (0) = 0. Since G 1 is bounded in L ∞ ((t m , t m + T ) × Ω), w tm 1 is relatively compact in L ∞ ((0, T ) × Ω)
and therefore in C([0, T ]; L 1 (Ω)). On the other hand, by the property of L 1 -contraction of the semigroup,

S d i (•)(T r (v i (t m )) converges in C [0, T ]; L 1 (Ω) to S d i (•)V ∞ .
Going back to (33), together with the convergence (resp. compactness) in C [0, T ]; L 1 (Ω) of w tm 2 , w tm 3 (resp. w tm 1 ), we deduce that, up to a subsequence, V m converges in C [0, T ]; L 1 (Ω) to some function V . This proves (32) and ends the proof of Lemma 2.4.

Lemma 2.5

The solution u defined in Proposition 1.1 is in C [0, ∞); L 1 (Ω) n with u(0) = u 0 . The trajectory {u(t); t ∈ [0, ∞)} is relatively compact in L 1 (Ω) n and any limit point as t → +∞ is a constant function.

Proof. Throughout this proof, we simply write • for • L 1 (Ω) . To prove the continuity of t → u(t) ∈ L 1 (Ω), we write for a.e. t, s ≥ 0

u i (t) -u i (s) ≤ h i (t) + h i,r (t) + T r (v i (t)) -T r (v i (s)) + h i,r (s) + h i (s), h i (t) := u i (t) -v i (t) , h i,r (t) := v i (t) -T r (v i (t)) ≤ Ω (u i (t) + η j =i u j (t) -r) + . (34) 
Recall that, for all i (see [START_REF] Pierre | Global existence for a class of quadratic reactiondiffusion systems with nonlinear diffusions and L 1 initial data[END_REF] ),

ess sup t≥0 { u i (t) + u i (t) log u i (t) } < +∞.
Thus, for some various C ∈ (0, ∞) independent of i, t, η, r where r ≥ 1

a.e.t, h i (t) ≤ η n j=1 u j (t) ≤ η C, (35) a 
.e.t, h i,r (t) ≤ Ω (u i (t) -r) + + η n j=1 u j (t) ≤ 1 log r Ω u i (t)| log u i (t)| + η C ≤ ( 1 log r + η) C. (36) 
We deduce from (34), ( 35), (36)

a.e.t, u i (t) -u i (s) ≤ 2ηC + 2[(log r) -1 + η]C + T r (v i (t)) -T r (v i (s)) .
By continuity of s → T r (v i (s)) at s = t, it follows that a.e.t, ess lim sup

s→t u i (t) -u i (s) ≤ 2ηC + 2[(log r) -1 + η]C.
Whence the expected continuity of a representative of u by letting η → 0, r → +∞. We obtain in a similar way that

u i (t) -u i0 ≤ 2ηC + 2[(log r) -1 + η]C + T r (v i (t)) -T r (v i0 ) .
Up to a subsequence, we may assume that u m converges a.e. (τ, x) to U . Using Fatou's lemma and the nonnegativity of the integrand, we deduce

F (U (τ )) = k f Π i U i (τ ) α i -k r Π i U i (τ ) β i = 0 a.e.τ ∈ [0, T ], and even ∀ τ ∈ [0, T ], (39) 
by continuity of U . This holds in particular for U (0) = u ∞ , namely

k f Π i (u ∞ i ) α i -k r Π i (u ∞ i ) β i = 0. ( 40 
)
Now we use the invariant quantities [START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF]. The invariance holds for the approximate solution u of Problem (3) since

∂ t Ω (β j -α j )u i (t) + (α i -β i )u j (t) = Ω (β j -α j )f i (u ) + (α i -β i )f j (u ) = 0, so that u i (t) α i -β i + u j (t) β j -α j = A i + B j f or all i ∈ I, j ∈ J, t ≥ 0.
By convergence of a subsequence as → 0 of u (t) for a.e. t in L 1 (Ω), the identities are valid at the limit for u(t), at least a.e. t, but even for all t ≥ 0 by continuity of u. By translation, they hold for u m (τ ), and by convergence in L 1 (Ω) n as m → +∞, they also hold for U (τ ) and in particular for

U (0) = u ∞ , namely u ∞ i α i -β i + u ∞ j β j -α j = A i + B j f or all i ∈ I, j ∈ J. (41) 
Let us prove that these relations, together with (40), are satisfied by only a finite number of points in [0, ∞) n . Let X ∈ [0, ∞) n satisfy

F (X) = k f Π i X α i i -k r Π i X β i i = 0, X i α i -β i + X j β j -α j = A i + B j f or all i ∈ I, j ∈ J. (42) 
As already noticed in [START_REF] Gentil | Asymptotic Behavior of a general reversible chemical reaction-diffusion equation[END_REF], the function F may be rewritten

F (X) = Π k∈K X σ k k H(X) := Π k∈K X σ k k k f Π i∈I X α i -β i i -k r Π j∈J X β j -α j j
, where σ i := min{α i , β i , i = 1, ..., n}, K := {k ∈ {1, ..., n}; σ k > 0}. In the following, we assume, without loss of generality, that 1 ∈ I. Then, the identities in (42) allow to solve all X i , X j in terms of X 1 , namely

X j = (β j -α j ) A 1 + B j -(α 1 -β 1 ) -1 X 1 , ∀ j ∈ J, X i = (α i -β i ) (α 1 -β 1 ) -1 X 1 + A i -A 1 , ∀ i ∈ I. (43) 
Now F (X) = 0 implies one of the two situations: Case

1: Π k∈K X σ k k = 0. Case 2: H(X) = k f Π i∈I X α i -β i i -k r Π j∈J X β j -α j j = 0.
Case 1: assume for instance, without loss of generality, that X 1 = 0. All X i , i ∈ I, X j , j ∈ J are then uniquely determined by the relations (43). Case 2: let us denote h(X

1 ) := H(X) = k f Π i∈I X α i -β i i -k r Π j∈J X β j -α j j
where each of the X i , X j are given in terms of X 1 as in (43). Since all X i are increasing functions of X 1 and all X j are decreasing function of

X 1 , h is an increasing function of X 1 ∈ [X - 1 , X + 1 ]
where

X - 1 := (α 1 -β 1 )(A 1 -min i∈I A i ) + ≤ X + 1 := (α 1 -β 1 )(A 1 + min j∈J B j ).
so that

E(u(t)) -E(Z) = i - Ω u i log u i u i + (u i -Z i )(µ i + log Z i ) + u i log u i Z i -1 + Z i . (54) 
Using the estimate s(log s -1) + 1 ≥ C(M )(s -1) 2 for s ∈ [0, M ], we also have

|u i -Z i | 2 = Z 2 i u i Z i -1 2 ≤ CZ 2 i u i Z i log u i Z i -1 + 1 ≤ C u i log u i Z i -1 + Z i . (55) 
Using ( 53), (55), then (54), and summing over i = 1, ..., n lead to

u(t) -Z 2 L 1 (Ω) n ≤ C i u i (t) -u i (t) 2 L 1 (Ω) + u i (t) -Z i 2 L 1 (Ω) ≤ C|Ω| 2 [E(u(t)) -E(Z) -R] , with R = i (u i -Z i )(µ i + log Z i ).
It turns out that R = 0 (whence (52) ). Indeed, by ( 45), (50), we have (u i -Z i ) = (α i -β i )A 1 for all i = 1, ..., n so that (recall the definition of µ i in ( 5) )

R = A 1 n i=1 (α i -β i )(µ i + log Z i ) = A 1 log k f Π n i=1 Z α i i /k r Π n i=1 Z β i i = 0.
Remark 2.10 For a future use, we notice the identity deduced from (54) and from R = 0: for all u ∈ L 1 (Ω) +n with

√ u i ∈ H 1 (Ω), u i log u i ∈ L 1 (Ω), i = 1, ..., n, E(u) -E(Z) = - Ω i u i log u i u i + u i log u i Z i -1 + Z i , ( 56 
)
where Z is defined in (45) and

A i := u i α i -β i f or all i ∈ I, B j := u j β j -α j
f or all j ∈ J.

Remark 2.11 It is clear from the previous proof that, to obtain the exponential rate, it is sufficient to assume that u ∞ k > 0 for all k ∈ K. See also the comments given in Remark 3.1. Proof of Lemma 2.8. This inequality is essentially proved in [START_REF] Pierre | Asymptotic behavior of solutions to chemical reaction-diffusion systems[END_REF]. Let us just recall here the main ingredients of the proof.

For the approximate and regular solution u of (3), we know that

d dt E(u ) + D (u ) = 0, ( 57 
) with D (u) = 4- Ω n i=1 d i |∇ √ u i | 2 + - Ω F (u) 1 + i |f j (u)| log k f n i=1 u α i i k r n i=1 u β i i ≥ 0. ( 58 
)
The equality (57) means that for all φ

∈ C ∞ 0 ([0, ∞)) + φ(0)E(u 0 ) + ∞ 0 φ (t)E(u (t)) dt = ∞ 0 φ(t)D (u (t)) dt. (59) 
Proof of Step 3. This inequality is actually valid for any C 2 function G in place of F m . This is proved in Lemma 2.12 below. The condition α

i , β i ∈ {0, 1} ∪ [2, +∞) implies that F m is C 2 on [0, ∞) n .
Actually, it would be sufficient for our purpose to assume α i , β i ∈ {0} ∪ [1, ∞). In this case, F m would be C 1 on [0, ∞) n and C 2 only on (0, ∞) n . But, since Lemma 2.9 is used only in the case when the limit of u(t) is in (0, ∞) n , we can avoid the difficulty near 0.

Proof of Step 4. Note that

F m ( √ u) 2 = Π k∈K u σ k k k f Π i∈I u α i -β i i -Π i∈J u β j -α j j 2 = k f Π n i=1 u α i i -k r Π n i=1 u β i i 2 .
Thus Step 4 is a consequence of the scalar inequality

( √ X - √ Y ) 2 ≤ (X -Y ) log X Y f or all X, Y ∈ (0, ∞).
We apply it to 

X := k f Π n i=1 u α i i , Y := k r Π n i=1 u β i i and
G := max r∈[0,U +1) n {|G(r)|, ∇G(r) , D 2 G(r, r) } such that G √ u 2 ≤ C- Ω G( √ u) 2 + n i=1 |∇ √ u i | 2 f or all u ∈ L 1 (Ω) +n , (68) 
where √ u = ( √ u i ) 1≤i≤n .

Proof. This proof follows closely the steps of the proof of Lemma 13 in [START_REF] Pierre | Asymptotic behavior of solutions to chemical reaction-diffusion systems[END_REF]. All constants C may differ from each other, but will depend only on the two values U, G defined in the lemma. Let us introduce σ = σ(x) ∈ R n for x ∈ Ω by √ u = √ u + σ. First, we have

G( √ u) 2 = G( √ u + σ) 2 = G( √ u) + ∇G( √ u) • σ + M 2 ,
where M = 

2G( √ u)∇G( √ u) • σ ≥ - 1 2 G( √ u) 2 -2(∇G( √ u) • σ) 2 ≥ - 1 2 G( √ u) 2 -C σ 2 .
It follows from the two previous inequalities and

|G( √ u )| ≤ C that G( √ u) 2 ≥ 1 2 G( √ u) 2 -C( σ 2 + |M |). (69) 
Next, since √ u ≥ 0 implies σ ≥ -√ u in R n , we have the partition Ω = Ω 1 ∪ Ω 2 where

Ω 1 = {x ∈ Ω | - √ u i ≤ σ i (x) ≤ 1, ∀ 1 ≤ i ≤ n}, Ω 2 = ∪ 1≤i≤n {x ∈ Ω | σ i (x) > 1}.
For x ∈ Ω 1 , s ∈ [0, 1], one has: 0 ≤ √ u i + sσ i ≤ 1 + √ u i , so that

|M | ≤ 1 0 (1 -s) D 2 G( √ u + sσ) ds • σ 2 ≤ C σ 2 , x ∈ Ω 1 .
Together with (69), we deduce

Ω 1 G( √ u) 2 dx ≥ Ω 1 1 2 G( √ u) 2 -C σ 2 dx. (70) 
We also have

Ω 2 G( √ u) 2 dx = |Ω 2 |G( √ u) 2 ≤ G( √ u) 2 n i=1 [σ 2 i > 1] with [σ 2 i > 1] = [σ 2 i >1] dx ≤ [σ 2 i >1] σ 2 i dx ≤ Ω σ 2 i dx, which implies Ω 2 G( √ u) 2 dx ≤ G( √ u) 2 Ω σ 2 dx ≤ C Ω σ 2 dx. (71) 
By ( 70)-( 71), we obtain

G( √ u) 2 = - Ω G( √ u) 2 dx ≤ C- Ω [G( √ u) 2 + σ 2 ] dx. (72) 
Then, using in particular the Schwarz inequality " √ u i ≥ -Ω √ u i ", we have

- Ω σ 2 i = - Ω u i -2 √ u i √ u i + u i ≤ 2 -u i -- Ω √ u i 2 = 2- Ω √ u i -- Ω √ u i 2 .
Using Poincaré-Wirtinger's inequality implies that

- Ω σ 2 i = 2- Ω √ u i -- Ω √ u i 2 ≤ C- Ω |∇ √ u i | 2 .
Whence (68) by plugging the sum of these inequalities for i = 1, ..., n into (72).

3 Proof of Proposition 1.4 and some more comments .

1 0 ( 1

 11 -s)D 2 G( √ u + sσ)[σ, σ] ds. Using (∇G( √ u) • σ + M ) 2 ≥ 0,this implies By Young's inequality and the estimate |∇G( √ u ) • σ| ≤ C σ , we have

Proof of Proposition 1 . 4 .

 14 Recall that the set E u 0 is defined by the relationse ∈ [0, ∞) n , F (e) = 0, e i α i -β i + e j β j -α j = A i + B j , ∀ i ∈ I, ∀j ∈ J, A i := u i0 α i -β i , ∀ i ∈ I, B j := u j0β j -α j ∀ j ∈ J.

  [START_REF] Gentil | Asymptotic Behavior of a general reversible chemical reaction-diffusion equation[END_REF] ),F (e) = Π k∈K e σ k k H(e), H(e) = k f Π i∈I e α i -β i i -k r Π j∈J e β j -α j j
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Then using that T r (v i (t)) tends to T r (v i0 ) in L 1 (Ω) as t → 0, we deduce that u i (0) = u i0 .

Let us now prove the compactness property. By Lemma 2.1, we know that {T r (v i (t); t ∈ [0, ∞)} is relatively compact (or precompact, see Remark 2.2) in L 1 (Ω) for all i, r ∈ (0, ∞), η ∈ (0, 1], where v i = u i + η j =i u j . For any f ∈ L 1 (Ω), we may write

where h i , h i,r are defined in (34). We deduce from (35), (36)

Let ∈ (0, 1). Let us choose (and fix) r large enough and η small enough so that (log r) -1 +2η ≤ /4C. By precompactness of {T r (v i (t)), t ∈ [0, ∞), i = 1, ..., n}, there exists a finite number f k ∈ L 1 (Ω), k = 1, ..., K such that T r (v i (t)) ∈ ∪ K k=1 B (f k , /2) , f or all t ∈ [0, ∞) and all i. Together with the estimate (38) and the choice of r, η, this implies

, f or all t ∈ [0, ∞) and all i.

Whence the precompactness announced in Lemma 2.5. Now since any limit point of T r (v i (t)) as t → +∞ is a constant function for all r, η, i, the same property follows for all limit points of u i (t) itself.

Lemma 2.6 There exists u ∞ ∈ E u 0 , as defined in [START_REF] Fellner | Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems[END_REF], such that u(t) converges to u ∞ in L 1 (Ω) n as t → +∞, where u is the solution defined in Proposition 1.1.

Proof. By Lemma 2.5, we know that the trajectory {u(t), t ≥ 0} is relatively compact in L 1 (Ω) n . We will prove the uniqueness of the limit points as t → +∞. It will follow that u(t) converges toward this unique limit point as t → +∞.

Let u ∞ ∈ L 1 (Ω) n be a limit point. Let (t m ) be a sequence of times such that

As in the proof of the previous lemma, we write again more simply • := • L 1 (Ω) and we recall the notation V m (τ ) = T r (v i (t m + τ ))). We may write

where the functions h i , h i,r are defined in (34). We proved in Lemma 2.4 that V m is converging in 

Letting η → 0, r → +∞, we deduce that u m i converges in C [0, T ]; L 1 (Ω) to some U i . We saw in Lemma 2.4 that the limit V of V m does not depend on the x-variable. This being true for all i, η, r, it implies the same property for the limit U = (U 1 , ..., U n ) of u m , i.e. U (τ ) ∈ [0, ∞) n for all τ . Note also that U (0) = u ∞ . Now we use the estimate [START_REF] Pierre | Global existence for a class of quadratic reactiondiffusion systems with nonlinear diffusions and L 1 initial data[END_REF] which implies

Moreover h(X - 1 ) ≤ 0, h(X + 1 ) ≥ 0. Thus there exists a unique X 1 ∈ [X - 1 , X + 1 ] such that h(X 1 ) = 0 and therefore a unique X ∈ [0, ∞) n solution of (42) in this Case 2.

A main consequence is that the set X ∞ ⊂ [0, ∞) n of solutions X of (42) is finite : the above analysis proves that X ∞ has at most |K| + 1 elements where |K| is the number of elements of K. According to (40), (41), u ∞ ∈ X ∞ . Since u ∞ is arbitrary as a limit point, we deduce that

has a finite number of points, it follows that ω(u 0 ) is reduced to one point. Moreover this point belongs to E u 0 since it satisfies (42).

This ends the proof of Lemma 2.6.

Remark 2.7 In the Case 2 of the previous proof, it is easy to check that

Thus, in this case, there exists a unique X 1 ∈ (X - 1 , X + 1 ) satisfying h(X 1 ) = 0. Moreover, we check that all X i , X j given by ( 43) are then strictly positive. In other words, there exists a unique Z ∈ (0, ∞) n such that

The convergence part of Theorem 1.2 is a consequence of Lemma 2.6. It remains to show that the convergence is exponential when the limit as t → +∞ of u(t) in L 1 (Ω) n belongs to (0, ∞) n . This will be a consequence of the two following lemmas.

For w ∈ L 1 (Ω) +n with w i log w i ∈ L 1 (Ω) for all i = 1, ..., n, we denote (see ( 5) )

Lemma 2.8 For the solution u defined in Proposition 1.1, we have

in the sense of distributions on (0, ∞), where

Recall the writing

as introduced in ( 14) for X ∈ [0, ∞) n . We also denote

Assume that V := min i∈I A i + min j∈J B j > 0. Let Z ∈ (0, ∞) n be defined by (45). Then,

where C ∈ (0, ∞) depends only V , on U := max n i=1 u i and on the data |Ω|, α i , β i , µ i , i = 1, ..., n.

We postpone the proof of these two lemmas and show how they imply Theorem 1.2.

Proof of Theorem 1.2

The convergence part is a direct consequence of Lemma 2.6.

For the exponential rate, let us assume that u ∞ := lim t→+∞ u(t) ∈ (0, ∞) n . Then (see ( 14) ) F (u ∞ ) = 0 implies in fact H(u ∞ ) = 0. Let us recall the invariance property

Since lim t→+∞ u i (t) = u ∞ i > 0 for all i ∈ I and lim t→+∞ u j (t) = u ∞ j > 0 for all j ∈ J, it follows that V:=min i∈I A i + min j∈J B j > 0. In particular u ∞ = Z as defined in (45). Then by ( 46), (49), we deduce

By assumption, there exists T ∈ (0, ∞) such that Π k∈K u k (t) σ k ≥ Π k∈K e σ k k /2 =: Λ > 0 for all t ≥ T . This implies

Let us finally prove that, for some other constant C ∈ (0, ∞) (depending only on V, U and the data |Ω|, α i , β i , µ i as in Lemma 2.9, and like all constants C used in this proof)

This will end the proof of Theorem 1.2 since by ( 51)

The proof of (52) is made as usual by using the Cziszár-Kullback-Pinsker estimate (see Theorem 31 in [START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF]):

-

On the other hand, we use the structure of the entropy E. We check that

By Proposition 1.1, we know that u is obtained as a limit of u along a subsequence p → 0. We easily obtain that

This is a consequence of the weak convergence of ∇ u p i to ∇ √ u i in L 2 (Q T ) for all T ∈ (0, ∞) and of Fatou's Lemma applied to the other integral.

The next (more difficult) point is to prove that, at least up to a subsequence

Since E(u (t)) ≤ E(u 0 ) ≤ C < +∞, (60) allows to pass to the limit in (59) to obtain

which is the claim of Lemma 2.8. The main point in the proof of (60) is the fact that u is bounded in L 2 ((τ, T ) × Ω)) for all 0 < τ < T < +∞ as proved in Lemma 4 of [START_REF] Pierre | Global existence for a class of quadratic reactiondiffusion systems with nonlinear diffusions and L 1 initial data[END_REF]. Together with the a.e convergence of u , this implies the convergence of subsequences of u p i log u p i in L 1 ((τ, T ) × Ω)) and therefore in L 1 (Ω) for a.e. t ∈ (0, ∞).

Proof of Lemma 2.9. In this proof, the meaning of the constants C will vary from one line to the other, but it depends only on the quantities U, V , defined in the Lemma 2.9 and on the various data. By (56), we have

By the logarithmic Sobolev inequality (see e.g. Theorem 17 in [START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF])

Using the definition of D(u) in (47) and the fact that Π k∈K u σ k ≤ C, we deduce

It remains to prove that, similarly

Let us enumerate the steps to be proved to reach this inequality.

Using these four steps yields (61), and therefore Lemma 2.9. Indeed, combining them leads to

Let us now prove successively these four steps.

Proof of Step 1. We use the inequality s(log s -1)

Then we sum over i = 1, ..., n.

Indeed, assuming this estimate (66), we deduce (again with different constants C as explained above)

To obtain (66), we write the variation of H as follows, with ξ(s) := (1 -s)Z + su,

where

due to the identity (see (45), (48) ),

To obtain (66), it is sufficient to prove that θ ≥ C > 0. Indeed

This quantity is positive and bounded from below by a positive number depending on min 1≤i≤n Z i and of V = min{min i∈I A i + min j∈J B j } which is assumed to be positive in Lemma 2.9.

By assumption, min i∈I A i + min j∈J B j > 0. Thus, for e ∈ E u 0 , if e i * = 0 for some i * ∈ I, then e j > 0 for all j ∈ J. This implies H(e) = -k r Π j∈J e β j -α j j = 0. Since F (e) = 0, necessarily, i * ∈ K. On the other hand, since

e i * = 0 implies also that A i ≥ A i * for all i ∈ I so that min i∈I A i = 0 = min i∈I∩K A i . This is a contradiction with the assumption of Proposition 1.4. Therefore e i * = 0, i * ∈ I is impossible for e ∈ E u 0 . This implies that e i > 0 for all i ∈ I. We prove similarly that e j > 0 for all j ∈ J. Therefore e ∈ (0, ∞) n and, since H(e) = 0, necessarily E u 0 = {Z} where Z is defined in (45). By Theorem 1.2, the convergence toward u ∞ = Z is then exponential.

Remark 3.1 When min i∈I A i + min j∈J B j > 0, it follows from the expression of F (e) = Π k∈K e σ k k H(e) that (see ( 45) )

e

Thus positivity on K is enough to deduce e ∈ (0, ∞) n and e = Z. And in this case, convergence is exponential.

Actually here are some possible situations.

1. If K = ∅ and min i∈I A i + min j∈J B j > 0, then E u 0 = {Z} and u(t) converges to Z exponentially.

2. If K = ∅ and there exist i * ∈ I, j * ∈ J with u i * = 0 = u j * , then u i * (t) = 0 = u j * (t) for all t ≥ 0. This implies, F (u(t)) = 0 so that, for all i, u i is the solution of the linear heat equation with initial data u i0 and u i (t) converges exponentially to u i0 as t → +∞ (see (25) ).

3. If K = ∅ and there exists k ∈ K such that u k0 = 0, then u k (t) = 0 for all t ≥ 0 and again F (u(t)) = 0 and u i is again solution of the linear equation for all i.

4. If K = ∅ and there exist i * ∈ I, j * ∈ J with u i * = 0 = u j * , then the situation is 'linear' as in 2 and 3.

5. If K = ∅, then the condition min i∈I A i + min j∈J B j > 0 is not sufficient to claim that u ∞ ∈ (0, ∞) n . Indeed, we may choose u k0 = 0 for some k ∈ K, and u i0 > 0 for all i = k. Then, by the point 3 above, u ∞ k = 0 while min i∈I A i + min j∈J B j > 0. 6. It is natural to think that if u i0 > 0 for all i = 1, ..., n , then u ∞ ∈ (0, ∞) n . This is the case if u(t) L ∞ (Ω) is bounded as t → +∞. Indeed, in this case, we get compactness of the trajectory in L ∞ (Ω) n thanks to the C α -estimate recalled in (25) and we can argue as follows.

Assume by contradiction that, for instance, 1 ∈ I and u ∞ 1 = 0. It implies that 1 ∈ K and u ∞ j > 0 for all j ∈ J. We deduce that H(u(t)) = k f Π i∈I u i (t) α i -β i -k r Π j∈J u j (t) β j -α j → -k r Π j∈J (u ∞ j ) β j -α j < 0 as t → +∞, and this convergence is uniform. Thus -H(u(t, x)) ≥ η > 0 for t large enough and for all x ∈ Ω. Consequently, for t large enough (recall that 1 ∈ I so that β 1 -α 1 < 0)

Then lim t→+∞ Ω u 1 (t) = 0 is possible only if there exists T < +∞ such that u 1 (T ) ≡ 0. But this is not possible either since

Therefore Ω u 1 (t) ≥ e -Ct Ω u 10 > 0 for all t > 0.

Unfortunately, it is not clear how to extend such a proof to the weak solutions as defined in Proposition 1.1.