Passive acoustic monitoring of large gravel bed rivers

Geay T.¹, P.Belleudy¹, J.Laronne^{1,2}, C.Gervaise³, H.Habersack⁴, J.Aigner⁴

¹LTHE, Université de Grenoble, France ²Ben Gurion Univ. of the Negev, Beer Sheva, Israël ³GIPSALab, Grenoble, France ⁴Univ. of Bodenkultur, Wien, Austria

This research is supported by the project **GESTRANS** (ANR-09-RISK-004)

Geay T. - Passive acoustic monitoring of large gravel bed river

Self Generated Noise (SGN) Acoustic pressure, using a hydrophone

Plan

- **Comparative measurements** in natural streams
 - Rhine River
 - Drau River

• River acoustics

- Observations in a large gravel bed river
- Interpretations

Conclusion & perspectives

Comparative measurements

- Hydrophone vs. Underwater camera (*Thorne*, 1986; *Barton*, 2003)
- Hydrophone vs. geophones

Laboratory & marine studies

 Acoustic intensities have been related to bedload fluxes [Johnson and Muir; Thorne 1985, 1986; Rouse, 1994; Voulgaris et al., 1995]:

Zurich 04th Sep. 2013

Geay T. - Passive acoustic monitoring of large gravel bed river

- Digital signal→ pre-processing to filter extraneous noises (in time and frequency plans)
- **Sound Pressure Level** (SPL in dB re 1µPa):

Rhine River

- Operational bedload monitoring
- Hydrophone & underwater camera

Bundesanstalt für Gewässerkunde

bf

Rhine River

- Detection of initiation of motion in a large gravel bed river (at a local scale);
- →Hydrophone response at higher bedload fluxes in flood is yet to be determined.

Drau River (Austria)

- Highly equiped cross-section (H.Habersack research team, BOKU, Vienna)
- Hydrophone monitoring system

Calibration of Geophone-Signal

(Habersack et al.; (in prep.) Integrated Bedload Transport Monitoring at the Drau - Isel system.)

IM Fuss

SEDALP

Geay T. - Passive acoustic monitoring of large gravel bed river

Drau River

• Acoustic Data:

- **Sampling rate**: 1 min duration once every 10 min ;
- **Raw data** (Wave files, 500 kHz);

→ To be compared to a continuous monitoring of the geophones and water-level

Drau River 50 days of acoustic data

Water depth • Hydrophone

Geay T. - Passive acoustic monitoring of large gravel bed river

Drau River

- Temporal variation of hydrophone and geophone are highly correlated; geophone response is highly correlated with physical bedload sampling;
- → Potential of the hydrophone for bedload monitoring in large gravel bed rivers

Plan

- **Comparative measurements** in natural streams
 - Rhine River
 - Drau River

• River **acoustics**

- Observations in a large gravel bed river
- Interpretations

Conclusion & perspectives

River acoustics

Self Generated Noise (SGN)

Signal to Noise Ratio (SNR)

Arc en Maurienne River

Flushing operations: surface velocity up to 3 m/s

Arc en Maurienne River

Arc en Maurienne River

---- Water Level

• Central Frequency

Geay T. - Passive acoustic monitoring of large gravel bed river

Geay T. - Passive acoustic monitoring of large gravel bed river

Arc en Maurienne – ambient noise

Frequency (Hz)

Geay T. - Passive acoustic monitoring of large gravel bed river

Frequency & diameters

Geay T. - Passive acoustic monitoring of large gravel bed river

Helley-Smith Sampling

(Camenen, 2010)

B.Camenen research team

Helley-Smith Sampling

(Camenen, 2010)

Geay T. - Passive acoustic monitoring of large gravel bed riv

Grain Size Distribution

(Helley-Smith sampling)

Geay T. - Passive acoustic monitoring of large gravel bed river

River acoustics

• Propagation effects:

- Geometric dispersion (environment geometry and boundary conditions)
- Attenuation & absortion by water and suspended sediments
- Interferences

• • • •

→ **frequency** dependent

(Ratio wavelength & problem dimensions)

Signal = direct + surface reflected

Signal = direct + surface reflected + bottom reflected

• Pekeris waveguide:

• Pekeris waveguide:

Suitability (hydrophone)

- Continuous sampling & high temporal resolution
- Sediment type: gravel and larger
- Stream type : large gravel bed river
- Integrative measurement
- Not disruptive to flow field
- Easy to deploy (but not everywhere)
- Low cost
- Potential use as calibration standard: probably not

Perspectives

- Improve signal descriptors (signal processing)
- More calibration relative to the noise generated by interparticle collisions (Laboratory experiments)
- Active acoustic methods to investigate river acoustics in the middle frequency range (1-100 kHz)

Thanks for your listening

This research is supported by the project **GESTRANS** (ANR-09-RISK-004)

Geay T. - Passive acoustic monitoring of large gravel bed river

Central frequency (Hz)

 $\alpha_{_{\rm nint}}$

Attenuation coefficient computed using:

Thorne & Meral (2008) , diffraction component *Urick* (1948), viscous component

	Fréquences (kHz)			
	0.1 kHz	l kHz	10 kHz	100 kHz
α_{scat} (dB/m)	3,1.10 ⁻¹⁶	3,1.10 ⁻¹²	3,1.10-8	3,1.10-4
𝒫 _{visc} (dB/m)	1,0.10-3	5,4.10-3	1,9.10-2	6,3.10 ⁻²

Table 6.2 : Composantes d'atténuation calculées selon (6.19) et (6.21) pour une concentration de 10 g/L, une densité de sédiment de 2000 kg/m⁻³ et une viscosité cinématique de 1,20.10⁻⁶ m²s⁻¹.

Impulses & squared integrals

Geay T. - Passive acoustic monitoring of large gravel bed river

Wenz Diagram, River version

Acoustic pressure, vertical profile

Vertical profile – Modal propagation model

Diagramme de Bode

