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Abstract

We compute the isovector algebra of the Hamilton-Jacobi-Bellman equation when

the potential belongs to a class that strictly includes quadratic potentials, and then

determine a canonical basis for it.

This setting allows us to parametrize canonically the important class of one factor

interest rate models. To cite this article: P.Lescot, H.Quintard, C. R. Acad. Sci.

Paris, Ser. I 340 (2005).

Résumé

Symétries de l’équation de la chaleur rétrograde avec potentiel et modèles

de taux d’intérêt. Nous calculons l’algèbre des isovecteurs de l’équation de

Hamilton-Jacobi-Bellman lorsque le potentiel appartient à une certaine classe qui

inclut strictement celle des potentiels quadratiques, et en déterminons ensuite une

base canonique.
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Ce cadre nous permet de paramétrer canoniquement l’importante classe des modèles

affines de taux d’intérêt à un facteur. Pour citer cet article : P.Lescot, H.Quintard,

C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1 Introduction

We determine the Lie algebra H(C,D) of pure isovectors for the backward heat

equation

θ2
∂η

∂t
= −θ

4

2

∂2η

∂q2
+ V η, (EV )

or more precisely for the related (HJB) equation (E ′V ) obtained by setting

S = −θ2 ln(η), with potential V =
C

q2
+ Dq2 ; this generalizes previously

known results ([7], [8]) corresponding to C = D = 0, and to D = 0, C > 0. It

turns out that, for fixed D, whichever C 6= 0, HC,D is a certain 4-dimensional

subalgebra PD of H0,D, which is itself 6-dimensional ; furthermore, PD and

H0,D possess canonical bases continuous in D and compatible with the inclu-

sions PD ⊂ H0,D.

This potential appears naturally in the study of one-factor interest rate mod-

els: each such model can be parametrized by a Bernstein process for V .

The contents of §4 first appeared in the second author’s Master’s Thesis

(Rouen, 2011).

Complete proofs of these results will appear along with other material in [9].

Email addresses: paul.lescot@univ-rouen.fr (Paul Lescot),

helene.quintard@gmail.com (Hélène Quintard).
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2 Context and previous results about the heat equation with po-

tential

First we need to recall some definitions and properties of some useful tools.

For more details the reader could refer to [5] and [3].

Let E be a vector space of dimension n, and U an open subset of E.

Definition 2.1 A differential form of degre p, p ∈ N on U is a smooth appli-

cation from U to
∧pE∗ where

∧pE∗ is the space of linear alternating p-forms.

We call Ωp(U) the set of those forms and we set Ω(U) = ⊕∞p=0Ω
p(U).

Theorem 2.2 There is a unique linear application d : Ω(U)→ Ω(U) with the

following properties :

(1) d(Ωp(U)) ⊂ Ωp+1(U) ;

(2) on Ω0(U), d is the differential on functions ;

(3) if α, β ∈ Ω(U), d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ ;

(4) d ◦ d = 0.

This application is called the exterior differential.

Definition 2.3 Let U and V be two open subsets of vector spaces M and N

and f ∈ C∞(U, V ). The inverse image by f of α ∈ Ω(V ), noted f ∗α is the

form on V defined by : (f ∗α)x = t(Txf) ·αf(x), where Txf is the linear tangent

application to f at point x.

Definition 2.4 The Lie derivative associated with a vector field X is the linear

application LX : Ωp(U)→ Ωp(U), α 7→ ( d
dt

)(φ∗tα)|t=0 where φt is the local one-

parameter group associated with X.

φ∗tα is a differential form.
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Theorem 2.5 The operator LX is characterized by the following properties :

(1) if f ∈ C∞(U), LXf = df(X) = X · f ;

(2) LX ◦ d = d ◦ LX ;

(3) for all α and β differential forms we have LX(α∧β) = LXα∧β+α∧LXβ

(i.e. LX is a derivation of the algebra Ω(U)).

Now we recall the steps of the Harrisson-Estabrook method to find the sym-

metries of a PDE system (E) of order p on U . We will consider every partial

derivative of order i, i < p as a new variable (and call m the number of those

new variables), that gives a certain number of new PDEs. The differential

system of all those PDEs and (E) will be called (E’). Then we find a family

of differential forms such that their vanishing is equivalent to (E’).

We call I the closed ideal spanned by those differential forms. The goal is to

find a submanifold of dimension n in the space of dimension m+ n called M

where the differential forms vanish.

Definition 2.6 An isovector N of (E) is a vector field on M such that LN(I) ⊂

I.

Theorem 2.7 [3]

(1) The isovectors of (E) form a Lie algebra.

(2) This Lie algebra is independent of the new variables up to an isomorphism.

Let’s study the equation (EV ) with those tools.

The first step is to transform this equation in an Hamilton-Jacobi-Bellman

equation. To perform that we proceed as in [8], setting S = −γ2 ln(η). This

gives the equation :

−∂S
∂t

+
1

2
(
∂S

∂q
)2 − V − γ2

2

∂2S

∂q2
= 0. (E ′V )
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We denote by GV the isovector algebra for that equation (see [8], (3.2), p.209).

A typical element N of GV is then of the form N = N q ∂
∂q

+ N t ∂
∂t

+ NS ∂
∂S

+

NB ∂
∂B

+NE ∂
∂E

.

The N∗ are dermined by the formulas (3.9’) et (3.22)-(3.29) in the proof of

Theorem 3.3 in [8] which can be summarized as :

N q =
1

2
T ′N(t)q + l(t), N t = TN(t), NS = h(q, t, S),

NB =
1

2
T ′N(t)B − ∂h

∂q
+B

∂h

∂S
,

NE = −(
1

2
T ′′N(t)q + l′(t))B − T ′N(t)E − ∂h

∂t
+ E

∂h

∂S
,

(1)

where p, l and φ satisfy :

h(q, t, S) = γ2p(q, t)e
1
γ2
S − φ(q, t), φ(q, t) =

1

4
T ′′Nq

2 + l′q − σ(t),

γ2
∂p

∂t
= −γ

4

2

∂2p

∂q2
+ pV,

− ∂φ

∂t
+ TN

∂V

∂t
+ (

1

2
T ′Nq + l)

∂V

∂q
− γ2

2

∂2φ

∂q2
+ T ′NV = 0.

(2)

We set HV = {N ∈ GV |
∂NS

∂S
= 0} (for V ≡ 0, HV is H from [7]). The

elements of HV are termed ”pure isovectors”.

Let eµN map (t, q, S, B,E) to (tµ, qµ, Sµ, Bµ, Eµ), and ηµ(tµ, qµ) = e
− 1

γ2
Sµ ;

then ηµ is a solution of (EV ). Setting eµÑ(µ) := ηµ, we obtain :

Ñη(t, q) = −N t∂η

∂t
−N q ∂η

∂q
−NS 1

γ2
η (3)

(see [8], p.216, and, in the context of the Black-Scholes equation, [6]).

Lemma 2.8 HV is a Lie subalgebra of GV (see [7], p.214) and N 7→ −Ñ is a

Lie algebra morphism, in particular H̃V := {Ñ | N ∈ HV } is a Lie algebra.
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3 Parametrization of a one-factor affine model

In this section, we will show that we one-factor affine model can be parametrized

by a Schrödinger process for V (t, q) = C
q2

+Dq2.

First we recall the definition of a Schrödinger process. A very general definition

was given in [11] under the name of Bernstein process. For more clarity we

shall use the definition from a more recent paper [10] :

Definition 3.1 A Schrödinger process between two Borelian probability mea-

sures µ0, µT on R associated to a solution η of (E ′V ) is a process (Xt)t∈[0,T ]

verifying that for u = γ2 1
η
∂η
∂q

:

(1) Xt = X0 +
∫ T
0 u(s,Xs)ds+ γ2Bt where Bt is a brownian motion ;

(2) X0 (resp XT ) has law µ0 (resp µT ) ;

(3) E [
∫ T
0 [[1/2|u(t,Xt)|2 + V (t,Xt)]dt] <∞ .

According to theorems 2.2 and 2.4 of [10], if we take µ0 et µT two borelian

probability measures on R, there exists a unique solution η of (E ′V ) and a

unique process X that satisfy the previous definition.

We say that (Xt)t≥0 is a Schrödinger process if for all T > 0, (Xt)t∈[0,T ] is a

Schödinger process on [0, T ] for the law µ0 of X0 and the law µT of XT .

An one–factor affine interest rate model is characterized by the instantaneous

rate r(t), satisfying the following stochastic differential equation :

dr(t) =
√
αr(t) + β dw(t) + (φ− λr(t)) dt (4)

under the risk–neutral probability Q (α = 0 corresponds to the Vasicek model,

and β = 0 corresponds to the Cox–Ingersoll–Ross model ; cf. [4]).
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Assuming α > 0, let us set φ̃ =def φ+
λβ

α
and δ =def

4φ̃

α
, and we also assume

that φ̃ ≥ 0. Let us then set Xt = αr(t) + β and z(t) =
√
Xt.

Theorem 3.2 Consider the stopping time T = inf{t > 0|Xt = 0} ; T =

+∞ a.s. for δ ≥ 2, and T < +∞ a.s. for δ < 2, and there exists a Schrödinger

process y(t) for γ =
α

2
and the potential V (t, q) =

C

q2
+Dq2 , where

C :=
α2

8
(φ̃− α

4
)(φ̃− 3α

4
) =

α4

128
(δ − 1)(δ − 3), and D :=

λ2

8
such that

∀t ∈ [0, T [ z(t) = y(t) . In particular, for δ ≥ 2, z itself is a Bernstein process.

4 Isovectors in the case V (t, q) =
C

q2
+Dq2

Theorem 3.2 motivates us to find the explicit form of the isovectors for the

potential : V (t, q) =
C

q2
+Dq2.

We shall denote H(C,D) = HV , PD = H(0,D), H̃(C,D) = H̃V and P̃D = H̃(0,D).

Theorem 4.1 For C 6= 0, H(C,D) = H(1,D) ' H(1,0) has dimension 4 ; for

C = 0, H(C,D) ' H(0,0) has dimension 6. Furthermore these Lie algebras

possess canonical bases, continuous in D for fixed C, and compatible with the

inclusions H(C,D) ⊆ H(0,D).

Corollary 4.2 The isovector algebra HV associated with V has dimension

6 if and only if φ̃ ∈ {α
4
,
3α

4
}, i.e. δ ∈ {1, 3} ; in the opposite case, it has

dimension 4.

In particular the isovector algebra associated with the affine model has di-

mension 6 if and only if δ ∈ {1, 3} ; in the opposite case, it has dimension

4.
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