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 

Abstract— Goal: Hexahedral automatic model generation is a 

recurrent problem in computer vision and computational 

biomechanics. It may even become a challenging problem when 

one wants to develop a patient-specific finite-element (FE) model 

of the left ventricle (LV), particularly when only low resolution 

images are available. In the present study, a fast and efficient 

algorithm is presented and tested to address such a situation. 

Methods: A template FE hexahedral model was created for a LV 

geometry using a General Electric (GE) ultrasound (US) system. 

A system of centerline was considered for this LV mesh. Then, 

the nodes located over the endocardial and epicardial surfaces 

are respectively projected from this centerline onto the actual 

endocardial and epicardial surfaces reconstructed from a 

patient’s US data. Finally, the position of the internal nodes is 

derived by finding the deformations with minimal elastic energy. 

This approach was applied to eight patients suffering from 

congestive heart disease. A FE analysis was performed to derive 

the stress induced in the LV tissue by diastolic blood pressure on 

each of them. Results: Our model morphing algorithm was 

applied successfully and the obtained meshes showed only 

marginal mismatches when compared to the corresponding US 

geometries. The diastolic FE analyses were successfully 

performed in seven patients to derive the distribution of principal 

stresses. Conclusion: The original model morphing algorithm is 

fast and robust with low computational cost. Significance: This 

low cost model morphing algorithm may be highly beneficial for 

future patient-specific reduced-order modelling of the LV with 

potential application to other crucial organs. 

 
Index Terms—Model morphing, Numerical simulation, 

EchoPac® ultrasound imaging, Cardiac modelling. 

 

I. INTRODUCTION 

n spite of recent advances in medical imaging and image 

processing, constructing a patient-specific finite-element 
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(FE) mesh of the left ventricle (LV) remains daunting. In 

addition to the challenges of accurately reconstructing patient 

anatomy, numerical simulations of cardiac mechanics put 

strict demands on mesh quality and regularity, as illustrated in 

[1]. Another issue is that automatic geometry extraction 

usually provides surface data (STL format). Often, the volume 

surrounded by this surface can be simply meshed with 

tetrahedral elements. One example of such method is 

integrated in General Electric (GE) Healthcare ultrasound 

(US) system named EchoPac® software. The LV is 

reconstructed in triangulated elements which can be easily 

converted into tetrahedral meshes [2].  

However, a critical problem arises in meshing an organ with 

hexahedral elements, the standard choice in 3D solids thanks 

to their numerical and computational efficiency and accuracy, 

especially if a large number of patients have to be processed 

within a reasonable timeframe [3]. Their shape functions, 

directional sizing without loss, accurate connectivity and 

decrease in overall elements population in comparison to 

tetrahedral meshes are the proven essential properties of such 

elements [3]-[4]. In addition, it is easy to consider a local 

coordinate system for such elements to determine the 

anisotropic material behavior of the LV in FE codes. 

However, in order to generate automatically hexahedral 

elements, one requires a precise knowledge of element shape 

functions and nodal connectivity in mesh domain which might 

not be available. 

In addition to these meshing methods, NURBS-based 

elements may also be employed with great potential [5]. An 

example of such methods was previously developed to 

reconstruct personalized meshes using cubic elements with a 

Hermite shape function [1]. The proposed method wraps a 

predefined NURBS-based high quality template mesh onto the 

registered images. This interpolation requires a wrapping field 

from nodal positions and the derivatives of the shape function 

to the local coordinates [6]. However, the success of mesh 

wrapping intrinsically depends both on the level of image 

resolution as well as the number of control points 

appropriately employed. Bad image quality, wrong choice of 

control points, presence of noise and inaccurate wrapping field 

may be possible causes of wrapping failure or overfitting. We 

suggest a new approach which overcomes these difficulties for 

low resolution images by directly projecting a template mesh, 
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called the reference deformable FE (RDFE) model, onto a 

subject’s geometry. 

The paper is organized as following: the new approach is 

introduced in Section II. In Section III, this proposed method 

is used to morph a deformable LV model meshed in 

hexahedral elements onto the geometry of eight subjects for 

whom US images were acquired in triangulated surfaces. In 

Section IV, the FE models reconstructed for these subjects are 

employed to derive the distribution of principal stresses in the 

LV wall. Finally, the potential benefits and also some 

limitations of the presented method are discussed in Section V 

before concluding in Section VI. 

II. METHODS 

A. Introduction to the methodology 

Model morphing and deformable shape registration [7]-[9] 

are commonplace in medical computational modelling [10]-

[11]-[13]-[14]-[15] and computer vision [12]-[24]-[25]-[26]-

[27].  

Here, we developed an algorithm that can address situations 

in which the template model and the target geometry have a 

different structure. We considered an available healthy 

geometry of a human LV for this purpose instead of a 

truncated ellipsoid or other generic data, as this method is 

insensitive to the geometry of the reference data. The three 

stages of the algorithm are described in the following sections: 

1: Reference Rigid Transformation: align basal surfaces. 

2: Nonrigid Transformation: register only the nodes located 

on the boundaries of the template RDFE model. 

3: Intermediate Node Deformation. 

 

B. Rigid Body Registration Method 

Two geometries are available for this application: a 

template geometry, the RDFE model, meshed with hexahedral 

elements (bulk volume) and a target subject specific geometry, 

meshed only with triangular elements at its boundaries 

(meshed surface).  

Let (𝑷𝑖
𝑁𝑒) (i   [1,3]) denote the position vectors of a set of 

nodes defining a triangle on the basal surface (refer to Fig.2) 

of the template RDFE geometry. Then we define the template 

unit normal vector as: 

 

𝑵𝑁𝑒 = (𝑷2
𝑁𝑒 − 𝑷1

𝑁𝑒) × (𝑷3
𝑁𝑒 − 𝑷1

𝑁𝑒). (1) 

 

The target surface is made of 𝑁𝑒′ elements with 𝑁𝑝′ nodes. 

Let P′i
𝑁𝑒′

 be the position vectors of a set of nodes defining a 

triangle perpendicular to the main axis of the LV (this main 

axis is obtained by a singular value decomposition of the 

nodal coordinates). The plane defined by these three nodes is 

the basal plane of the target geometry. Then we define the 

target unit normal vector such as: 

 

𝑵′𝑁𝑒′
= (𝑷2

′𝑁𝑒′
− 𝑷1

′𝑁𝑒′
) × (𝑷′3

𝑁𝑒′
− 𝑷1

′𝑁𝑒′
). (2) 

 

Given that: 𝑁𝑒′ ≪ 𝑁𝑒 and 𝑁𝑝′ ≪ 𝑁𝑝. 

Using Rodrigues' formula [28], we define successfully (Eqs 

3 to 6): the normalized rotation vector of basal normals (axis 

of rotation) 𝑹𝑽, the cross product matrix 𝑅𝑉̅̅ ̅̅ , the 

anticlockwise angle   about the axis 𝑅𝑉̅̅ ̅̅  and the rotation 

matrix 𝑅. 

 

𝑹𝑽 = −(𝑵′𝑁𝑒′

× 𝑵𝑁𝑒 )/||𝑵′𝑁𝑒′

× 𝑵𝑁𝑒||, (3) 

 

𝑅𝑉̅̅ ̅̅ = [

0 −𝑹𝑽(3) 𝑹𝑽(2)

𝑹𝑽(3) 0 −𝑹𝑽(1)

−𝑹𝑽(2) 𝑹𝑽(1) 0

], (4) 

 

𝑐𝑜𝑠𝜃 = (𝑵′𝑁𝑒′

. 𝑵𝑵𝒆)/(𝑵′𝑁𝑒′

𝑵𝑁𝑒), (5) 

 

𝑅 = 𝐼 + 𝑠𝑖𝑛𝜃 𝑅𝑉̅̅ ̅̅ + (1 − 𝑐𝑜𝑠𝜃) 𝑅𝑉̅̅ ̅̅ 2. (6) 

 

Then we rotate the RDFE mesh with the 𝑅 matrix to align it 

with the target mesh.  

 

C. Nonrigid Registration Method for the Boundaries 

We define two points to define the centerline of the RDFE 

model: the first point is at the barycenter of the RDFE basal 

surface and the second one is at the barycenter of the apical 

surface (refer to Fig.2). The centerline is only defined for the 

 
Fig. 2.  An illustration of cut planes for LV geometry. The equatorial 

plane 1 forms the basal surface and plane 2 defines the spherical part 

(apex). 

 
Fig. 1.  Proposed model morphing pipeline which is outlining the three steps of 

rigid and nonrigid transformation. 
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RDFE mesh since it will be used to project nodes of the RDFE 

model onto the target surface.  

From this centerline, for every node of the RDFE mesh, we 

consider another vector, denoted Ray, normal to the centerline 

and passing through each RDFE node. This Ray points 

towards the target surface. For each RDFE node, we derive the 

intersection of Ray and the target surface using the triangle 

intersection algorithm proposed by [29]. This algorithm takes 

the vertices T(V1, V2, V3) of each triangle from the target 

surface and examines whether the current Ray from the RDFE 

centerline to the RDFE current node intersects it or not on its 

trajectory.  

We know that the intersection point of Ray and the triangle, 

denoted by 𝑰𝒏𝒕, should lie in the plane of the triangle. 

Therefore, we can write a system of equations (7) and (8).  

 

𝑻(𝑎, 𝑏) = (1 − 𝑎 − 𝑏)𝑽1 + 𝑎 𝑽2 + 𝑏 𝑽3, (7) 

 

𝑰𝒏𝒕 = 𝑂 + 𝑡𝑫. (8) 

 

where T(a,b) is the barycenter coordinates of the current 

triangle; t is the distance (unknown) from the Ray origin O to 

the intersection point 𝑰𝒏𝒕 with direction D. 

 

Then we need to solve the equation 𝑻(𝑎, 𝑏) = 𝑰𝒏𝒕: 

 

𝑂 + 𝑡𝑫 =  (1 − 𝑎 − 𝑏)𝑽1 + 𝑎𝑽2 + 𝑏𝑽3, (9) 

 

Denoting 𝒆1 = 𝐕𝟐 − 𝐕1 and 𝒆2 =  𝐕3 − 𝐕1, equation (9) can 

be rewritten as: 

 

[𝑫 𝒆1 𝒆2] [
𝑡
𝑎
𝑏

] = 𝑂 − 𝑽1,  (10)  

 

Based on Cramer’s rule: 

 

[
𝑡
𝑎
𝑏

] = 1/(|−𝑫 𝒆1 𝒆2|  |

𝑺 𝒆1 𝒆2

−𝑫 𝑺 𝒆2

−𝑫 𝒆1 𝑺
|). (11) 

 

where 𝑺 = 𝑂 − 𝑽1. 

Solving (11) gives three parameters (t,a,b)  which should 

fulfill several conditions. The first condition is that Ray 

should intersect the triangle. We begin by calculating the 

determinant 𝑑𝑒𝑡 = 𝒆1. (𝑹𝒂𝒚 × 𝑒2) and if the determinant is 

below 1×10−5, the Ray is parallel to the triangle.  

Then, we calculate u =  𝑑𝑒𝑡−1(𝐑𝐚𝐲 × 𝒆2). (𝐑𝐚𝐲 origin −

𝑽1) and v =  𝑑𝑒𝑡−1𝐑𝐚𝐲 . ((𝐑𝐚𝐲 origin − 𝑽1) × 𝒆1). If (u,v) 

<0 and (u ,u+v)>1, the intersection lies outside of the triangle. 

Finally, two triangles are found candidates which one is on the 

correct direction of the current Ray. The correct intersection 

position should be on the line from centerline to the RDFE 

node (t>0). This process is repeated for all the RDFE surface 

nodes and the 3D coordinates of intersection points are saved 

(Fig.3). The epicardial RDFE surface nodes were also 

projected on the respective target surface.  

The presented approach outlined in Section II.B-C was 

developed using an in-house program coded in MATLAB®.  

 

 

D. Registration Method Across the Bulk Volume  

In the previous section, we defined the method to project 

surface nodes of the RDFE model onto the target geometry. 

However, it does not provide the deformation to be applied to 

the nodes located inside the RDFE model and not on its 

boundary surfaces. In order to deform the intermediate nodes 

across the bulk, the displacements of the RDFE boundaries are 

used to define a classical linear elastic Dirichlet problem on 

the continuous RDFE 3D volume. We refer to Hooke's law of 

basic continuum mechanics [30]-[31]: 

 

𝜎 = 𝐶 𝜀. (12) 

 

where 𝐶 is the fourth-order elasticity tensor, ɛ is the elastic 

deformation and σ is the Cauchy stress tensor. 

Boundary conditions for the Dirichlet problem are the 

known displacements of the RDFE surface determined as 

explained in the previous section: 

 

𝑈 = 𝑢.̅      (13) 

 

where 𝑢̅ is the prescribed displacement vector on the 

boundaries 𝜕Ω𝑢. Vector 𝑢̅ connects each RDFE node to its 

projection on the target geometry.    

III. APPLICATION ON COHORT DATA 

To validate our approach we applied it to the LV of 8 

patients and performed FE stress analyses with the obtained 

morphed meshes. 

 

 
Fig. 3.  The figure shows: left, the centerline which connects the center of 

apex edge of LV to the center of basal part. The basal and apical planes are 

shown in blue and red circles on the LV body. Right, several projections of 

reference nodes in red to the target surface in blue from defined centerline. 
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A. Data Acquisition  

To reconstruct the RDFE geometry, the LV of a healthy 

volunteer was segmented at end-diastole (ED) from EchoPac® 

(GE Healthcare) [2]. Then, the RDFE model was precisely 

created with 8-noded linear brick (hexahedral) elements with 

𝑁𝑝 = 155,172 nodes and 𝑁𝑒 = 141,405 elements by Abaqus® 

software tools. The cavity and tissue volumes of this model 

were 89.3 and 112.6 ml, respectively. 

Imaging data from eight heart failure patients with left 

bundle branch block (LBBB) eligible for cardiac 

resynchronization therapy (CRT) were obtained from the 

Impact study [32]. LV geometries (Fig.4) were measured 

throughout the cardiac cycle with cardiac US, and post 

processing of the US images were performed in the Echopac® 

Software (GE Healthcare) at admission to the Hospital. 

Pressure curves were acquired during the implantation 

procedure of the CRT with an indwelling left ventricular 

transcutaneous intracardiac pressure catheter (MicroCath, 

Millar Instruments). Pressure curves were stored in the 

LabChart data acquisition software (Adinstruments Inc.). 

The target geometries were closed surfaces of endocardium 

and epicardium which were meshed with triangulation 

algorithm in EchoPac® [2]; 𝑁𝑝′= 1282 nodes and 𝑁𝑒′ = 2558 

elements, precisely the situation described in Section II.B: 

𝑁𝑒′ ≪ 𝑁𝑒 and 𝑁𝑝′ ≪ 𝑁𝑝. 

 

B. Model Morphing Method Application on Cohort 

We registered and projected the RDFE boundaries to each 

patient as explained above (Section II.B-C). The continuum 

deformation of intermediate nodes is modelled with elastic 

properties of Young's modulus and Poisson's ratio equal to 

2×106 MPa and 0.35, respectively. These material parameters 

provided a reasonable deformation of RDFE 3D model to the 

target geometries. To arrive at this parameterization, we ran 

several simulations with different Young’s moduli and 

Poisson’s ratios to study the deformation of RDFE model and 

compared the morphed results with patient’s surfaces. This 

process was performed using FE Abaqus® software (a 

multimedia file has been provided to show this step for Case 

#1). As the RDFE geometry is an open cavity surface, the final 

expected result is a morphed open cavity with the bulk LV 

tissue of patient data. 

 

C.  Cohort Diastolic Phase FE Simulation 

We applied the developed model morphing method on all 

patients’ geometries at early diastole   and ED (see Fig.5 for 

early diastole) in their pressure-volume curve at contraction 

and relaxation phases, respectively.  

For the diastolic phase, we used the Guccione strain energy 

function 𝑊 for a nearly incompressible and transversely 

isotropic material model [33], developed in Abaqus® software 

with parameters in Table I [34]. The strain energy function W 

may be written as: 

 

𝑊 = 𝑐(exp(𝑄) − 1)/2 + 𝑈(𝐽),                                          (14) 

 

 
Fig. 4.  The LBBB patient geometries obtained from EchoPac® postprocessing on GE US data. The endocardial and epicardial surfaces shown in green and red, 

respectively, for early diastole instance. 
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where 𝑄 is: 

 

𝑄 = 𝑏1𝐸̅ 𝑓𝑓
2 + 𝑏2(𝐸̅ 𝑠𝑠

2 + 𝐸̅ 𝑛𝑛
2 + 2𝐸̅ 𝑠𝑛

2 ) + 𝑏3(2𝐸̅ 𝑓𝑠
2 + 2𝐸̅ 𝑓𝑛

2 ). 

(15) 

 

where, c and b1-3 are the material parameters, 𝐸̅ 𝑖𝑗  are the 

components of the distortional Green-Lagrange strain tensor in 

the local coordinate system in fiber, sheet and normal to sheet 

directions, and U(J) is the volumetric part of the strain energy 

function [35]. U(J) in the FE simulation was defined as a 

function of bulk modulus K and with J which is the 

determinant of the deformation gradient.  

 

𝑈(𝐽) = 𝐾((𝐽2 − 1)/2 −  ln (𝐽))/2.                                    (16) 

 

A local curvilinear coordinate system aligned along the 

fiber direction was considered to model myocyte directions 

based on [36]. It was assumed that myofibres run parallel to 

the surfaces (imbrication angle equal to zero). Fiber directions 

varied from 60° at the endocardial surface to -70° at the 

epicardial surface, where 0° is the circumferential direction. 

In order to avoid rigid body motion in FE simulations, the 

basal nodes were allowed to deform radially. We applied the 

corresponding patient's cavity pressure (refer to Table II) from 

early diastole to the ED to the endocardial surface and 

performed diastolic simulations. The diastole phase is where 

the ventricular tissue is relaxed and the oxygenated blood 

enters to the LV cavity. 

IV. RESULTS 

The method outlined in Fig.1 was applied for all patients in 

Fig.4, as shown in Fig.5.  

 The registration and projection methods for each surface 

(MATLAB®) took less than 10 min on a 2 core PC (Intel 

i5−4590 3.3 GHz 8Go RAM) and the intermediate 

deformation (Abaqus®) takes about 5 min on 8 cores (Intel 

Xeon X5650 2.67 GHz 24Go RAM). The total process for 

each patient uses approximately 25 min of wall time. 

 An illustration of the diastolic phase is shown in Fig.6. For 

Cases #1, #2, #4, #6, and #8, we observed a homogenous 

distribution of principal stresses through the wall thickness 

which highlights the high quality of the morphed elements. In 

Cases #3 and #5, we noticed several elements at both base and 

apex which have different values than their surroundings. This 

shows that the methodology can be quite sensitive to the 

conical shape of the apex in terms of the quality of deformed 

elements. The basal differences in these cases might be due to 

the applied boundary conditions to the basal nodes which limit 

some degrees of freedom for rigid body deformation for 

diastolic simulations. Case #7 had no convergence success due 

to the LV extremely thin wall thickness and subsequently 

distorted elements.  

Table III contains the intracavital volume obtained from FE 

ED simulations and patient’s data. There are small differences 

in final intracavital volume which is due to the tissue material 

parameters.  

In Table IV, we report the following metrics about mesh 

quality: the aspect ratio, the minimum angle on the hexahedral 

faces, the maximum angle on the hexahedral faces and the 

elements’ minimum edge length. For each of the 8 patients, 

the extreme values (worst value across the whole ventricular 

volume with 141,405 elements) and the average value of each 

metrics are reported. Extreme values reported in Table IV 

reasonably remain in a range of sufficient mesh quality for a 

TABLE I 
MATERIAL PARAMETERS 

c (Pa) 𝑏1 𝑏2 𝑏3 K (kPa) 

512 67.1 24.2 21.6 0.1 

 

 

 
Fig. 5.  The figure shows the application of developed model morphing method on LBBB patient geometries obtained from EchoPac® US at  early diastole 

instance. 

TABLE II 

INTRACAVITAL PRESSURE OBTAINED FROM LBBB PATIENTS 

Case #1 #2 #3 #4 #5 #6 #7 #8 

 Pressure 

(kPa) 
3.2 4 1.333 3.2 0.4 3.6 1.84 3.466 
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finite-element analysis. Only 2 cases had elements with an 

apsect ratio above 10. However, for one of them (Case #5), the 

worst minimum and maximum angles were similar to the other 

cases and the element with the worst aspect ratio did not bring 

trouble for the linear elastic finite-element analysis of Case #5 

(ill-conditionning of the stiffness matrix due distorted 

elements was not reported). Finally, Case #7 was the only case 

with poor mesh quality, showing a worst aspect ratio of 82 and 

extreme minimum and maximum angles significantly smaller 

and larger, respectively, than the values of the other cases.  

V. DISCUSSION 

In general, nonrigid registration is a challenging problem 

and it is dependent on the input data. It is also treated as a 

nonlinear optimization problem [37], [38], [27]. However, the 

local optimization methods may become stuck in local optima 

if not properly initialized. A better option can be a global 

optimization algorithm that does a complete search to find the 

global solution. 

Here, we developed a novel approach for simple patient-

specific nonrigid transformation of biological organs without 

considering it as an optimization problem. We avoid these 

optimization difficulties and overfitting problems as discussed 

in [1]. The advantage is that our algorithm did not need 

physical correspondence on both geometries for projection and 

additionally produced meaningful, physiologically relevant 

results. It also does not require a priori assumption or 

constraints to project the RDFE 3D surface to the target 

surface. The ability to ignore target mesh problems as gaps, 

overlaps and holes is one of the important properties of this 

developed approach. However, the optimization methods 

become more interesting when the reference geometry is too 

coarse and its mesh does not precisely represent the target 

geometry.  

We have developed a method to morph a deformable LV 

model to patient LV data in the case where RDFE and target 

meshes are very different in density. Previously, [39] 

developed a centerline method for arteries. It worked by 

moving a Voronoi sphere on the average centerline of the 

artery and finding the intersect positions of this sphere with 

the target shape. Their developed approach is valid on 

topologies close to the arteries and is not applicable to conical 

shapes such as the LV. Our developed method is also based on 

the centerline of the LV, but instead we project the RDFE 

nodes from this centerline to the target surface. 

Several methods have been developed for volumetric 

deformation, such as different models of heat kernel signature 

or heat diffusion processes on a shape [40]-[43], wave heat 

kernel signature based on quantum mechanics [44] and 

differential deformation schemes [45]. These methods require 

a sufficient knowledge of these fields for their correct 

application.  

The linear elastic transformation method has been used 

previously for this purpose in the literature [46]-[49]. Authors 

of [50] reviewed and compared the application of elastic 

transformation in medical imaging and continuum mechanics 

problems. In order to deform the RDFE solid model with 

intermediate nodes, we used elastic body deformation using 

FE simulation. It is applicable using any FE software and 

simple to develop without precise knowledge of continuum 

mechanics and FE simulation in detail which is an advantage 

for computer vision or clinical use. 

Material properties were chosen to obtain a reasonable 

intermediate node deformation. The Young’s modulus and 

Poisson’s ratio have an important impact on the model 

behavior of the FE geometry. If the material is compliant, the 

boundaries deform and the internal nodes remain at their 

initial positions. The FE elastic simulation had the best results 

with high Young’s modulus and relatively medium Poisson’s 

ratio values. 

The FE simulations on the morphed RDFE models were 

successful except for Case #7 which had no convergence 

success due to the LV wall thickness and low mesh quality. 

Indeed, the relatively small wall thickness of this model (refer 

to the Fig.4-Case#7 and Table IV), particularly on the left 

hand side of this geometry, made this FE simulation be 

unsuccessful. We also noted in Table IV that Case #7 had the 

poorest mesh quality, probably due to the very thin wall which 

caused distortion of RDFE model elements in the attempt to fit 

to the target boundaries. One solution to this problem might be 

to iteratively adapt the local thickness of the RDFE mesh by a 

scaling factor in order to prevent such extreme distortions. 

The application of this method is fast, efficient, and simple 

to implement as a pipeline. It takes less than 25 minutes to 

morph a RDFE model to the target surfaces with the help of 

MATLAB® and Abaqus® software. 

 

A. Limitations and Future work 

One disadvantage of this method is that during the elastic 

deformation, some elements remained without volume due to 

the variation in wall thickness and the nature of RDFE 

TABLE III 

EARLY DIASTOLE AND ED CAVITY VOLUME 

Volume (ml) \ Case #1 #2 #3 #4 #5 #6 #8 

ED (EchoPac®) 163 168 168 154 319 151 112 

ED (FE) 166 164 167 128 266 174 98 

early diastole  113 144 133 106 233 103 78 

 

 TABLE IV 

MESH AND ELEMENT QUALITY TEST 

Metric values\ Case #1 #2 #3 #4 #5 #6 #7 #8 

Worst aspect ratio 4.69 4.30 6.78 25 32 9.95 82 9.45 

Mean aspect ratio 1.61 1.61 1.55 1.65 2.35 1.78 2.27 1.82 

Worst min angle on quad faces (°) 7.6 3.41 5.16 11.3 1.45 25.5 0.58 16 

Mean min angle on quad faces (°) 73.2 71.5 69 71 64.9 71 64 74 

Worst max angle on quad faces (°) 181 181 193 181 202 167 231 186 

Mean max angle on quad faces (°) 107 109 111 109 115 109 117 107 

Mean min edge length (mm) 0.71 0.71 0.78 0.72 0.78 0.87 0.84 0.76 
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element type (hexahedral). This situation was observed in 

Case #7. In the intermediate node deformation, we perform a 

FE simulation once, and the model deforms. In this case, the 

elements can reach their limits of deformation or can become 

smaller due to the Poisson's ratio value. It is not critical itself, 

but becomes critical if another FE simulation is started from 

this resulting mesh, in which the morphed geometry can fail to 

achieve FE convergence such as in Case #7. It was necessary, 

in this case, to remove these elements which were 

concentrated on the endocardial apex and basal boundaries 

manually as a post-processing step for diastolic FE 

simulations. This choice is justified due to the importance of 

elements at domain boundaries for intracavital applied 

pressure which are highly sensitive to the element’s quality. 

This issue has been observed in [1] as well. It is also the cause 

for generated stress heterogeneities at the apex and basal 

regions in Cases #3, #5 and #6. We have noticed that the 

zones related to the removed elements fits to these 

heterogeneities.  

Another limitation is that this method is based on a 

centerline projection; so, if the geometry has several layers, 

they should be treated separately with their RDFE 

corresponding surfaces. In this paper, we treated the 

endocardial and epicardial surfaces separately from their 

reference centerlines to the target surfaces.  

In the data available for our study, fiber directions were not 

experimentally measured. Our work was devoted to ultrasound 

data for which the material structure cannot easily be derived. 

Here, as proposed by [33], we assigned fiber angles varying 

from -70° to 60° across the ventricular wall. But future work, 

potentially involving diffusion MRI, will consider the 

generation of patient-specific material structure [51]-[52]. 

As future work, one might apply this method on 

biventricular or complete heart meshes to verify its feasibility 

and reproducibility on shape analysis and computer vision 

problems. In case of biventricular geometries, a potential 

improvement is to define two centerlines each for the LV and 

right ventricle for both endocardium and epicardium, and then 

to project the reference surfaces. This will be much more 

challenging if the complete heart is considered, due to the 

importance of the centerline definition. Then, one could define 

a complex network of centerlines in a complete heart. Here, 

we examined the developed methodology specifically on LV 

morphology alone. 

Another improvement may be to identify the strain energy 

function material parameters for each patient with their 

pressure volume curves to achieve more meaningful results 

during the diastolic FE application. Lack of constraint in this 

manner likely explains differences in the final ED volume 

from patient’s data and the FE simulations in Table III. The 

importance of material parameters for exponential strain 

energy function has been discussed in [53]. In Case #5, the 

discrepancy in the ED volumes is due to the construction of 

the basal plane in our method, which does not lie at the same 

location as the endocardial surface closing provided by the 

Echopac system.   

One interesting improvement to this study would be to 

validate the viability of the present method during the systolic 

phase of LV for the available patient cohort as proposed in [1]. 

Another improvement would also be to couple ultrasound 

imaging with other imaging modalities in order to better 

capture the complete myocardial tissue [54].  

VI. CONCLUSION 

In this paper, a new methodology was presented to morph a 

deformable generic model onto a patient-specific geometry in 

the case where the density of the generic mesh is at least 10 

times larger than the density of the available nodes for the 

patient-specific geometry. The method showed very promising 

results for patient-specific FE analyses of the LV on a cohort 

of patients suffering from LBBB disease. It is now ready to be 

used in a patient-specific simulation pipeline based on medical 

imaging techniques. It could also be applied to different organ 

systems such as arteries, brain, and bones. 
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