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C is a k-dimensional subspace of (Z/2Z)

Content of the talk

The hypergraph product of an expander code :

is an LDPC quantum code has a constant rate has a minimal distance : d = Θ( √ n) The decoding algorithm : has a capacity of correction : Θ( √ n) corrects the error with high probability for the depolarizing channel

Tanner graph of a code From classical to quantum error correcting codes From classical to quantum error correcting codes
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Bit : b ∈ Z/2Z Q-bit : |ψ ∈ C 2 , |ψ 2 = 1 A.
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From classical to quantum error correcting codes 

Bit : b ∈ Z/2Z A [n, k]-code is a k-dimensional subspace of (Z/2Z) n Classical error : Flip X -Pauli error : 0 1 1 0 Q-bit : |ψ ∈ C 2 , |ψ 2 = 1 A n, k -code is a 2 k -dimensional subspace of C 2 n Quantum error : X-Pauli error Z-Pauli error Z -Pauli error : 1 0 0 -1 A.

  The diameter of an interesting cluster is ≤ Θ(ln(ln(n))) * The number of edges inside an interesting cluster is large (ideas from bootstrap percolation)
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CSS codes : Calderbank, Shor and Steane

We can construct a quantum error correcting code using C X and C Z two classical error correcting codes such that C ⊥ X ⊆ C Z 2

Restrict the proof to interesting clusters : *

In the following, we will say whp P (with high probability the property P holds) if : lim n→+∞ P(P) = 1 Percolation Theorem For a probability of error p < 1 1+d , whp : The size of any connected components is ≤ Θ(ln(n)) For a probability of error p > 1 1+d , whp : There is a connected component of size Θ(n)
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Percolation Theorem For a probability of error p < 1 1+d , whp : The size of any connected components is ≤ Θ(ln(n)) For a probability of error p > 1 1+d , whp : There is a connected component of size Θ(n)

Good news :

The algorithm corrects any error of size ≤ Θ( √ n) The algorithm corrects any error of size ≤ Θ(ln(n))
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Percolation Theorem For a probability of error p < 1 1+d , whp : The size of any connected components is ≤ Θ(ln(n)) For a probability of error p > 1 1+d , whp : There is a connected component of size Θ(n)

Good news :

The algorithm corrects any error of size ≤ Θ( √ n) The algorithm corrects any error of size ≤ Θ(ln(n)) Problem : Some clusters can merge during the decoding