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Abstract—This paper presents a modified potential field 
method for robot navigation. The approach overcomes the well-
known artificial potential field (APF) method issue, which is 
due to local minima that induce the standard APF method to 
trap in. Thus, the standard APF method is no longer useful in 
such case. The advantage of the new proposed method, as 
opposed to those that resort to the global optimization methods, 
is the low computing time that lines up with the standard A-Star 
(A*) method. The strategy consists of looking for a practical 
path in the potential field—according to the potential gradient 
descent algorithm (PGDA)—and adding a repulsive potential to 
the current state, in case of blocking configuration, a local 
minimum. When the PGDA reaches the global minimum, a new 
potential field will be constructed with only one minimum that 
matches the final destination of the robot, the global minimum. 
Finally, to determine the achievable trajectory, a second 
iteration is performed by the PGDA.  

Keywords—Path Planning; Artificial Potential Field 
Method; Potential Gradient Descent Algorithm; A* algorithm. 

I INTRODUCTION

One of the most important branches of artificial 
intelligence is trajectory planning, which is applied to 
robotic navigation and self-driving vehicles. It consists of 
finding a set of sequences that allows a robot to travel from 
an initial to a global state [1]. It could also be defined as 
moving furniture in a house without colliding with or 
touching walls and the other objects [1]. In the early work, 
the robots’ operational environment is considered to be 
deterministic or inert, especially deployed in and for 
industrial environment [2]. Gradually, developments in 
technology enabled the new robotic generations to become 
partially autonomous. Therefore, the robot must be suitably 
equipped with the perception, localization, data fusion, 
decision making, and control abilities. If the first 
generation of robots were equipped with simple integrated 
circuits for fixed-control programs—relying on basic 
intelligence to repeat a series of actions in a static 
environment—the coming generations will require a 
significantly more sophisticated artificial intelligence [2]. 
In fact, these needs are a consequence of the increase in the 
number of degrees of freedom (DOF) of self-governing 
robots. The new generation, so-called third generation, 
must be able to map their trajectories and react 

instantaneously to their surroundings [1]. Another aspect of 
artificial intelligence, which characterizes a smart robot, is 
traveling from its current position to its destination by 
determining a feasible path autonomously [3], without 
involving humans. In other words, the robot moves on its 
own. Most of the decisions are made fully autonomously: 
meaning that itinerary (the planned route), obstacle 
detection and avoidance, the robots’ dynamic control, and 
communication with its environment (other robots, 
infrastructure, etc.) will be made autonomously. As a 
consequence, the requirements for a self-driving robot 
result in the development of a new robotics field on a large 
scale, and in an uncertain environment. Therefore, artificial 
intelligence is definitely changing the operating mode of 
the existing robots and will certainly continue towards 
making them completely autonomous. Furthermore, 
intelligent robots are influencing manufacturers and their 
vision of their interaction with humans. This is mainly due 
to the improvement in semiconductors technologies that 
provide computers with high computing abilities, enabling 
complex operations, such as data processing, control, 
planning, etc., and with sufficient memory to store all 
incoming and outgoing data to and from the robots’ 
environment (which is needed for decision making 
algorithms and robot control). 

This paper describes a new approach for robot real-time 
navigation in static and highly dynamic environments. The 
strategy is based on a modified potential field method 
(MPFM). The proposed MPFM eliminates local minima 
(which are due to the robots environment configuration), 
and find a practical trajectory for robot path planning. The 
paper incorporates a total of six parts: The first part is a 
short introduction to autonomous robot evolution in static 
and non-deterministic environment that requires some basic 
abilities, and artificial intelligence, that are based on the 
robot-sensing equipment. The second part mainly presents 
some related work on trajectory planning algorithms based 
on artificial potential field method, or combined with other 
path planning methods. The third part describes two 
classical trajectory planning algorithms: A* and artificial 
potential field methods, according to literature, that 
highlights some of their advantages and drawbacks. In the 
fourth part, the major problem of the potential field method 
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is presented and solved by the suggested strategy, which 
overcomes the standard APF local minima and adapted for 
online path planning. In the fifth one, some simulation 
results are presented and discussed by comparing the two 
methods, where the results of standard A* trajectory 
planning are compared with those of the proposed MAPF 
method. Finally, the last part concludes the paper and 
mentions future work. 

II RELATED WORK 

The perception is often ranked among the three central 
aspects of an intelligent robot. In this work, we assume that 
the proprioceptive sensors data fusion is already performed 
according to specific algorithms. For instance, in [4], You 
Li et al. deal with the perception issues frequently 
encountered in smart systems. The problem was merging 
data that came from two on-board pinhole cameras and a 
Light Detection And Ranging (LIDAR). The algorithm 
estimates the rotation and translation parameters from the 
LIDAR coordinate system to the stereoscopic coordinate 
system (the left camera is taken as the main stereo system). 
The different intrinsic and extrinsic parameters are 
determined through simulation and experiments on a 
specific panel (a chessboard panel modeled by a 3D plane), 
according to the proposed methods in [4–7]. 

The artificial potential field (APF) method is widely used 
throughout the literature. It is based on the uptake of the 
robot to a particle, constrained to move in an APF. The 
field is a combination of an attractive field, assigned to the 
global position or to the target, and a set of repulsive fields 
related to the obstacles around the robot in its environment 
[8–10]. The robot’s trajectory is determined iteratively by a 
potential gradient descent algorithm. The concept was 
initially introduced by Khatib [11] to control a manipulator 
motion, avoid neighboring obstacles, and plan the arm’s 
motion. The artificial potential field (APF) method is a 
simple and very effective strategy for path planning. It is 
quite fast for online trajectory planning [12]. Thanks to its 
simple concept and effectiveness for online applications, 
the APF method is applied in different planning challenges, 
for instance: Ferry Rippun et al. [13] applied the potential 
field method on robotic soccer, which, in their study, was 
implemented in a multi-cooperative autonomous robots. 
The proposed approach called Double Target Potential 
Field (DTPF). The main objective was to increase the 
effectiveness of the robot movement and achieve two 
challenging actions: 1-passing the ball to another robot, 
and 2-kicking the ball into the goal. To solve the path 
planning problem in the 3D environment for the rotary-
wing flying robot, Jianhao Tan et  al. resort, in their work 
[14], to artificial potential field method to smooth the 
offline predetermined A* path (which is indeed the shortest 
path but a non-smooth one); it goes from the robot to the 
target according to the flying robot’s environment. The 
predetermined A* trajectory is used as a reference in the 
case of APF method to smooth the flying robot trajectory 
for online applications. The combination of the two 
methods—APF and A*—solved the shortcomings of both 

methods (non-smoothness and local minima issues, 
respectively). The APF method has been extended to 
address problems in which the goal is not reachable due to 
the obstacle proximity [15], and navigation in narrow 
passages and in unknown semi-structured environments 
[16]. Other recent work [17] has focused on the 
modification of the computation of the artificial potential 
field according to some fuzzy criteria, which are added to 
the APF path planning method. The strategy was made up 
according to: 1-the velocity vector of the robot, 2-the 
modified potential field force function, and 3-their 
integration of the fuzzy controller, which consists of 
adjusting the factors of repulsive potential field in real 
time. 

III TRAJECTORY PLANNING METHODS 

One of the most crucial tasks of autonomous robots is path 
planning. It based on sensing the robot’s environment [1]. 
The robot shapes its surrounding environment into two or 
three dimensions and locates itself in it. Then, it relies to 
trajectory planning algorithms to determine its path and 
avoid any collision with the obstacles. The path planning 
methods are multiple, and the most-used approaches are 
highlighted in [1]: visibility graph, cell decomposition, 
Dijkstra, etc. This section describes two path planning 
methods: A* is a well-known robot trajectory planning that 
will be compared to the proposed modified artificial 
potential field method to overcome the local minima issue. 

A* is one of the most effective trajectory planning 
methods. It is used to solve robot navigation issues in 
congested environment and in multiple digital games such 
as mazes [18]. The fundamental idea is to find the shortest 
path, and to optimize Dijkstra’s criterion [19]. A* uses 
Euclidean norm to evaluate the distance between the 
different states. The basic algorithm does not take into 
account the obstacles between the current state and the 
final state. The procedures that are used to overcome such 
issues (like when the robot gets in a dead node) are: 1- To 
look for other paths when the robot is in a blocking node; 
2- To avoid any path leading to blocking nodes. To do so, 
two path lists are created. The first is the OPENED list, it 
includes the set of paths to explore, in order to find the 
optimal path. The second is the CLOSED list leading to 
dead nodes. Sometimes, this path searching is time-
consuming. To overcome such constraints, optimization 
criteria are associated with the planning issue. Some others 
opted for heuristic solutions as suggested in [20]. 

The derivatives of the APF method can be easily 
implemented and executed in real time for control and 
navigation purposes [11-12]. The basic concept of the 
robot motion, in the potential field, may be interpreted as a 
moving particle in a field of two electric particles with 
different signs. Analogically, the positively charged 
particle is the robot. The global position is negatively 
charged, and the obstacles are considered as a set of 
particles with the same charge as the robot. The field 
potential gradient may be interpreted as forces that 
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constrain the positive particle to reach the position of the 
negative one. The barriers create repulsive forces and push 
the robot to move away from obstacles [8–10]. At each 
configuration Q, the total APF forms an attractive force 
that is defined as the negative gradient of the field. It 
denotes the favorable direction of the robot motion to reach 
the global position Qg safely. The combination of the 
attractive and the repulsive forces drives the robot to its 
destination.  

Many forms of the positive potential exist, the most 
commonly used throughout the literature are parabolic and 
conical functions. The robot takes advantage of the second 
function when it is far away from the global state. And it 
uses the first once it gets very close to the target, e.g. in a 
circle defined by its center that corresponds to the global 
position and some specific radius Rg. 

Parabolic functions: The mathematical expression (1) 
formulates the shape of the parabolic APF. 

    21

2
pa aU k dQ Q    (1) 

where 0ak   is a positive constant, known as gravitational 
constant,   gQ Qd Q  is the Euclidean distance 

between the state Q and the global state Qg. 

 ,g gg x yQ  and  ,Q x y in 2D, or  , ,g g gg x y zQ   

and  , ,Q x y z in 3D. 

The function (1) is perpetually positive, and its global 
minimum equals to zero. The approach assigns the highest 
potential field to the starting state. It can be considered as a 
particle of a mass “m” located at a relative height “h” to the 
global state. The particle holds a potential energy 
“Ep=mh”, which is transformed into kinetic energy as the 
robot approaches its destination. The APF shape provides 
the robot the best direction and the shortest path. The 
potential gradient is defined as a proportional vector of the 
difference between the global Qg and the current Q states. 
The further the robot is from its endpoint, the greater is the 
gradient, and the bigger the attractive forces. The resulting 
force of this field is the negative gradient of the APF as 
given in equation (2). The force also decreases as the robot 
is getting closer to the global state. Once there, the 
resultant force becomes null, which allows the robot to 
reach its endpoint and stay at its destination. This process 
is achieved repeatedly for each novel destination.  

   p pa a a
gQ Qf U kQ       (2) 

Conical function: The conical AFPs form is dissimilar to 
the parabolic AFPs from. The two functions are equal at 
the periphery of the unit circle with the target coordinates 
Qg as its center. The mathematical formulation (3) defines 
the shape of the conical potential and its negative gradient. 
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Repulsive potential field: Several forms are quoted in 
literature. Khatib proposed the function (4) as a repulsive 
APF [9,11]. It associates to every obstacle a repulsive APF 
and affects each spatial cell according to the equation (4).  
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  (4) 

where ki
r>0 is a positive constant. di

o is the distance of 
influence of the ith obstacle. di(Q) is the smallest distance 
between the current robot position and the ith obstacle. The 
potential field is defined as being zero outside the distance 
of the influence of the objects, positive inside, and infinite 
above the objects. 
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where o
iQ is the position coordinates of the ith obstacle. 

The resulting forces are expressed as follows. 
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Sometimes, the robot’s final position is too close to an 
obstacle. The robot environment configuration creates local 
minima in the neighborhood of the global state and makes 
this global node not reachable. The solution to such issues, 
is to multiply the repulsive potential, according to each 
obstacle, by the distance between the current state and the 
goal. 
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The total potential field and forces are the sum of the two 
attractive and repulsive fields and forces respectively. 
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IV POTENTIAL FIELD METHOD AND LOCAL MINIMA  

The potential field method is still sensitive to narrow paths, 
which induce chattering issues, and to local minima, which 
are a source of blocking configurations [8–10]. The major 
drawback in APF method is the possibility of getting 
trapped by these local minima [12]. They are commonly 
related to the robot’s workspace configuration and 
especially to weight coefficients, associated to each 
obstacle during the APF design [11], when attractive forces 
cancel the repulsive ones. Numerous approaches are put 
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forward to overcome the local minima issue, thus, it 
remains a difficult problem. Barraquand et al. proposed in 
[21] to move the robot randomly at each time it gets 
trapped in a local minimum. Therefore, the determined 
path usually loses some of its smoothness and some 
configurations take a long time to get the robot far away 
from the local minimum. Some other solutions suggested 
driving the robot along the nearest barriers in the same 
clockwise direction each time the robot blocked by a local 
minimum. P. Vadakkepat et al [10] proposed an 
evolutionary artificial potential field combined with global 
optimization algorithms, genetic algorithms, to adjust the 
APF online. However, the first suggestion is only available 
for narrow spaces and minor local minima. The second is 
insufficient for the robot planning trajectory considering 
the robot dynamic. And the third is often time-consuming. 
Some others propose adding attraction points in some of 
the vertices of the obstacles to get the robot out of local 
minima. According to the same principle, the objective of 
the new approach, which is presented in this paper, is to 
overcome and eliminate the local minima. The idea is 
inspired from pouring a liquid matter, water for instance, 
with high pressure —attractive artificial potential field— 
from the initial state until it reaches the global state. The 
proposed strategy consists of designing the total APF as the 
classic method according to the two sets of equations (1) 
and (7). The strategy uses the potential gradient descent 
algorithm (PGDA) to discover the robot path. The PGDA 
is executed as long as the ongoing state is different from 
the global minimum. If it cannot go forward, trapped in a 
local minimum, then the algorithm adds some extra 
repulsive potential to the current state until it gets free, 
according to the set of equations (7). Once the robot’s 
destination is reached, the PGDA searches, once again, the 
final and the practicable robot path in the new potential-
field. The advantage of this proposed method is that the 
attractive and the repulsive APF are computed just once 
according to the final and to the initial robot position, 

respectively, rather than computing the repulsive APF, 
associated to each obstacle, at each current position of the 
robot when searching the path, according to the equation 
(4). These modifications make the APF method faster but 
they do induce some limitations. For instance, if the robot’s 
workspace configuration creates a path with sharp corners, 
the method may partially and even completely drown the 
path and the robot will definitely be trapped. 

The proposed potential field method skeleton for robot 
trajectory planning is described as follows: 

1. Design the attractive PF “Ua” according to global state. 
2. Design the set of the repulsive PF “Ui

r” according to 
each obstacle with its parameters: “ki

r” and “di
o”. 

3. Assign the initial state Qi to the path vector. 
4. while (d (Q) ≠ 0) 

4.1. Call the potential gradient descent algorithm 
(PGDA) to determine the next state. 

4.2. Add the current state to the path vector. 
4.3. if (robot is blocked && d (Q) ≠ 0) //local minima 

Add some additional new repulsive PF “Ui
r” to 

the total PF “Ut” according to the local 
minimum parameters “ki

o
min

” and “di
o
min”. 

end if  
end while 

5. Call the potential gradient descent algorithm (PGDA) to 
determine the new path.  

where: “ki
o
min

” and “di
o
min” are the distance of influence 

and the gravitational constant of the local minimum. 

V SIMULATION STRATEGY AND PRELIMINARY RESULTS 

To test the proposed method, the robot workspace of ten 
meters wide and one hundred meters long is created with 
MATLAB R2012 on windows 8.1 and Intel compute —
Intel® Core™ i5-3320M, CPU @ 2.60 GHz and 
RAM 16Go—. Multiple obstacles produce three different 
local minima with different sizes between the initial robot 
position and its distinction, as illustrated in figures 1–4. 

 
Figure 1: Standard potential field shape. 

 
Figure 2: Modified potential field shape. 
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Figure 4: Path planning with MFP and A*.  

The area is divided into squares of 0.25 by 0.25 m. As 
previously noted, in case of the use of the standard APF 
method, the potential gradient descent algorithm is 
attracted and blocked by the nearest minimum even after 
adding random noise, this is due to the local minima, 
figure 1. So to avoid the global optimization and following 
the obstacles methods, the modified APF approach 
gradually eliminates the local minima as shown in figure 2 
during the first execution of the PGDA. Each time the 
robot gets blocked, additional repulsive APF are added to 
the current state and to its neighbors according to its 
specified distance of influence di

o
min and its gravitational 

coefficient ki
o
min. It is possible to see the position of each 

local minimum as depicted in figure 1, and the drowned 
ones in figures 2 and 3. The second operation of PGDA 
determines the satisfactory path that will be a reference 
path for robot trajectory. The equipotential lines of the total 
MAPF, in figure 3, show how the suggested method 
changes the equipotential lines in the local minima by 
changing the value of the repulsive APF at each time the 
robot is blocked. Figure 4 shows the three different paths 
determined by the proposed methods, at the first run of the 
MAPF method with local minima and after drowning them, 
and finally the determined path by the standard A* method. 
The first run of the MAPF goes through all local minima 
and drowns them gradually as the robot gets closer to its 
target position, represented by small blue circles. Once 
there, the second execution of the PGDA selects the best 
path according to the new APF drawn by the black line, 

and, finally, the A* path is represented by the green dashed 
line. The respective mean execution time of 100 runs of the 
proposed modified artificial potential field and of the 
standard A* methods, using the same robot workspace, are 
282.34 and 218.59 ms, that means A* is still faster than 
MAPF with a difference of 63.75 ms for this simulation 
scenario. The path searching of each method depends on 
the robot’s workspace size and its configuration, the size of 
the barriers, obstacles, and the number and the size of the 
local minima between the robot and its final destination for 
the MAPF method. Both methods (MAPF and A*) could 
be improved to take in account the robots geometries by 
changing the value of the distance of influence of each 
obstacle according to the size of the robot, in the case of 
the APF method, and changing the size of the obstacle for 
A* and its variants as proposed for instance in [16]. 

VI CONCLUSION 

This paper presented a modified artificial potential field 
method toward online path planning. The approach adds 
dynamically repulsive artificial potential field, to the 
standard APF, at each the robot gets trapped in a local 
minimum. The operation eliminates any blocking 
configuration, in the robot environment, that is the major 
challenge of the standard APF method. This operation is 
continuously repeated as long as the final destination of the 
robot is not reached. Finally, the strategy uses the potential 
gradient descent algorithm to determine the new feasible 
path according to the first execution. The simulation 
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results, the comparison between the A* and MAPF 
performances, show the effectiveness of the suggested 
strategy and its alignment with real-time path planning. 
However, it is worthy to emphasis on the fact that the 
suggested MAPF method computation time depends on the 
number and the size of the local minima that PGDA meets 
at the first run. A solution for such as problems is to 
associate an appropriate distance of influence di

o
min

 of each 
local minimum, according to its size. Another drawback of 
the method is sharp corners and the position of the robot 
and its target that may induce the MAPF method to drown 
partially and even completely the sharp S-shaped 
trajectories during the first execution. The future work will 
focus on the implementation of the modified potential field 
method for vehicle local navigation. 

Table 1: Potential field variables 

Variables Value Variables Value 
 o

id 0.5 [m] ka, ki
o 1 

i,min
rd 0.5 [m] kr

i,min 0.05  
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