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Abstract—Fraud is a threat that most online service providers
must address in the development of their systems to ensure
an efficient security policy and the integrity of their revenue.
If rule-based systems and supervised methods usually provide
the best detection and prevention, labelled training datasets
are often non-existent and such solutions lack reactivity when
facing adaptive fraudsters. Many generic fraud detection solu-
tions have been made available for companies though cannot
compete with dedicated internal implementations.

This study presents an evaluation of some of the most
widely used machine learning algorithms for unsupervised
fraud detection applied to travel booking information repre-
sented by Passenger Name Records (PNR). The current paper
also highlights the use of some aggregation functions relying on
fuzzy logic and interpolation as an extension of unsupervised
ensemble learning.

Keywords: fraud detection, outlier detection, unsupervised
learning, Passenger Name Record.

1. Introduction
The reservation system of Amadeus, a Global

Distribution System (GDS) providing several platforms
connecting the travel ecosystem, is targeted by fraud
attempts that could lead to revenue losses and
indemnifications. Those fraud attempts are supposedly
performed by travel agencies in charge of flight booking
operations and are motivated by a potential access to
undeserved advantages, such as unmerited financial
incentives. To our knowledge, this paper is the first one
applying unsupervised fraud detection to Passenger Name
Records (PNR) and benefits from the dataset of one of the
leading GDS managing almost half of the flight bookings
worldwide.

Despite the continuous progress in securing
communication methods and information systems, the
complexity of most systems and the ingenuity of some
fraudsters allow new forms of fraud to be performed every
day. This fact added to the critical value of money flows
and company assets has made fraud detection an active
research area making extensive use of machine learning
techniques.

A possible approach to fraud detection relies on
supervised learning to block fraud attempts based on

fraudulent and non-fraudulent samples. A class of widely
used algorithms rely on rule-based detection, automatically
inferring discriminative rules from a labelled training set.
Fawcett at al. [5] describe an automatic rule generation
algorithm applied to cellular cloning performing better than
manually generated rules based on expert knowledge. Other
techniques based on decision trees [6] or Support Vector
Machine (SVM) algorithms provide good results with more
than 90% of correct classification rate when applied to
mobile phone fraud detection, especially when combined
using ensemble methods such as bagging or boosting as
shown in [11]. The efficiency of artificial neural networks
for fraud detection has been demonstrated by Ghosh et al.
using credit card transactions as input of a feed-forward
RBF network [7]. When a fraud-free dataset is available,
supervised novelty detection techniques like one-class
SVM can be used, fitting a novelty boundary to a given
class using kernel methods and a parametric slack. This
algorithm is detailed in section 3.1

Nevertheless, a labelled dataset is not available in many
real-world applications which prevents the use of supervised
learning. Supervised algorithms may besides suffer from
unbalanced class sizes resulting in a poor detection. In
addition, such techniques cannot identify new fraud patterns
and will thus be ineffective at stopping uncovered fraud
behaviors. Unsupervised methods can contribute to reduce
the delay between a new flaw detection and its resolution
and thus grant a strong competitive advantage to targeted
companies.

Unsupervised learning allows the discovery of suspi-
cious behaviors and do not require any prior knowledge on
verified fraudulent cases. It is the result of a preliminary
learning step modelling an expected standard behavior fol-
lowed by an outlier detection step from which anomalies
can be detected.

Among unsupervised techniques, probabilistic methods
estimate the probability density function (PDF) of a dataset.
Such algorithms include Gaussian Mixture Model (GMM)
[14] which can be an input for multivariate novelty detection
in extreme value theory (EVT) [3]. Kernel density estimation
(KDE), also known as Parzen window, is a nonparametric
technique which has been successfully applied to network
intrusion detection [20]. Gaussian Processes is another prob-
abilistic example and it allows one-class classification for
novelty detection [16].



When dealing with temporal event sequences, Hidden
Markov Model (HMM) has proven to be an efficient state-
space model to represent a system. It enables the compu-
tation of the likelihood for a given pattern which can be
thresholded to reject sequences of low probability [21].

Distance-based methods such as clustering can be used
to characterise normal classes by a sufficient number of
data points close to each other. Among some well-known
clustering algorithms for outlier and novelty detection is
the k-Nearest Neighbors (kNN) algorithm, but also k-means
[10] and some of its extensions such as fuzzy c-means.

As part of non-distance based methods, Guha et al. have
developed a robust hierarchical clustering algorithm called
ROCK [8], which employs links instead of distances when
merging clusters. ROCK clustering and similar non-distance
techniques extend to non-metric similarity measures that
are relevant in situations where some notion of domain
similarity represented by links (or relationships) is the only
source of knowledge.

Artificial neural networks provide also ways to identify
outliers, either by using a Self-Organizing Map (SOM) as
demonstrated in [15], or by thresholding the value of the
energy function output by a Hopfield network in [4].

This paper focuses on the Passenger Name Record
(PNR) standard described in section 2 and used by Global
Distribution Systems (GDS) to store and exchange traveller
information and requests on passenger itineraries. We de-
scribe a benchmark of several unsupervised fraud detection
methods applied to multivariate data pertaining to PNR’s,
including but not limited to Gaussian Mixture Models
(GMM), Hidden Markov Models (HMM), density cluster-
ing (DBSCAN), hierarchical clustering and Self-Organizing
Maps (SOM). Several aggregation operators related to multi-
criteria decision analysis (MCDA) are also compared in
the context of ensemble methods. We show that combining
algorithms using MCDA operators gives greater results than
any single algorithm.

2. Dataset

A Passenger Name Record (PNR) is a database record
containing information related to the itinerary of one or more
passengers created by travel operators (e.g. travel agents,
online travel agencies), travel providers (e.g. airlines), a
third-party GDS or computer reservation systems (CRS). It
is mostly used for the booking and check-in procedures and
can target itineraries containing several flight segments. It
includes but is not limited to information about passengers
(names, addresses), frequent flyer status, flight segments
(IATA codes, flights schedules), special service requests
(seats, luggage, meals), tickets, forms of payment, the travel
agents source of the booking or modifications and references
to other PNRs for split group records. This record is divided
in an ordered list of envelopes following the EDIFACT
standard [9], each of them describing the current state of
the PNR and the list of changes applied during the last
transaction. Most frauds can only be achieved by performing

a specific sequence of actions and thus require to study the
complete modification history to be detected.

The dataset used by our experiment is a random sample
of 40,000 PNRs created in 2015 and containing a total of
850,000 envelopes weighting 20GB. 58 relevant features
have been defined by PNR and fraud experts to be extracted
per envelope and to represent the most important opera-
tions. Most of them are either timestamps (e.g. creation
date of an envelope) or counters covering the number of
points of sale, the changes applied to passengers, frequent
traveller cards, segments (segment marriages, special service
requests) and forms of payment (FoP). The complete list of
actions performed in the envelope is also extracted though
does not follow the original sequence order. To work at PNR
level, we aggregate the envelopes into a single feature vector
of 83 features per PNR using a Hadoop Map-Reduce job.
The aggregation process computes the number of envelopes,
the age of the PNR and aggregates most features using
maximums, sums, averages, standard deviations and ratios
(e.g. final number of segmentssum of added segments ). 82 features are thus numeric
while the 83rd feature is the concatenated list of actions. The
distribution of a subset of aggregated features is described
in Table 1 with quantiles and other standard statistical
measures. It shows strong outliers and already suggests some
potential frauds. Statistical estimators combined with an in-
depth analysis of the envelopes allowed us to identify 0.6%
of fraudulent PNRs across 5 types of known frauds. An
example of fraud carried out by travel agents is to make
a booking without issuing payment, then take advantage of
some booking engine functionalities to lock the booking for
an unlimited period without observing the usual automatic
cancellation of the ticket and price increase. Other fraud
examples rely on flooding operations or abusive use of
frequent flyer cards to be granted higher privileges.

Based on the hypothesis that the remaining PNRs are
not fraudulent, we use this labelled dataset to evaluate the
performances of the algorithms. Note that the computation
of the precision and recall on this dataset will possibly
exclude a few samples related to unknown frauds and must
thus be adjusted when new frauds are discovered.

TABLE 1. DISTRIBUTION OF 5 AGGREGATED FEATURES

Feature n envelope age hours n segment n split n fop
mean 21.076 789.528 4.780 0.097 0.863
std 30.367 1326.969 22.846 0.599 1.400
min 1.000 0.000 0.000 0.000 0.000
5% 3.000 0.109 0.000 0.000 0.000
25% 6.000 45.538 2.000 0.000 0.000
50% 13.000 273.224 3.000 0.000 1.000
75% 26.000 856.738 5.000 0.000 1.000
95% 61.000 3547.940 12.000 1.000 3.000
max 1471.000 50258.785 2342.000 27.000 69.000

3. Outlier detection

Once the feature vector and sequence of actions of each
PNR have been extracted and aggregated, outliers are de-
tected according to the algorithms described in this Section.



3.1. Algorithms

The algorithms described hereafter cover several
approaches of outlier detection though do not relate
specifically to user behavior modelling since we focus on
PNRs. A user-centric approach would be inappropriate to
the extent that travel agents create and modify an important
number of PNRs and each PNR can be modified by multiple
agents. Half of the labelled dataset was used to perform a
hyperparameter optimization for each algorithm targeting a
maximum F1-score. The F1-score is the harmonic mean of
precision and recall defined by F1 = 2 ∗ precision∗recall

precision+recall .
The best parameters were then used on the other half of
the dataset to measure the precision, recall and F1-score
for the testing phase. The performance measures written
in this paper target the testing dataset in order to prevent
overfitting. The following algorithms take the 82 numeric
features as input, with the exception of HMM which uses
the sequence of actions.

Probabilistic approaches considered here include the me-
dian absolute deviation (MAD) recommended for univariate
outlier detection in [13]. It is a robust statistical measure
computed as follows:

MAD = bM(|xi −M |) (1)

with b = 1.4826 a multiplicative constant used for
normal distributions, xi the values of an univariate dataset
and M the median of the dataset. This measure can be used
to identify outliers by thresholding the number of MAD
between xi and the median of the dataset as shown in:

xi −M
MAD

> ±t (2)

The overall score of a feature vector is then the max-
imum score obtained in each separate feature. Yet, this
measure would flag as outliers any value different than the
median if more than 50% of the data points have the same
value, which has been observed for several features in our
dataset.

This strong limitation prevent an efficient application of
the MAD, which is why our benchmark used Z-score instead
of MAD. This measure follows the same principles though
is less robust since it relies on the average and standard
deviation of the dataset µ and σ, performing a relaxed outlier
detection in equation 3.

xi − µ
σ

> ±t (3)

A Gaussian Mixture Model (GMM) has also
been used to iteratively estimate the multivariate and
multimodal distribution of the dataset where each feature is
represented by a weighted sum of K normal distributions
P (x) =

∑K
k=1 πkN (x;µk, σ

2
k) where

∑K
k=1 πk = 1 and

πk > 0 using an expectation-maximization (EM) algorithm
to estimate the Gaussian parameters optimizing the log-
likelihood. Thresholding the likelihood of a feature vector

under the model allows a more efficient outlier detection
than most algorithms according to the precision and recall
described in Section 4.

Several distance based algorithms have been applied
and raise the question of an efficient distance metric. The
Euclidean and Mahalanobis distances have been used, the
latter computing the distance between a given feature vector
and the mean of the dataset normalized by the standard
deviation of each dimension and adjusted for the covari-
ance of those dimensions. DBSCAN is a robust parametric
algorithm finding clusters of arbitrary shape in large datasets
based on a density approach. Data points having less than
m neighbors in a given radius are not clustered and thus
flagged as outliers. This algorithm has been tested using
Euclidean and Mahalanobis distances.

MeanShift is a clustering algorithm designed for datasets
of smooth density and computes the centroids of clusters by
optimizing the density function f(x) =

∑
iK(x − xi) =∑

i k
(
||x−xi||2

h2

)
with K a kernel function, x the initial

estimate of the maximum of the density function, h a
bandwidth given in parameter or estimated and xi an input
vector. A local maxima of this function is computed with
gradient descent and results in cluster boundaries depending
on the kernel function. This algorithm can be considered as
a generalized expectation-maximization algorithm [2] and
identifies outliers by selecting data points lying far away
from the centroids of the clusters.

One-class SVM extends support vector machines
(SVMs) by making use of unlabelled data to perform novelty
detection. Standard SVM algorithms are binary classifiers
finding a boundary between two classes by computing a
linearly separating hyperplane in a high-dimensional space.
The computations in high-dimensional space are achieved
using kernel methods mapping points from the feature space
to the high-dimensional space. One-class SVM fits a novelty
detection boundary surrounding the training dataset by max-
imizing the margin between the dataset and the origin in the
high-dimensional space. Overfitting is avoided by allowing a
percentage of data points to fall outside the boundary using
a regularization parameter ν which is an upper bound on the
fraction of margin errors and a lower bound on the fraction
of support vectors with 0 < ν ≤ 1.

Hierarchical clustering builds a hierarchy of clusters
according to an agglomerative or divisive approach, for
example by minimizing the increase of total within-
cluster variance after a merging step of the agglomerative
process (Ward’s method). Outliers can be further deduced
by thresholding the outlyingness of the feature vectors
computed according to the equations described in [17].

Regarding artificial neural networks, we implemented a
Self-Organizing Map (SOM) mapping points from an input
space to an output space. The output space is usually a 2-
dimensional grid of neurons (Figure 3 after PCA processing
for 2 components). Neurons are points in the feature space
iteratively trained by being moved closer to dense regions



of data along with their neighbors. Outliers can be further
identified according to [15] by thresholding the quantization
errors (Figure 1), i.e. Euclidean distances between a point
and the closest neuron. An additional step is required to de-
tect outlying neurons attracted by clouds of outliers. Those
are found by putting a threshold on the median interneuron
distance (MID) matrix (Figure 2) containing the median of
the distance between each neuron and its neighbors. The
projections of known fraud samples on the nodes of the
network are depicted by 5 distinct graphical artefacts in
Figure 2. A distributed version of this algorithm showing
similar results and convergence has been implemented based
on the work of Lawrence et al. [12].

Figure 1. Box plot - Quantization
errors

Figure 2. MID matrix - 10x10 SOM

Figure 3. PCA representation of a
10x10 SOM - 40 iterations, σ = 1.8

As an additional set of experiments, we make use of
the sequence of actions extracted and feed it into a Hidden
Markov Model (HMM). This state-based approach mod-
els actions as observations which are generated by hidden
states, each state having its own probability distribution.
The system is then modelled as a Markov process describ-
ing the transition probabilities between the different states.
Applying a threshold to the normalized log-likelihood of
a sequence of actions under the model allows for outlier
detection. The number of components used by the HMM is
also found by hyperparameter optimization.

3.2. Multi-criteria decision analysis (MCDA)

The algorithms previously described output either a
probability, a binary decision or a score which can be
normalized according to an upper bound, e.g. by setting a
maximum Z-score and assigning an outlier probability equal
to 1 to all higher scores. Intuitively, aggregating the output
of several algorithms will result in final scores conveying
more confidence and leading to better performances than any
single algorithm. To verify this assumption, we use Multi-

Criteria Decision Analysis (MCDA) to design an aggrega-
tion model for the calculation of combined scores, taking as
input all normalized scores given by individual algorithms.

One of the simplest MCDA operator is the weighted av-
erage WA(x1, .., xn) =

∑n
i=1 wixi with xi a score and wi

a weight adjusted to the performance of a given algorithm,
e.g. a F1-score. In the family of averaging functions, the
Ordered Weighted Average (OWA) operator extends these
functions by combining two characteristics: (i) a weighting
vector (like in a classical weighted mean), and (ii) sorting
the inputs (usually in descending order). OWA is a non-
linear operator assigning a weight to each score based on
its rank σi in the sorted list of scores (equation 4). OWA
differs from a classical weighted means in that the weights
are not associated with particular inputs, but rather with
their magnitude. It can thus emphasize a subset of largest,
smallest or mid-range values. In our application, the weights
wi are assigned based on a normal distribution such that the
closer a score is to the middle one in the ranking, the higher
the weight. The detailed method is described in [19]. Note
that xσi

<= xσi+1
and

∑
wi = 1.

OWA(x1, .., xn) =

n∑
i=1

wixσi
(4)

As further generalization of OWA, Weighted Ordered
Weighted Averaging (WOWA) [18] merges WA and OWA,
by quantifying the reliability of the information sources
(i.e. algorithms output in this case) with a vector p, and
at the same time, allows to weight the values in relation to
their relative ordering with a second vector w (as the OWA
operator). It is formally defined as:

WOWA(x1, .., xn) =

n∑
i=1

xσi

h(∑
j≤i

pσj
)− h(

∑
j≤i−1

pσj
)


(5)

where h : [0, 1] → [0, 1] is a non-decreasing function
interpolating the points ( in ,

∑
j≤i wj) together with the

point (0, 0). We can observe that if p = ( 1n , ...,
1
n ) then

WOWA returns the same result as OWA.

4. Results

Figure 4 shows the precision-recall curve obtained for a
testing dataset containing 0.6% of known fraud samples. The
highest F1-score reached on the plot is the weighted average
of Z-score and self-organizing map. A precision below
100% is preferable since we are interested in unknown fraud
discovery.

According to the results depicted, Euclidean distance
(minClustSize = 55, eps = 0.086) provides better results
than Mahalanobis distance (minClustSize = 77, eps =
14.5) when applied in DBSCAN. Though the latter has
proven to be efficient in outlier detection performed on
multivariate normal distributions, such hypothesis does not
match most dimensions of our dataset. MeanShift (seeds =



Figure 4. Precision-recall curves

100, q = 0.94) does not perform better than DBSCAN and
both algorithms have to deal with high-dimensional data
which affects the detection of high-density clusters. GMM
(2 components) gives slightly better results than DBSCAN,
separating the dataset into two clusters when DBSCAN only
computed one.

Due to a dataset of complex distribution contaminated
by outliers, one-class SVM (kernel = RBF, γ = 0.07, ν =
0.01) is not able to model accurately a novelty boundary and
does not perform much better than the previous algorithms,
even though it makes an extensive use of the kernel trick to
handle high dimensional data. Despite non-Gaussian distri-
butions, Z-score (t = 17) is able to perform as well as one-
class SVM due to the extreme values inherent to some fraud
types such as flooding. Better results are also obtained from
hierarchical clustering (m = sizeDiff, t = 0.88) though
it requires the longest computation time. Since valuable
information is lost by reordering the actions performed in
each envelope, it prevents an efficient fraud detection from
HMM (states = 13, t = 0.67). This algorithm also fails
in detecting frauds relying on an important use of common
actions when using a normalized log-likelihood.

The highest F1-score is reached with self-organizing
maps (neurons = 100, iterations = 40, qeZ−scoret =
5.0,midt = 0.75), reaching 28% precision for 84% recall.
Figure 2 shows most fraud samples projecting on neurons
having a high MID. Setting a MID threshold to 0.75 flags
those neurons as outlying and allows a high recall while
limiting the number of false positives.

All algorithms except HMM were able to detect much
more easily the samples of 3 fraud classes among the 5
in the dataset. For those classes, some numeric features
showed significant differences with the dataset average (e.g.
flooding) or clear repetitions of actions at fixed intervals.
HMM performed poorly on those frauds which involve a
high number of common actions. However, it outperformed
the other algorithms on a fraud based on unusual sequences
of actions.

We remind here that DBSCAN and hierarchical cluster-

ing can only perform batch predictions for outlier detection
and thus cannot compare a single PNR to an existing model,
which may be an important limitation leading to model
variations. MeanShift, SOM and one-class SVM return a
binary output while the prediction step of GMM, Z-score
and HMM compute an outlier score given an input vector.
This score is turned into a ranking, hence making possible
a fast insight on the most suspicious PNRs.

The benchmark of the aggregation operators has been
performed with Z-score, hierarchical clustering and SOM.
However, it does not allow us to assess the dominance of
an operator over the others since OWA and WOWA require
a higher number of values to demonstrate their efficiency.
Nevertheless, excellent performances are achieved by aggre-
gating the scores provided by Z-score and SOM, reaching
55% precision for 80% recall. Those two models perform
fast computations on streaming data and predict the outlier
score of up to 2,700 feature vectors per second and per
thread. An in-depth study of the remaining unknown outliers
revealed 3 new types of fraud and several misuses. The
detailed results are given in Table 2.

TABLE 2. ALGORITHMS BENCHMARKING RESULTS OF PNR FRAUD
DETECTION

Algorithm Best F1-score Precision Recall
DBSCAN (Euclidean) 0.25 18.64 36.36
DBSCAN (Mahalanobis) 0.19 15.31 26.45
MeanShift 0.21 13.03 58.68
GMM 0.28 23.24 35.54
One-class SVM 0.26 23.49 28.93
Z-score 0.29 33.71 24.79
Hierarchical 0.35 27.11 50.41
HMM 0.26 24.44 27.27
SOM 0.42 27.64 84.30
Distributed Z-score 0.29 33.71 24.79
Distributed SOM 0.56 43.66 76.86
WA 0.55 39.78 88.43
OWA 0.57 76.39 45.45
WOWA 0.56 74.32 45.45
Z-score & SOM 0.63 50.75 83.47
Distributed Z-score & SOM 0.66 55.43 80.17

Since the best performances were achieved by aggregat-
ing Z-score and SOM, we implemented a distributed version
of both algorithms. If Z-score is embarrassingly parallel,
implementing a distributed SOM requires new equations
to train the network on several chunks of data [12]. The
speedup obtained by the distributed training of SOM is
plotted in Figure 5 running in Scala on Spark with a
hyperthreaded quad-core.

5. Conclusions and future work

We have performed an evaluation of 8 widely used
machine learning algorithms and 3 MCDA operators in
the context of unsupervised fraud detection applied to
a particular dataset used in the global travel industry:
Passenger Name Records (PNRs). Several distance metrics
and outlier detection methods have been applied and result
in a scalable and distributed model able to handle streaming



Figure 5. Computation time for the distributed SOM

data while performing an efficient fraud detection reaching
currently 55% precision for 80% recall. Frauds detected by
the final model can be ranked and provide a quick insight
of the most critical situations. While we cannot disclose
details on the specific frauds discovered in this study (for
confidentiality reasons), the process described here has
shown to be efficient for unsupervised fraud detection and
can be applied to identify and prevent exploited flaws in
Global Distribution Systems.

Future work includes an improvement of the system
with a data enrichment step extending existing features
by retrieving the location and time zone of the bookings
based on airlines IATA codes, airports and travel agencies
information.

We also consider a complementary evaluation focusing
on the model robustness while removing the supervised
optimization of the hyperparameters. This evaluation will
aggregate the Z-scores of individual features according to
the methods described in Section 3.2 to increase the pre-
cision of the algorithm and will use a reconstruction-based
SOM to estimate the size of the neural network fitting the
dataset. The number of components used by the GMM and
HMM algorithms should be inferred by choosing a Dirichlet
Process as a prior distribution on the number of clusters as
described in [1].

Fed by the output of a preliminary supervised fraud
detection process, such an ensemble unsupervised detection
system will reinforce the overall fraud detection by return-
ing previously undetected fraudulent samples to supervised
algorithms in order to subsequently improve their detection
capabilities. Faster manual fraud checks based on ranked
outliers will be achieved by a visual analytics interface
relying on box-plots and cross filters.
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