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Consensus based odour source localisation by
multi-agent systems

Abhinav Sinha, Rishemjit Kaur, Ritesh Kumar and Amol P. Bhondekar

Abstract—This paper presents an investigation of the task of
localising unknown source of an odour by heterogeneous multi-
agent systems. A hierarchical cooperative control strategy has
been proposed as a potential candidate to solve the problem.
The agents are driven into consensus as soon as the information
about the location of source is acquired. The controller has been
designed in a hierarchical manner of group decision making,
agent path planning, and robust control. In group decision
making, a Particle Swarm Algorithm has been used along with
the information of the movement of odour molecules to predict
the odour source location. Next, a trajectory has been mapped
using this predicted location of source, and the information is
passed to the control layer. A variable structure control has
been used in the control layer due to its inherent robustness and
disturbance rejection capabilities. Cases of movement of agents
towards the source under consensus, and parallel formation have
been discussed. The efficacy of the proposed scheme has been
confirmed by simulations.

I. INTRODUCTION

Research in robot olfaction has received wide attention to
address many challenges, some of which include detection of
forest fire, hazardous gases in mines, tunnels and industrial
setup, search and rescue of victims [1]–[3]. Recently, odour
source localisation via autonomous agents on other planets
such as Mars has also been carried out [4], [5]. Numerous
simple and complex algorithms for olfaction problems have
imitated behaviour of biological entities such as mate seeking
by moths, foraging by lobsters, prey tracking by mosquitoes
and blue crabs, etc. However, techniques like probabilistic
inference [6], [7], robust control [8], swarm intelligence [9],
biased random walk [10], optimisation and meta-heuristics
prove better in localisation than aforementioned techniques.

Works on odour source localisation in early 90s were mostly
targeted via chemical gradient based techniques in a diffusion
dominated environment [11]–[14]. In practice, this assumption
leads to sub-optimal performance for above-ground agents due
to the geometry and dimensions of the agents. This assump-
tion, however, yields satisfactory performance in underground
search [15]–[17]. Difficulties associated with diffusion domi-
nated odour dispersal model led to the development of reactive
plume tracking approaches, the performance of which was
further improved by combining vision with sensing [18]–[20].
The efficiency of techniques depending heavily on sensing,
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such as chemotaxis [21], anemotaxis [6], [22], infotaxis [7],
fluxotaxis [23] and their close variants are limited by the
quality of sensors and the manner in which they are used.
Bio-inspired agent manoeuvreing such as Braitenberg style
[24], E. coli algorithm [10], Zigzag dung beetle approach [25],
silkworm moth style [15], [26], [27] are slow in localisation.
Many of these localising techniques deliver unsatisfactory
tracking performance in a turbulence dominated environment.

With advantages of multi-agent systems (MAS) such as
spatial diversity, distributed sensing and actuation, redun-
dancy, scalability, high reliability and increased probability of
success, odour source localisation can be effectively solved.
This dynamical optimisation problem is characterised by three
stages– instantaneous plume sensing (plume finding), manoeu-
vreing of the agents (plume traversal) and cooperative control
of the agents. In spite of a growing attention from researchers
in the last decade [28]–[31], only a few works have addressed
odour source localisation using MAS. A distributed coopera-
tive algorithm based on swarm intelligence was put forth by
Hayes et al. [32] and experimental results proved multiple
robots perform more efficiently than a single autonomous
robot. Marques et al. proposed Particle Swarm optimisation
(PSO) algorithm [33] to localise odour source. Studies in [34]
reported modified PSO technique based on electrical charge
theory by using neutral and charged robots to find the odour
source without getting trapped into a local maximum concen-
tration. Distributed control based on simplified PSO was pro-
posed by Lu et al. in [35], which is a type of proportional-only
controller and the operating region is confined between global
and local best. This requires complicated obstacle avoidance
algorithms and more energy consumption. Odour propagation
is non-trivial, i.e., odour arrives in packets, leading to wide
fluctuations in measured concentrations. Plumes also tend to
be dynamic and turbulent. In order to effectively solve odour
source localisation problem, the information of wind needs to
be taken into consideration. As odour molecules travel down-
wind, direction of the wind provides an effective information
on relative position of the source. Using both concentration
and wind information, Lu et al. have designed a particle filter
based cooperative control scheme [36] to coordinate multiple
robots towards odour source. However, the dynamical model
used in [35], [36] are oversimplified to integrator dynamics and
the effects of unknown perturbations have not been considered.
To address the effect of perturbations, robust control protocols
have been designed in [8], [37], but the dynamics of the
MAS is homogeneous, i.e, agents are identical. In practice
it is very difficult to obtain truly homogeneous agents. Even



truly homogeneous agents exhibit a tendency to drift towards
heterogeneity over time and continued operation.

In spite of rapid developments in sensor technology, avail-
ability of faster localisation algorithms are still a challenge.
Motivated by these studies and in order to effectively address
the odour source localisation problem, we have proposed a
three-layered hierarchical cooperative control scheme which
uses concentration information from swarm, as well as wind
information from a measurement model [38] describing move-
ment of filaments to locate the odour source. Information about
the source via instantaneous sensing and swarm intelligence
is obtained in the first layer. Second layer is designed to
manoeuvre the agents via traditional surging, casting and
searching methods. Third layer is the cooperative control layer
and the cooperative controller is based on the paradigms of
variable structure control (aka sliding mode control), which
is known for its inherent robustness and properties to reject
disturbances that lie in the range space of input. In the third
layer, the information obtained in the first layer is passed
as a reference to the tracking controller. A block diagram
representation of the proposed scheme has been shown in
figure 1. The idea of using a finite time controller is not
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Fig. 1: Proposed hierarchical cooperative control scheme for odor
source localization

new, however we have adopted a different perspective in this
study. To the best of authors’ knowledge, sliding mode control
technique with novel manifold and reaching law has been used
for the first time in odour source localisation. The sole idea to
use such a control is to guarantee faster convergence, complete
disturbance rejection and steady precision. Moreover, studies
in this work incorporate a large class of systems that may
contain unknown inherent nonlinearity and heterogeneity. We
summarise our contributions via following points.
• Individual autonomous agents may have some inherent

nonlinear dynamics. This work generalises the problem

by taking into account nonlinear dynamics of MAS.
When the uncertain function is zero, the dynamics simply
reduces to that of an integrator system.

• Individual autonomous agents might have different dy-
namics for a practical application. Hence, the consider-
ation of heterogeneous agent dynamics is more close to
real situations.

• The finite time robust controller is based on sliding modes
with nonlinear sliding hyperplane and novel inverse sine
hyperbolic based reaching law. Consequently, the control
signal is smooth and reachability to the manifold is fast.

• The synthesised control ensures stability even in the
presence of disturbances that are bounded and matched.

After introduction to the study in section 1, remainder of
this work in organised as follows. Section 2 provides in-
sights into preliminaries of spectral graph theory and sliding
mode control. Section 3 presents dynamics of MAS and
mathematical problem formulation, followed by hierarchical
distributed cooperative control scheme in section 4. Results
and discussions have been carried out in section 5, followed
by concluding remarks in section 6.

II. PRELIMINARIES

A. Spectral Graph Theory for Multi-Agent Systems

A directed graph, also known as digraph is represented
throughout in this paper by G = (V, E ,A). V is the nonempty
set in which finite number of vertices or nodes are contained
such that V = {1, 2, ..., N}. E denotes directed edge and is
represented as E = {(i, j) ∀ i, j ∈ V & i 6= j}. A is the
weighted adjacency matrix such that A = a(i, j) ∈ RN×N. The
possibility of existence of an edge (i, j) occurs iff the vertex i
receives the information supplied by the vertex j, i.e., (i, j) ∈
E . Hence, i and j are termed neighbours. The set Ni contains
labels of vertices that are neighbours of the vertex i. For the
adjacency matrix A, a(i, j) ∈ R+

0 . If (i, j) ∈ E ⇒ a(i, j) > 0.
If (i, j) /∈ E or i = j ⇒ a(i, j) = 0. The Laplacian matrix
L [39] is central to the consensus problem and is given by
L = D −A where degree matrix, D is a diagonal matrix, i.e,
D = diag(d1, d2, ..., dn) whose entries are di =

∑n
j=1 a(i, j).

A directed path from vertex j to vertex i defines a sequence
comprising of edges (i, i1), (i1, i2), ..., (il, j) with distinct
vertices ik ∈ V , k = 1, 2, 3, ..., l. Incidence matrix B is
also a diagonal matrix with entries 1 or 0. The entry is 1
if there exists an edge between leader agent and any other
agent, otherwise it is 0. Furthermore, it can be inferred that the
path between two distinct vertices is not uniquely determined.
However, if a distinct node in V contains directed path to
every other distinct node in V , then the directed graph G is
said to have a spanning tree. Consequently,the matrix L + B
has full rank [39]. Physically, each agent has been modelled
by a vertex or node and the line of communication between
any two agents has been modelled as a directed edge.

B. Sliding Mode Control

Sliding Mode Control (SMC) [40] is known for its inher-
ent robustness. The switching nature of the control is used



to nullify bounded disturbances and matched uncertainties.
Switching happens about a hypergeometric manifold in state
space known as sliding manifold, surface, or hyperplane.
The control drives the system monotonically towards the
sliding surface, i.e, trajectories emanate and move towards
the hyperplane (reaching phase). System trajectories, after
reaching the hyperplane, get constrained there for all future
time (sliding phase), thereby ensuring the system dynamics
remains independent of bounded disturbances and matched
uncertainties.

In order to push state trajectories onto the surface s(x),
a proper discontinuous control effort uSM(t, x) needs to be
synthesised satisfying the following inequality.

sT (x)ṡ(x) ≤ −η‖s(x)‖, (1)

with η being positive and is referred as the reachability
constant.

∵ ṡ(x) =
∂s

∂x
ẋ =

∂s

∂x
f(t, x, uSM) (2)

∴ sT (x)
∂s

∂x
f(t, x, uSM) ≤ −η‖s(x)‖. (3)

The motion of state trajectories confined on the manifold is
known as sliding. Sliding mode exists if the state velocity
vectors are directed towards the manifold in its neighbourhood.
Under such consideration, the manifold is called attractive,
i.e., trajectories starting on it remain there for all future time
and trajectories starting outside it tend to it in an asymptotic
manner. Hence, in sliding motion,

ṡ(x) =
∂s

∂x
f(t, x, uSM) = 0. (4)

uSM = ueq is a solution, generally referred as equivalent
control is not the actual control applied to the system but can
be thought of as a control that must be applied on an average
to maintain sliding motion and is mainly used for analysis of
sliding motion.

III. DYNAMICS OF MAS & PROBLEM FORMULATION

Consider first order heterogeneous MAS with a virtual
leader and finite number of followers interacting among
themselves and their environment in a well defined directed
topology. Under such interconnection, only local information
about the predicted location of source of the odour through
instantaneous plume sensing is available via communication
among agents. The governing dynamics of first order het-
erogeneous MAS that comprise of N agents can be written
mathematically as

ẋi(t) = fi(xi(t)) + uSMi
(t) + ςi; i ∈ [1, N ] ∈ N, (5)

where fi(·) denotes the uncertain dynamics of each agent. xi
and uSMi

are the state of ith agent and the associated control re-
spectively. ςi represents bounded exogenous disturbances that
enter the system from input channel, i.e., ‖ςi‖ ≤ ςmax <∞.

Assumption III.1. fi(·) : R+ ×X → Rm is locally Lipschitz
over some domain DL with Lipschitz constant L̄. For our case,

we shall take this domain DL to be fairly large. X ⊂ Rm is a
domain in which origin is contained.

Since the function fi(·) is uncertain, a nominal system
model can be extracted from the known part of the uncertain
function fi(·), and the unknown part can be treated by worst
case bounds. The dynamics of each agent is affected by
the interconnection among agents as well as the presence of
inherent non-linearity in each agent. Note that when fi(·) = 0,
the dynamics reduce to those of integrator systems.

Remark 1. For the sake of simplicity, we shall carry out the
discussion in R1. However, the same can be extended to higher
dimensions by the use of Kronecker products.

The problem of odour source localisation can be viewed as a
cooperative control problem in which control laws uSMi

need
to be designed such that the conditions limt→∞ ‖xi−xj‖ = 0
and limt→∞ ‖xi − xs‖ ≤ θ are satisfied. Here xs represents
the probable location of odour source & θ is an accuracy
adjustment parameter in declaration of the true location of
the source.

IV. HIERARCHICAL DISTRIBUTED COOPERATIVE
CONTROL SCHEME

In order to force the agents in consensus to locate the source
of odour, we have come up with the following hierarchical
scheme.

A. Group Decision Making

This layer utilises both concentration and wind information
to predict the location of odour source. Then, the final probable
position of the source can be described as

φ(th) = k1pi(th) + (1− k1)qi(th). (6)

With the knowledge of PSO, pi(th) in (6) can be described as
the oscillation centre. Information of the wind is captured in
qi(th). k1 ∈ (0, 1) denotes additional weighting coefficient.

Remark 2. Since the sensors equipped with the agents can only
receive data at discrete instants, the arguments in (6) represent
data captured at t = th instants (h = 1, 2, ...).

It should be noted that φ is the tracking reference that is fed
to the tracking controller. Now, we present detailed description
of obtaining pi(th) and qi(th).

Commonly used simple PSO algorithm can be described in
following form.

vi(th+1) = ωvi(th) + uPSO(th), (7)
xi(th+1) = xi(th) + vi(th+1). (8)

Here ω is the inertia factor, vi(th) and xi(th) represent the
respective velocity and position of ith agent. This commonly
used form of PSO can also be used as a proportional-only type
controller, however for the disadvantages highlighted earlier,
we do not regard PSO as our final controller. PSO control law
uPSO can be described as

uPSO = α1(xl(th)− xi(th)) + α2(xg(th)− xi(th)). (9)



In (9), xl(th) denotes the previous best position and xg(th)
denotes the global best position of neighbours of ith agent
at time t = th, and α1 & α2 are acceleration coefficients.
Since, every agent in MAS can get some information about the
magnitude of concentration via local communication, position
of the agent with a global best can be easily known. By the
idea of PSO, we can compute the oscillation centre pi(th) as

pi(th) =
α1xl(th) + α2xg(th)

α1 + α2
, (10)

where

xl(th) = arg max
0<t<th−1

{g(xl(th−1)), g(xi(th))}, (11)

xg(th) = arg max
0<t<th−1

{g(xg(th−1)),max
j∈N

aij g(xj(th))}.

(12)

Thus, from (9), (10)

uPSO(th) = (α1 + α2){pi(th)− xi(th)}, (13)

which is clearly a proportional-only controller with propor-
tional gain α1 + α2, as highlighted earlier.

In order to compute qi(th), movement process of a single
filament that consists several odour molecules has been mod-
elled based on study in [38]. If xf (t) denotes position of the
filament at time t, v̄a(t) represent mean airflow velocity and
n(t) be some random process, then the model can be described
as

ẋf (t) = v̄a(t) + n(t). (14)

Without loss of generality, we shall regard the start time of
our experiment as t = 0. From (14), we have

xf (t) =

∫ t

0

v̄a(τ)dτ +

∫ t

0

n(τ)dτ + xs(0). (15)

xs(0) denotes the real position of the odour source at t = 0.

Assumption IV.1. We assume the presence of a single, sta-
tionary odour source. Thus, xs(t) = xs(0).

Implications from remark 2 require (15) to be implemented
at t = th instants. Hence,

xf (th) =

t∑
m=0

v̄a(τm)∆t+

t∑
m=0

n(τm)∆t+ xs(th), (16)

xf (th) = xs(th) + v̄?a(th) + w?(th). (17)

In (17),
∑t
m=0 v̄a(τm)∆t = v̄?a(th) and

∑t
m=0 n(τm)∆t =

w?(th).
Remark 3. In (17), the accumulated average of v̄?a(th) and
w?(th) can also be considered for all possible filament releas-
ing time.

From (17),

xf (th)− v̄?a(th) = xs(th) + w?(th). (18)

The above relationship, (18) can be viewed as the information
about xs(th) with some noise w?(th). Hence,

qi(th) = xs(th) + w?(th). (19)

Therefore, φ in (6) can now be constructed from (10) & (19).

B. Path Planning

The detection of information of interest based on instan-
taneous sensing of plume depends on the threshold value
of sensors, and the next state is decided according to this
threshold. Hence, the blueprints of trajectory planning can be
described in terms of following behaviour.
• Surging: If the ith agent receives data well above thresh-

old, we say that some clues about the location of the
source have been detected. If the predicted position of the
source at t = th as seen by ith agent be given as xsi(th),
then the next state of the agent is given mathematically
as

xi(th+1) = xsi(th) (20)

• Casting: If the ith agent fails to detect information at any
particular instant, then the next state is obtained using the
following relation.

xi(th+1) =
‖xi(th)− xsi(th)‖

2
+ xsi(th) (21)

• Search and exploration: If all the agents fail to detect
odour clues for a time segment [th, th+l] > δ0 for some
l ∈ N and δ0 ∈ R+ being the time interval for which
no clues are detected or some constraint on wait time
placed at the start of the experiment, then the next state
is updated as

xi(th+1) = xsi(th) + zψσ (22)

In (22), zφσ is some random parameter with σ as its
standard deviation and ψ as its mean.

C. Distributed Control

In the control layer, we design a robust and powerful
controller on the paradigms of sliding mode. It is worthy
to mention that based on instantaneous sensing and swarm
information, at different times, each agent can take up the role
of a virtual leader whose opinion needs to be kept by other
agents. The trajectory is planned by the leader agent based on
surging, casting and searching behaviour. φ from (6) has been
provided to the controller as the reference to be tracked. The
tracking error is formulated as

ei(t) = xi(t)− φ(th) ; t ∈ [th, th+1[. (23)

In terms of graph theory, we can reformulate the error variable
as

εi(t) = (L+ B)ei(t) = (L+ B)(xi(t)− φ(th)). (24)

From this point onward, we shall denote L + B as H. Next,
we propose the nonlinear sliding manifold

si(t) = λ1 tanh(λ2εi(t)), (25)

which offers faster reachability to the surface. λ1 ∈ R+ rep-
resents the speed of convergence to the surface, and λ2 ∈ R+

denotes the slope of the nonlinear sliding manifold. These
are coefficient weighting parameters that affect the system
performance. In linear sliding manifolds, the magnitude of



error is directly proportional to the magnitude of control
effort needed to maintain sliding motion. In order to prevent
violations of actuator constraints, the control effort is hard
upper and lower bounded by some finite value, thereby making
only a portion of the manifold attractive (termed as sliding
regime). There is no guarantee of desired performance or
stability outside the sliding regime. Moreover, if the reference
state is too far from the current system state and the actuator
saturates, the controller is unable to cope up, resulting in
instability. Hence, it is beneficial to design nonlinear sliding
manifolds that can hold the system states regardless of their
location in the state space.

The forcing function has been proposed as

ṡi(t) = −µ sinh−1(m+ w|si(t)|)sign(si(t)). (26)

In (26), m is a small offset such that the argument of sinh−1(·)
function remains non zero and w is the gain of the controller.
The parameter µ facilitates additional gain tuning. In general,
m << w. This novel reaching law contains a nonlinear
gain and provides faster convergence towards the manifold.
Moreover, this reaching law is smooth and chattering free,
which is highly desirable in mechatronic systems to ensure
safe operation.

Theorem IV.1. Given the dynamics of MAS (5) connected in
a directed topology, error candidates (23, 24) and the sliding
manifold (25), the stabilising control law that ensures accurate
reference tracking under consensus can be described as

uSMi
(t) =−

{
(ΛH)−1µ sinh−1(m+ w|si(t)|)sign(si(t))Γ

−1

+ (f(xi(t))− φ̇(th))
}

(27)

where Λ = λ1λ2, Γ = 1− tanh2(λ2εi(t)), w > supt≥0{‖ςi‖}
& µ > sup{‖ΛHςiΓ‖}.
Remark 4. As mentioned earlier, λ1, λ2 ∈ R+. This ensures
Λ 6= 0 and hence its non singularity. The argument of tanh(·)
is always finite and satisfies λ2εi(t) 6= πι(κ+1/2) for κ ∈ Z,
thus Γ is also invertible. Moreover the non singularity of H
can be established directly if the digraph contains a spanning
tree with leader agent as a root.

Proof. From (24) and (25), we can write

ṡi(t) = λ1{λ2ε̇i(t)(1− tanh2(λ2εi(t)))} (28)

= λ1λ2ε̇i(t)− λ1λ2ε̇i(t) tanh2(λ2εi(t)) (29)

= λ1λ2ε̇i(t){1− tanh2(λ2εi(t))} (30)

= ΛH(ẋi(t)− φ̇(th))Γ (31)

with Λ & Γ as defined in Theorem IV.1. From (5), (31) can
be further simplified as

ṡi(t) = ΛH(f(xi(t)) + uSMi
(t) + ςi − φ̇(th))Γ. (32)

Using (26), the control that brings the state trajectories on to
the sliding manifold can now be written as

uSMi(t) =−
{

(ΛH)−1µ sinh−1(m+ w|si(t)|)sign(si(t))Γ
−1

+ (f(xi(t))− φ̇(th))
}
,

which is same as (27), thereby completing the proof.

Remark 5. The control (27) can be practically implemented
as it does not contain the uncertainty term.

It is crucial to analyse the necessary and sufficient condi-
tions for the existence of sliding mode when control protocol
(27) is used. We regard the system to be in sliding mode if
for any time t1 ∈ [0,∞[, system trajectories are brought upon
the manifold si(t) = 0 and are constrained there for all time
thereafter, i.e., for t ≥ t1, sliding motion occurs.

Theorem IV.2. Consider the system described by (5), error
candidates (23, 24), sliding manifold (25) and the control
protocol (27). Sliding mode is said to exist in vicinity of
sliding manifold, if the manifold is attractive, i.e., trajectories
emanating outside it continuously decrease towards it. Stating
alternatively, reachability to the surface is ensured for some
reachability constant η > 0. Moreover, stability can be
guaranteed in the sense of Lyapunov if gain µ is designed
as µ > sup{‖ΛHςiΓ‖}.

Proof. Let us take into account, a Lyapunov function candi-
date

Vi = 0.5s2i . (33)

Taking derivative of (33) along system trajectories yield

V̇i = siṡi (34)

= si
{

ΛH(f(xi(t)) + uSMi
(t) + ςi − φ̇(th))Γ

}
. (35)

Substituting the control protocol (27) in (35), we have

V̇i = si
(
− µ sinh−1(m+ w|si|)sign(si) + ΛHςiΓ

)
= −µ sinh−1(m+ w|si|)‖si‖+ ΛHςiΓ‖si‖
=
{
− µ sinh−1(m+ w|si|) + ΛHςiΓ

}
‖si‖

= −η‖si‖, (36)

where η = µ sinh−1(m + w|si|) − ΛHςiΓ > 0 is called
reachability constant. For µ > sup{‖ΛHςiΓ‖}, we have

V̇i < 0. (37)

Thus, the derivative of Lyapunov function candidate is negative
definite confirming stability in the sense of Lyapunov.

Since, µ > 0, ‖si‖ > 0 and sinh−1(·) > 0 due to the nature
of its arguments. Therefore, (36) and (26) together provide
implications that ∀si(0), siṡi < 0 and the surface is globally
attractive. This completes the proof.

V. RESULTS AND DISCUSSIONS

Figure 2 depicts the interaction topology of the agents [8]
as a digraph. Note that although the developed theory and
hierarchical scheme can be extended to a switching topology
as well, we shall simplify the case by taking a fixed topology.

Assumption V.1. Agent 1 appears as the virtual leader to all
other agents. Therefore, the topology is fixed and directed.

The associated graph matrices have been described below.
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Fig. 2: Topology in which agents are connected

A =

[
0 0 1 0
0 0 0 0
0 1 0 0
0 0 1 0

]
, B =

[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
, D =

[
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

]
,

L = D −A =

[
1 0 −1 0
0 0 0 0
0 −1 1 0
0 0 −1 1

]
,L+ B =

[
2 0 −1 0
0 1 0 0
0 −1 1 0
0 0 −1 1

]
(38)

Dynamics of the agents considered are described below.

ẋ1 = 0.1 3
√

sin(x1) + cos(2πt) + uSM1
(t) + ς1, (39)

ẋ2 = 0.1 sin(x2)− cos(e−x2t) + uSM2
(t) + ς2, (40)

ẋ3 = 0.1 3
√

sin(x3) + cos2(2πt) + uSM3(t) + ς3, (41)
ẋ4 = 0.1 sin(x4) + cos(x4) + uSM4(t) + ς4, (42)

ẋ5 = 0.1 cos(x5)− cos(2πt)− e−t + uSM5(t) + ς5. (43)

Odour molecules tend to disperse heavily in the environment
characterised by diffusion. In making assumption of a diffu-
sion dominated environment, several factors are ignored. A
more realistic picture must include effects of wind, turbulence
diffusion and thermal effects. However, effects of turbulence
are difficult to be described mathematically. In addition to
the effects of wind, the characteristics of environment can
also be described by advection phenomenon. Hence, we have
considered a diffusion-advection plume model in our discussed
source localisation problem. Before we begin to use this
model, following assumptions need to be stated.

Assumption V.2. We assume uniform airflow velocity for all
time and throughout the domain in which the task of source
localisation is being performed.

Assumption V.3. The turbulence diffusion coefficient K needs
to be known beforehand via some suitable measurements. In
case K is not known beforehand, then K should be estimated
or correlated as a function of wind velocity, i.e., K = f(va).
This estimation can be performed during the experiment with
the data obtained by sensors (e.g. anemometers, gas sensors).

The diffusion-advection model provided [41], [42] has been
recalled here to simulate the dynamic plume under time
varying disturbances. Initial conditions have been chosen to
be far from the equilibrium point. We shall consider a time
varying disturbance ςi = 0.3 sin(π2t2) for matched case and
ςi = 20 sin(π2t2) for mismatched case, accuracy parameter
θ = 0.001 and maximum mean airflow velocity v̄amax = 1
m/s. Other key design parameters are provided in table I.

TABLE I: Values of the design parameters used in simulation
k1 ωmax α1 α2 λ1 λ2 µ m w

0.5 2 rad/s 0.25 0.25 1.774 2.85 5 10−3 2

A steady concentration profile for a very large span of time
(t→∞) can be written as

C( #»r ,∞) =
q0

2πKdi
exp

{
− va

2K
(di − #»r + #»r 0)

}
. (44)

In (44), #»r 0 = xs(t) represents the coordinates of the odour
source, di = ‖xi − xs‖, q0 is the filament release rate and K
is the turbulent diffusion coefficient that is independent of the
diffusing material. K is taken to be 0.02 m2/sec and q0 = 2
mg/sec of diffusing substance. We shall present the results for
both the cases of localisation in R1 and R2 to demonstrate the
efficiency of the designed control scheme.

For the case of R1, the odour source is randomly placed
between 10 m and 11 m, as shown in figure 3. Agents and
their respective trajectories are represented by five different
colours. The odour source is represented by a grey circle, and
the filaments released from the odour source are represented
as black dots. Agents start from various initial conditions that
are far from the origin. Reference for agents is taken from left
hand vertical axis and that for the source is taken from right
hand vertical axis. Agents start moving from left hand side to
progress towards the source via instantaneous plume sensing
(by sensing odour molecules, or filaments). As soon as the
leader agent senses the odour molecules, the information of
predicted next state is exchanged among other agents. This
local information is then used to make a consensus while
localisation. It is evident that agents come to consensus in
finite time to locate the odour source. In spite of time varying
disturbance, the plume tracking is accurate and the localisation
is successful. In figure 4, agents locate the odour source in
parallel formation. During parallel formation, a fixed distance
is maintained between two consecutive agents. In both the
cases, filaments or odour molecules (source information) are
released from the odour source and are detected by the sensors
equipped with the agents. Although the filaments disperse
throughout the domain, only the source information relevant
to the agents has been shown in the figure. The agents start
from left and progress towards the source to the right. The
tracking controller attempts to minimise the error between the
predicted next state and the actual next state. The tracking
error lies in the close vicinity of zero as expected, implying
that the tracking error has almost been nullified. Norm of
tracking errors in R1 has been depicted in figure 5 to depict
near nullification of error. Sliding manifolds, which has been
designed to be novel in this study, also come to consensus in
very short span of time, as evident from figure 5. It is, then,
quite clear that the convergence of state trajectories to the
sliding manifold is very fast, and is highly desired to ensure
a high degree of robustness and autonomy. Such manifolds
can also be utilised to attain a desired convergence speed by
simple tuning of design parameters. Use of a novel inverse sine
hyperbolic reaching law results in a smooth control signals



for all the agents. The use of smooth sliding mode controller
ensures safe operation in mechatronic devices. Figure 6 depicts
the control signals of all the agents when localisation is carried
in R1. It is clear that the signal is chattering free, smooth and
accurate.

Having discussed the case of R1, we shall now discuss the
odour source localisation in R2. To avoid confusion between
state variable x and axis labelled as x in the usual sense,
we have adopted to refer abscissa as first axis and ordinate
as second axis throughout this discussion. Agents are driven
into consensus to locate the odour source in R2 in the domain
described by the axis limits. Within the domain of localisation,
a total of 25 trials were done with various initial conditions
chosen far from the origin. Figure 7 shows the average
time spent in four cases– localisation via consensus under
matched perturbations (Case 1), localisation via formation un-
der matched perturbations (Case 2), localisation via consensus
under mismatched perturbations (Case 3), and localisation via
formation under mismatched perturbations (Case 4). Similar
to the results in [43], the success rate of this technique is
also 100% except for the fact that time spent in localisation is
lesser via this technique owing to faster convergence of state
trajectories to the sliding manifold. The four cases have been
illustrated here in a tabular format for ease of reference. A
check (cross) mark in a particular column indicates that the
particular strategy has been used (not used) in localisation.

TABLE II: Four cases of localisation considered in this study
Tech-
nique

Con-
sensus

Forma-
tion

Matched
perturbations

Mismatched
perturbations

Case 1 X × X ×
Case 2 × X X ×
Case 3 X × × X
Case 4 × X × X

We shall also present two cases under which localisation has
been tasked– under consensus and under parallel formation.
Note that agents may be subjected to any geometrical pattern,
or formation that deems suitable for the task at hand. Figure
8 depicts wind turbulence in the domain during localisation
via consensus. Snapshots in four segments of time have been
taken, as described in figure 8. The first snapshot is taken
randomly between 0 < t < 2.5 sec and the velocity plot
depicting turbulence at that time has been presented. Wind
turbulence for the case of localisation via formation has been
illustrated by velocity plots in figure 9 similar to that in figure
8. In figure 10, norms of tracking error candidates along first
and second axis have been depicted. Similar to the error profile
in figure 5, the tracking is accurate and the agents are able to
complete the localisation task in finite time. For a random trial,
figure 11 shows localisation in a turbulent environment under
the effect of both mismatched and matched disturbances. Un-
der mismatched disturbances and turbulence, localisation takes
slightly more time as compared with its matched disturbance
counterpart. Two best case scenarios have been also presented
in figures 12 and 13 to illustrate the efficacy of the proposed
scheme. Figure 12 shows the localisation under consensus in

R2. The domain for this task has been set to be a grid of 50×50
along both the axes. Abscissa ranges from −20 to 30, and so
does the ordinate. Start position of agents are denoted by a ×
in five different colours. Filaments or the odour molecules are
released from the odour source and the molecules disperse in
the domain. Figure 13 shows agents making parallel formation
in R2 to locate the source (domain of localisation is defined
via axis limits, which happens to be a grid of 80× 80). In the
formation case, abscissa and ordinate range from −20 to 60.
The explanation is similar to that for the case of localisation
via consensus. The performance metrics of the localisation in
terms of average time spent to locate the source of odour have
been provided in table III.

TABLE III: Performance metrics in context of localisation
Technique Average Success rate Median localisation Time Control Implementation

Case 1 (this study) 100% 16 sec Time-triggered
Case 2 (this study) 100% 20 sec Time-triggered
Case 3 (this study) 100% 18 sec Time-triggered
Case 4 (this study) 100% 22 sec Time-triggered

PSO [44] 21.5% 986.25 sec Time-triggered
FTMCS [43] 100% 137.5 sec Time-triggered

VI. CONCLUSION

In this paper, odour source localisation via multi-agent
systems has been addressed. The localising task is based on
a cooperative strategy where agents interact locally among
themselves to locate the source of odour in finite time. A
hierarchical control scheme has been developed to predict
the probable location of odour source using information of
wind and concentration. This control scheme based on PSO
and SMC is robust and insensitive to matched disturbances.
Numerical simulations demonstrate the effectuality of the
proposed scheme for both cases– when agents localise the
odour source via consensus, and parallel formation. The lo-
calisation takes very less time compared to other strategies
and the success rate is 100%. In future, we shall address the
communication issues associated with the problem.
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