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A MODEL-FREE SELECTION CRITERION FOR THE MIXING

COEFFICIENT OF SPATIAL MAX-MIXTURE MODELS

ABU-AWWAD ABDUL-FATTAH, MAUME-DESCHAMPS VÉRONIQUE, AND RIBEREAU PIERRE

Abstract. One of the main concerns in extreme value theory is to quantify the dependence

between joint tails. Using stochastic processes that lack flexibility in the joint tail may lead

to severe under- or over-estimation of probabilities associated to simultaneous extreme events.

Following recent advances in the literature, a flexible model called max-mixture model has

been introduced for modeling situations where the extremal dependence structure may vary

with the distance. In this paper we propose a nonparametric model-free selection criterion for

the mixing coefficient Our criterion is derived from a madogram, a notion classically used in

geostatistics to capture spatial structures. The procedure is based on a nonlinear least squares

between the theoretical madogram and the empirical one. We perform a simulation study and

apply our criterion to daily precipitation over the East of Australia.

Keywords: Extremal dependence; Madogram; Max-stable model; Max-mixture model; Non-

linear least squares.

1. Introduction

Max-stable stochastic processes arise as a fundamental class of models that are able to de-

scribe spatial extreme value phenomena. Max-stable process models for spatial data were first

constructed using the spectral representation (De Haan, 1984). Several subsequent works on

the construction of spatial max-stable processes have been developed, see e.g. (Smith, 1990;

Schlather, 2002; Kabluchko et al., 2009; Davison and Gholamrezaee, 2012). The inference on

spatial processes is an open field that is still in development. Both parametric and nonpara-

metric inference methods are used in the literature.

Camille Jordan Institute - ICJ, Université Claude Bernard Lyon 1, France
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2 MODEL-FREE SELECTION FOR THE MIXING COEFFICIENT OF A MM PROCESS

For a stationary spatial process X = {X(s), s ∈ S}, the Asymptotic Dependence (AD) is

characterized by χ(h) > 0, with:

(1.1) χ(h) = lim
x→∞

P{X(s) > x|X(s+ h) > x}, s, s+ h ∈ S.

This means that, for an AD process, a large event at location s+ h leads to a non-zero proba-

bility of a similarly large event at location s for some spatial lag vector h. On one other hand,

a process is Asymptotically Independent (AI) if χ(h) = 0 for any h. This is achieved e.g. for

Gaussian processes, see (Sibuya, 1960).

Within the class of max-stable models, only two types of dependence structures are pos-

sible: either the process is AD or it is independent. This restriction leads to a drawback of

max-stable processes that they are too coarse to describe multivariate joint tails with asymp-

totic independence sufficiently accurately. Particularly, fitting asymptotic dependent models to

asymptotically independent data leads over/under estimation of probabilities of extreme joint

events, since there is a mis-placed assumption that the most extreme marginal events may oc-

cur simultaneously (Coles et al., 1999). (Thibaud et al., 2013; Davison et al., 2013) introduced

recent examples about practical difficulties to identify whether a data set should be modeled

using an asymptotically dependent or asymptotically independent.

(Wadsworth and Tawn, 2012) introduced a new class of models, so-called max-mixture mod-

els, to capture both AD and AI. The basic idea is to mix max-stable and asymptotic independent

processes. Let a ∈ [0, 1], then the max-mixture (MM) model is defined as

Z(s) = max{ aX(s), (1− a)Y (s)}, s ∈ S

where X(s) is a stationary max-stable process and Y (s) is a stationary AI process, so that

the parameter a represents the proportion of AD in the process Z.

In this paper, we are concerned with constructing a model-free criterion to choose a realistic

value for the mixing parameter a. Our objective is not to model extremal dependence of joint

tails but to set up a statistical criterion that facilitate the modelling of the spatial data with

suitable behaviour. We shall use least squares on the F λ-madogram. In (Bel et al., 2008), a

madogram based test on the AD of a max-stable process is proposed, while in (Abu-Awwad
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et al., 2017), a parametric test on a for max-mixture processes is developed.

The paper is organized as follows. Section 2 reviews spatial extremes processes. The proposed

F λ−madogram for max-mixture models and the selection criterion for the mixing coefficient a

are developed in Section 3, while Section 4 illustrates the performance of our method through

a number of simulation studies. We conclude with an illustration of spatial analysis of precipi-

tation in Australia in Section 5.

2. Spatial extremes processes: models

Throughout our work, X = {X(s), s ∈ S}, S ⊂ Rd (generally, d = 2) is a spatial process, it

will be assumed to be stationary and isotropic.

2.1. Max-stable processes. Suppose that {Yi(s) : s ∈ S ⊂ Rd}, i = 0, 1, 2, ..., are i.i.d

replicates of a random process Y (s), and that there are sequences of continuous functions

{an(s) > 0} and {bn(s)} such that, the rescaled process of maxima,

(2.1)
n∨
i=1

Yi(s)− bn(s)

an(s)

d→ X(s), n→∞

where the limiting random process X is assumed to be non-degenerate. By (De Haan and

Pereira, 2006) the class of the limiting processes X(s) coincides with the class of max-stable

processes. This definition of MS processes offers a natural choice for modeling spatial extremes.

The univariate extreme value theory, implies that the marginal distributions of X(s) are Gen-

eralized Extreme value (GEV) distributed, and without loss of generality the margins can trans-

formed to a simple MS process called standard Fréchet distribution, P(X(s) ≤ z) = exp{−z−1}.

Following (De Haan, 1984; Schlather, 2002), a simple MS process X(s) has the following

representation

(2.2) X(s) = max
k≥1

Qk(s)/Pk, s ∈ S.
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where Qk(s) are independent replicates of a non-negative stochastic process Q(s) with unit

mean at each s, and Pk are the points of a unit rate Poisson process (0,∞).

For K ∈ N \ {0}, s1, . . . , sK ∈ S, and x1, . . . , xK > 0, the finite K-dimensional distribution

of the process X owing to the representation( 2.2) is given by

(2.3) − logP(X(s1) ≤ z1, . . . , X(sK) ≤ zK) = E

[
K∨
k=1

{
Q(sk)

zk

}]
= Vs1,...,sK (z1, . . . , zK)

where Vs1,...,sK (.) is called the exponent measure. It summarises the structure of extremal

dependence, and satisfies the property of homogenity of order −1 and Vs1,...,sK (∞, ..., z, ...,∞) =

z−1. It has to be noted that

−z logP{X(s1) ≤ z, ..,X(sK) ≤ z} = Vs1,...,sK (1, ..., 1) = θs1,...,sK ,

The coefficient θs1,...,sK is known as the extremal coefficient. It can be seen as a summary of

extremal dependence with two boundary values. The complete independence is achieved when

θs1,...,sK = 1, while complete independence is achieved when θs1,...,sK = K. In the bivariate case,

the AI and AD between a pair of random variables Z1 and Z2, with marginal distributions F1

and F2, may be identified by

(2.4) χ = lim
u→ 1−

P (F1(Z1) > u|F2(Z2) > u)).

The cases χ = 0 and χ > 0 represent AI and AD, respectively, (Joe, 1993). This coefficient is

related to the pairwise extremal coefficient θ through the relation χ = 2− θ.

Since both dependence functions θ and χ are useless for AI processes, (Coles et al., 1999) pro-

posed a new dependence coefficient which measures the strength of dependence for AI processes:

(2.5) χ̄ = lim
u→ 1−

χ̄(u) = lim
u→ 1−

2 logP (F (Z(s)) > u)

logP (F (Z(s)) > u,F (Z(s+ h)) > u)
− 1

AD (respectively AI) is achieved if and if χ̄ = 1 (resp. χ̄ < 1).

Another dependence model for bivariate joint tails was introduced by (Ledford and Tawn, 1996)

(2.6) P(X(s) > x,X(s+ h) > x) ∼ x−1/η(h)Lh(x), for x→∞
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where X is a stationary spatial process with unit Fréchet margins, Lh(.) is a slowly varying

function at ∞ and the tail dependence coefficient η(h) ∈ (0, 1]. AI corresponds to η(h) < 1.

Different choices for the process Q(s) in (2.2) lead to more or less flexible models for spa-

tial maxima. Commonly used models are the Guassian extreme value process (Smith, 1990),

the extremal Gaussian process (Schlather, 2002), the Brown-Resnick process (Kabluchko et al.,

2009), and the extremal−t process (Opitz, 2013). Below, we list these four specific examples of

max-stable models.

The storm profile model (Smith, 1990), is defined by taking Qk(s) = f(s−Wk) in Equation

(2.2), where f is the density function of a Gaussian random vector with covariance matrix

Σ ∈ R2×2. The function f plays a major role as it determines the shape of the storm events.

Wk is a homogenous Poisson process. The bivariate exponent function of the Smith model has

the form

− logP[X(s) ≤ x1, X(s+ h) ≤ x2]

=
1

x1
Φ

(
β(h)

2
+

1

β(h)
log

(
x2

x1

))
+

1

x2
Φ

(
β(h)

2
+

1

β(h)
log

(
x1

x2

))
where β(h) =

√
hTΣ−1h and Φ is the standard normal distribution function. In this case the

extremal coefficient is equal to θ(h) = 2Φ{β(h)/2}.

A model originally due to (Schlather, 2002) is the Truncated Extremal Gaussian (TEG)

model and has been exemplified in (Davison and Gholamrezaee, 2012). This process is ob-

tained by taking Qk(s) = cmax(0, εk(s))1Ak(s−Rk), where εk(s) are independent replicates of

a stationary Gaussian process ε = {ε(s), s ∈ S} with zero mean, unit variance and correlation

function ρ(.). 1A is the indicator function of a compact random set A ⊂ S, Ak are independent

replicates of A and Rk are points of a Poisson process with a unit rate on S. The constant c is

chosen to satisfy the constraint E{Qk(s)} = 1.

The bivariate exponent function of a TEG model in the stationary case has the form

(2.7)

− logP[X(s) ≤ x1, X(s+ h) ≤ x2] =

(
1

x1
+

1

x2

)[
1− α(h)

2

(
1−

√
1− 2(ρ(h) + 1)x1x2

(x1 + x2)2

)]
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where α(h) = (1−h/2r)1[0,2r] if A is a disk of fixed radius r. This yields θ(h) = 2−α(h){1−√
(1− ρ(h))/2}.

The max-stable Brown-Resnick (BR) process model proposed by (Brown and Resnick, 1977;

Kabluchko et al., 2009) is a stationary max-stable process that can be constructed with Qk(s) =

exp{εk(s)−γ(s)}, s ∈ S, where εk(s) denotes a Gaussian process with semivariogram γ(h). The

bivariate exponent function of a BR process is:

− logP[X(s) ≤ x1, X(s+ h) ≤ x2]

=
1

x1
Φ

(√
γ(h)

2
+

1√
2γ(h)

log

(
x2

x1

))
+

1

x2
Φ

(√
γ(h)

2
+

1√
2γ(h)

log

(
x1

x2

))

where γ and Φ denote respectively the semivariogram and the standard normal distribution

function. In particular, when the variogram 2γ(h) = hTΣ−1h for some covariance matrix Σ, we

recover the bivariate distribution function of a Smith model.The pairwise extremal coefficient

for a Brown-Resnick process is θ(h) = 2Φ{
√
γ(h)/2}.

The extremal−t max-stable process proposed in (Opitz, 2013; Ribatet and Sedki, 2013) can

be constructed by using Qk(s) =
{
m
−1/v
v Tk(s)

}v
, where Tk is a zero mean Gaussian process

with correlation function ρ, v ≥ 1, 1/mv =
√
π2v/2−1Γ(v+1

2 ), Γ(.) is the gamma function. This

process has the bivariate exponent function:

− logP[X(s) ≤ x1, X(s+ h) ≤ x2]

=
1

x1
Tv+1

(
αρ(h) + α

(
x2

x1

)1/v
)

+
1

x2
Tv+1

(
αρ(h) + α

(
x1

x2

)1/v
)

where Tv is the distribution function of a Student random variable with v degrees of freedom

and α = [v + 1/{1 − ρ2(h)}]1/2. For an extremal−t process the degrees of freedom v controls

the upper bound of the extremal coefficient: θ(h) = 2Tv+1

(√
(v + 1)1−ρ(h)

1+ρ(h)

)
.

In this paper, we shall make intensive use of the so-called F−madogram that is based on a

classical geostatistical tool, the madogram (Matheron, 1987) . It has been introduced in (Cooley
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et al., 2006). Let X is a stationary max-stable random process. The marginal distribution

function is denoted by F . The F -madogram is defined by:

(2.8) νF (h) =
1

2
E[|F (X(s))− F (X(s+ h))|], 0 ≤ νF (h) ≤ 1/6.

The bounds of the F madogram correspond respectively to complete dependence and indepen-

dence. Due to the one-to-one relationship between the extremal dependence function and the

F−madogram, a simple estimator for θ(h) can be derived:

(2.9) θ̂(h) =
0.5 + ν̂F (h)

0.5− ν̂F (h)

where ν̂(h) = 1
2N

∑N
i=1 |F̂{xi(s)} − F̂{xi(s + h)}|, xi(s) and xi(s + h) are the i−th observa-

tions of the random field at locations s and s+ h. F̂ is the empirical distribution function, i.e,

F̂ (z) = (N + 1)−1
∑N

i=1 IZi(sj)≤z, where I(.) is the indicator function.

The so-called F λ−madogram has been introduced for max-stable models by (Bel et al., 2008)

as a generalization of F−madogram (2.8): for any λ > 0, let

(2.10) νFλ(h) =
1

2
E
[
|F λ{X(s)} − F λ{X(s+ h)}|

]
.

A nonlinear least squares procedure has been proposed by (Bel et al., 2008) based on

F λ−madogram to compute an estimator for the extremal dependence function that may out-

performs other known estimators. In that work, it has been found by some trials that good

estimations are obtained for λ ∈ [2, 3].

2.2. Hybrid models of spatial extremal dependence. Although max-stable models seem

to be suitable for modeling extremely high threshold exceedances, asymptotic independence

models may show a better fit at finite thresholds. Due to difficulty or impossibility in practice

to decide whether a dataset should be modeled using AD or AI, (Wadsworth and Tawn, 2012)

have been introduced the hybrid spatial dependence models which are able to capture both AD

and AI.
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Consider Y ′ a stationary Gaussian process. Let Y (s) = −1/ log(Φ(Y ′(s))) then, Y ′ is an AI

process with unit Frchet marginal distributions. Another class of AI processes called inverted

max-stable processes has been proposed by (Wadsworth and Tawn, 2012). They are defined as

(2.11) Y (s) = −1/ log{1− exp [−Y ′(s)−1]}

where Y ′ is a simple max-stable process with extremal coefficient θY ′ . We a slight abuse of

language, we shall denote θY ′ by θY . With this construction, each max-stable process may

be transformed into an AI independent counterpart. This inverted max-stable process (IMS)

satisfies (2.6) and η(h) = 1/θY (h). The bivariate distribution function is given by

P(Y (s) ≤ y1, Y (s+ h) ≤ y2) = −1 + exp(−y−1
1 ) + exp(−y−1

2 ) + exp{−VY [ω(y1), ω(y2)]}

where VY is the exponent measure of the bivariate extreme-distribution of {Y ′(s), Y ′(s+ h)},

and ω(y) = −1/ log{1− exp [−y−1]}. We a slight abuse of language, we shall say that VY is the

exponent measure of Y .

We are now in position to define the max-mixture processes that we will be working on. Let

X be a simple max-stable process with bivariate extremal coefficient θX , and Y be an inverted

max-stable process with coefficient of tail dependence η. Assume that X and Y are indepen-

dent. Then for a mixture proportion a ∈ [0, 1], the spatial max-mixture process proposed by

(Wadsworth and Tawn, 2012) is defined as

(2.12) Z(s) = max{ aX(s), (1− a)Y (s)}.

Clearly, models that are only AD or AI are submodels of Z, obtained for a = 1, a = 0,

respectively. The bivariate joint survivor function of the process Z satisfies

(2.13) P[Z(s) > z,Z(s+ h) > z] =
a(2− θ(h))

z
+

(
1− a
z

)1/η(h)

+O(z−2) as z →∞
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If h0 = inf {h : θ(h) = 2} is finite, then the process Z is AD up to distance h0, and AI for longer

distances. The bivariate CDF for a pair of sites (Z(s), Z(s + h)) is straightforwardly obtained

by the independence between X(s), Y (s)

(2.14)

P(Z(s) ≤ z1, Z(s+h) ≤ z2) = P
(
X(s) ≤ z1

a
,X(s+ h) ≤ z2

a

)
P
(
Y (s) ≤ z1

1− a
, Y (s+ h) ≤ z2

1− a

)
Thus, in the case where X(s) is a max-stable process and Y (s) is a inverted max-stable

process, the distribution function in (2.14) has the form

P(Z(s) ≤ z1, Z(s+ h) ≤ z2) = exp{−aVX(z1, z2)} × {−1 + exp[(a− 1)/z1](2.15)

+ exp[(a− 1)/z2] + exp[−VY [ω((1− a)/z1), ω((1− a)/z2)]}

where VX and VY are the bivariate exponent measures for X and Y respectively.

Figure 1 displays two simulated images of AI processes over the [0, 10]2 square. The corre-

sponding functions η(h) are also represented. According to (Ledford and Tawn, 1997), the case

η(h) = 1/2 corresponds to the near-independence, the AI process constructed from a Brown-

Resnick process (this case corresponds to the isotropic Smith process) allows asymptotic inde-

pendence but tends to near-indpendence for long distances. While an AI process constructed

from extremal−t process presents a stronger dependence in the asymptotic independence when

h is sufficiently large.
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0
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0.2

0.4
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1.0

h

η(
h
)

Inversed BR
Inversed extremal−t

Figure 1. Simulations of two inverted max-stable processes (2.11) on the logarithm scale. Left panel:

simulated image of AI process constructed by inverting an isotropic inverted Brown-Resnick process

with variogram 2γ(h) = (h/1.5)2. Middle panel: simulated image of AI process constructed by
inverting an isotropic extremal−t process with v = 1 degrees of freedom and exponential correlation

function ρ(h) = exp(−h/1.5). On the Right panel: associated functions η(h).

Figure 2 displays five simulated images of the max-mixture model over the [0, 10]2 square

according to different values of the mixing coefficient a. In order to show the role of the mixing
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coefficient, the values in the images are acquired by considering the simulation when a = 1(max-

stable process) and a = 0 (inverted max-stable process). It is noteworthy that the smoothness

decreases as a increases. Figure 16 (Appendix A) displays further examples of simulated images

of max-mixture models.
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Figure 2. Simulations of the max-mixture model (2.12) on the logarithm scale according different values
of mixing coefficient a ∈ {1, 0.75, 0.5, 0.25, 0}. X is an isotropic extremal−t process with v = 1 degrees

of freedom and exponential correlation function ρ(h) = exp(−h), and Y is an isotropic inverted Brown-

Resnick process with variogram 2γ(h) = (h/1.5)2.

Figure 3 illustrates how the spatial extremal dependencies vary regarding to a. Based on

(2.13), the measure χZ associated to the process Z can be computed for a distance h as χZ(h) =

aχX(h), see (Bacro et al., 2016). The hybrid model extends traditional dependence modeling

within the AD class and is appropriate when AD is present at all distances because it permits

to capture a second order in the dependence structure which is not possible with a max-stable

model.
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Figure 3. Associated θ(.) functions for a max-mixture process Z(.) based on two max-stable processes

X(.) and X′(.) that belong to the same family with the same parameters used in Figure 1 for a ∈
{0.25, 0.5, 0.75}.

In (Bacro et al., 2016) daily rainfall data in the East of Australia are studied. Different

models (MS, AI, and MM) are fitted to the data. It is showed that MM models has the merit

to overcome the limits of MS models in which only AD or exact AI can be modeled.
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3. F λ-madogram for spatial max-mixture model

In the present paper we shall use the F λ-madogram defined by Equation (2.10) for max-

mixture models (2.12). We begin by calculating the expression of the F λ-madogram for max-

mixture models. Then, we shall develop a F λ-madogram procedure to estimate θX , θY and

chose a.

Proposition 3.1. Let {X(s), s ∈ S} be a simple max-stable process, with extremal coefficient

function θX(h), and Y (s) be an inverted max-stable process with coefficient of tail dependence

function η(h) = 1/θY (h). Let a ∈ [0, 1] and Z = max{aX, (1− a)Y }. Then, the F λ-madogram

of the spatial max-mixture process Z(s) is given by

νFλ(h) =
λ

1 + λ
− 2λ

a(θX(h)− 1) + 1 + λ
+

λ

aθX(h) + λ
− λθY (h)

(1− a)θY (h) + aθX(h) + λ
β

(
aθX(h) + λ

1− a
, θY (h)

)
(3.1)

where β(., .) is the beta function.

As a consequence of Proposition 3.1, we easily recover the expressions of F λ-madograms

for max-stable and inverted max-stable processes. The F λ-madogram of a simple max stable

process X with extremal dependence coefficient θX is:

(3.2) νFλ(h) =
λ

λ+ 1

θX(h)− 1

λ+ θX(h)

and we have νFλ(h) ∈ [0, λ
(1+λ)(2+λ) ]. The F λ-madogram of an inverted max-stable process Y

with extremal dependence coefficient θY is:

(3.3) νFλ(h) =
1

1 + λ
− λθY (h)

λ+ θY (h)
β(λ, θY (h))

Proof. of Proposition 3.1 We use that for any x, y ∈ R, |x − y| = 2 max {x, y} − (x + y) with

x = F λ{Z(s)} and y = F λ{Z(s+h)}. Moreover, recall that E[Fα{Z(s)}] = 1/(1+α). We have

νFλ(h) = E
[
max{F λ{Z(s)}, F λ{Z(s+ h)}}

]
− 1

2
E
[
F λ{Z(s)}+ F λ{Z(s+ h)}

]
= E

[
max{F λ{Z(s)}, F λ{Z(s+ h)}}

]
− 1

(1 + λ)
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Consider the random variable W = max{F λ{Z(s)}, F λ{Z(s+ h)}}. Then probability distri-

bution function G of W satisfies

G(z) = P[W ≤ z]

= P
[
max{F λ{Z(s)}, F λ{Z(s+ h)}} ≤ z

]
= P

[
Z(s) ≤ F−λ(z), Z(s+ h) ≤ F−λ(z)

]
= P

[
Z(s) ≤ − λ

log(z)
, Z(s+ h) ≤ − λ

log(z)

]
= exp

{
−VX

(
− λ

a log(z)
,− λ

a log(z)

)}
·
[
z

1−a
λ + z

1−a
λ − 1 +

exp

−VY
− 1

log
(

1− z
1−a
λ

) ,− 1

log
(

1− z
1−a
λ

)



This rewrites:

G(z) = z
aθX (h)

λ ·
[
2z

(1−a)
λ − 1 +

(
1− z

(1−a)
λ

)θY (h)
]

= 2z
a(θX (h)−1)+1

λ − z
a
λ
θX(h) + z

a
λ
θX(h)

(
1− z

(1−a)
λ

)θY (h)
.

Thus, we are led to

E[W ] =

∫ 1

0
zdG

= zG
∣∣∣1
0
−
∫ 1

0
Gdz

= 1−
[

2λ

a(θX(h)− 1) + 1 + λ
− λ

aθX(h) + λ
+ I

]
and

I :=

∫ 1

0
z
a
λ
θX(h)

(
1− z

(1−a)
λ

)θY (h)
dz =

λ

(1− a)
β

(
aθX(h) + λ

1− a
, θY (h) + 1

)
=

λθY (h)

(1− a)θY (h) + aθX(h) + λ
β

(
aθX(h) + λ

1− a
, θY (h)

)
This proves Equation (3.1). �

Figure 4 displays the behavior of the F λ−madogram for three different max-mixture models

with respect to the distance h for different λ ∈ {0.5, 1, 1.5, 3}. λ = 1.5 corresponds to the
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largest values of the F λ madogram. Figure 17 (Appendix A) shows the curves of theortical

F λ−madogram for several other max-mixture processes.
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Figure 4. Theoretical Fλ−madogram functions 3.1 for λ = 0.5, 1, 1.5, 3. Left panel: Max-mixture

model in which X is a TEG process with AX a disk of fixed radius rX = 0.25 and ρX(h) = exp(−h/0.2).
The asymptotic independent process Y is an inverse TEG process withAY a disk of fixed radius rY = 0.5

and ρY (h) = exp(−h/0.4). Middle panel: Max-mixture model in which X is a TEG process as before.

The asymptotic independent process Y is an inverse extremal−t process with v = 1 degrees of freedom
and ρY (h) = exp(−h/0.6). Right panel: Max-mixture model in which X is a TEG process as before.

Y is an inverted Brown-Resnick process with semivariogram γ(h) = h2. The mixing coefficient is setted

to a = 0.5 in the three models. The grey vertical lines represent the diameters of the disks for TEG
processes.

We are now in position to describe a choice scheme for the mixing parameter a of a max-

mixture process Z in (2.12). From Equation (3.1), we may write the F λ-madogram as a function

of a, λ, θX and θY , that is νFλ(h) = Φ(a, λ, θX(h), θY (h)). The idea of our choice procedure

is that θX and θY may be estimated by θ̃X and θ̃Y , minimizing the square difference between

Φ(a, λ, θX(h), θY (h)) and its empirical counterpart, then we can choose a such that the empirical

version of the F λ
′
-madogram is the closest to Φ(a, λ′, θ̃X(h), θ̃Y (h)). This idea is close to the non

parametric estimation of the parameters of MM processes that has been proposed in (Ahmed

et al., 2017) as an alternative to maximum composite likelihood estimation.

Formally, we consider Zi, i = 1, ..., N copies of Z,

Qi(h, λ) =
1

2
|F λ(Zi(s))− F λ(Zi(s+ h))|,

where F denotes the unit Frchet distribution function. From the definition of the F λ-madogram,

we have E[Qi(h, λ)] = νFλ(h). Denote by Λ ⊂ [0,∞) a finite set of some possible λ choices,

then for a given value of a, a semi-parametric nonlinear least squares minimization procedure

for estimating the extremal coefficient θ(h) = (θX(h), θY (h))t is

(3.4) θ̃aNLS(h) = arg min
θ∈[1,2]2

N−1
∑
λ∈Λ

∑
i=1,...,N

[Qi(h, λ)− Φ(a, λ, θX(h), θY (h))]2
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Assume that the Zi’s are observed at locations s1, . . . , sK and let h be the pairwise distances

between the sj ’s. We shall denote by ν̂Fλ(h) the empirical version of νFλ(h), that is for ‖s` −

sp‖ = h,

ν̂Fλ(h) =
1

2N

N∑
i=1

|F λ{Zi(s`)} − F λ{Zi(sp)}|.

For a fixed, let θ̃aNLS(h) = (θ̃aX(h), θ̃aY (h))t be estimated as above with some chosen distinct

values λ ∈ Λ. Let λ′ /∈ Λ and denote by H ⊂ [0,∞) a finite set of spatial lags h. Moreover, let

ν̃Fλ be the estimation of νFλ where θX and θY are replaced in (3.1) by θ̃aX and θ̃aY . We define:

(3.5) DC(a) =
∑
h∈H

ω(h)

[
ν̂Fλ′ (h)

ν̃Fλ′ (h)
− 1

]2

where the ω(h)’s are nonnegative weights which can be used for example to reduce the number

of pairs included in the estimation. A simple choice for these weights is ω(h) = 1{h≤r} where

the r value can be chosen as the q−quantile of the distributions of the distances h between pairs

of sites, q ∈ (0, 1). Finally, we select a that gives the lower value of (DC).

Of course, when dealing with real data, the marginal laws are usually not unit Frchet and

thus have to be changed to unit Frchet. In that case, the empirical distribution function F̂ is

used instead of F in the definitions of Qi(h, λ) and ν̂λF :

Q̂i(h, λ) =
1

2
|F̂ λ(Zi(s))− F̂ λ(Zi(s+ h))|, and

̂̂νFλ(h) =
1

2N

N∑
i=1

|F̂ λ{Zi(s`)} − F̂ λ{Zi(sp)}|.

We shall denote θ̂aX , θ̂aY , â the estimations of θX , θY and a obtained when Q̂i(h, λ) and ̂̂νFλ are

used.

In order to get the consistency of our estimations, we need the two following assumptions:

• I1: for any a ∈ [0, 1],{λ1, λ2} ∈ Λ with λ1 6= λ2, the mapping

[1, 2]2 −→ R2

(x, y) 7→ (Φ(a, λ1, x, y),Φ(a, λ2, x, y))

is injective.

• I2: let θX , (resp. θY ), θ′X , (resp. θ′Y ) be extremal coefficients of max-stable (resp.

inverse max-stable) processes. Let λ be fixed, if for all h, Φ(a, λ, θX(h), θY (h)) =

Φ(a′, λ, θ′X(h), θ′Y (h)) then a = a′.
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Remark 3.2. The hypothesis I1 and I2 are identifiability hypothesis. Numerical tests on several

models seem to indicate that they are satisfied for various max-mixtures models but we did not

succeed to prove it.

Theorem 3.3. Assume that (Zi(sj))i=1,...,N are i.i.d copies of Z(sj), j = 1, . . . ,K where Z

is a max-mixture spatial process with mixing coefficient a0 ∈ [0, 1]. Assume that the injectivity

conditions I1 and I2 are verified. Then the estimations of a by ã and â are consistent in the

sense that

ã −→ a0 in probability as N →∞ and â −→ a0 in probability as N →∞.

Proof. We shall give the proof for â, the proof for ã is simpler and can be done along the same

lines. We first begin by proving the consistency of θ̂a0X and θ̂a0Y . Consider {λ1, λ
′
1} ∈ Λ, with

λ1 6= λ′1. Write

ε1
h,i = Q̂i(h, λ1)− Φ(a0, λ1, θX(h), θY (h)) and

ε2
h,i = Q̂i(h, λ

′
1)− Φ(a0, λ

′
1, θX(h), θY (h)).

Using the convergence results from (Naveau et al., 2009) (Proposition 3), we have that

1

N

N∑
i=1

εkh,i → 0 in probability, k = 1, 2 and

∃ σk ≥ 0 such that
1

N

N∑
i=1

(εkh,i)
2 → σ2

k, in probability, k = 1, 2.

From this remark, following the lines of proof of Theorem II.5.1 in (Antoniadis et al., 1992), see

also the proof of Theorem 4.1 in (Ahmed et al., 2017), we conclude, using the injectivity hy-

pothesis I1 that for any h, θ̂a0X (h) −→ θX(h) in probability and θ̂a0Y (h) −→ θY (h) in probability.

Now, consider (a∗, θ∗X(h), θ∗Y (h)), a limit point of (â, θ̂âX(h), θ̂âY (h)). Since â reaches the mini-

mum of DC, we have DC(â) ≤ DC(a0). The convergence of θ̂a0X , θ̂a0Y and ̂̂νFλ′ from (Naveau

et al., 2009) (Proposition 3) implies that lim
N→∞

DC(a0) = 0 so that DC(a∗) = 0 which leads

to Φ(a∗, λ′, θ∗X(h), θ∗Y (h)) = Φ(a0, λ2, θX(h), θY (h)) with w(h) 6= 0 and thus a∗ = a0 by the

injectivity condition I2. �

Remark 3.4. As seen by our selection scheme above, we have to determine the choices of

λ ∈ Λ and λ′ /∈ Λ. After a lot of trials and as a compromise between accuracy and computation

time we found that good results can be acheived with Λ = {1, 3} and λ′ = 1.5 as shown by the

simulation study, Section 4.
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4. Simulation Study

This section is devoted to a simulation study, in order to benchmark our estimation proce-

dure. We shall consider two different max-mixture models.

M1 is a max-mixture model in which X is a TEG process with AX a disk of fixed radius rX .

The AI process Y is an inverse TEG process with AY a disk of fixed radius rY . For simplicity,

we choose stationary and isotropic exponential correlation functions, with range parameters

φX , φY > 0 respectively. The model parameters vector is ψ = (rX , φX , a, rY , φY )t.

M2 is a max-mixture model where X is an isotropic Brown-Resnick process with variogram

2γ(h) = (h/φX)τ and Y is an isotropic inverted extremal−t process with v degrees of freedom

and exponential correlation function ρY (h) = exp(−h/φY ), φY > 0. The model parameters

vector is ψ = (φX , τ, a, v, φY )t.

We summarize our simulation study procedure in the following steps.

Step 1. For each experiment, we consider a moderately sized data from the two max-mixture

models described above with a true mixing coefficient a0, K = 50 sites randomly and uniformly

distributed in the square [0, L]2, L ∈ N and N = 2000 independent replications at each site.

Max-stable processes were simulated using SpatialExtremes package in R (Ribatet et al., 2011)

except for the TEG processes which have been simulated as in (Davison and Gholamrezaee,

2012). Each experiment was repeated M = 100 times.

Step 2. For each data set in Step 1, we estimated the extremal dependence functions θX(h)

and θY (h) using the nonlinear least squares estimation criterion as described in (3.4), using Q̂i.

This step was performed with a set of different mixing coefficients including the true one a0.

Step 3. We calculate our decision criterion (DC(a)) with the estimated θ̂aX(h) and θ̂aY (h)

functions from Step 2. It is expected that this criterion will lead to the minimum values when

the true parameter a is used to estimate θX(h) and θY (h) in Step 2. Since choosing a wrong

mixing coefficient a should lead to a bad estimation of θX(h) and θY (h). Equal weights ω(.)
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are used.

To assess the performance of the nonlinear least squares estimator θ̂
a

NLS(h), we simulate data

from max-mixture models as mentioned in Step 1. The performances of the estimators are given

by the relative mean square error MSErel, for the K(K−1)
2 pairwise distances hj which are the

distances between sites pairs (s`, sk): see (Bel et al., 2008) p. 171 for a similar definition in the

multivariate context

(4.1) MSErel(hj) = M−1
M∑
i=1

(θ̂a(hj)− θ(hj))2

θ(hj)
, j = 1, ...,

K(K − 1)

2
.

Figures 7 - 10 display the estimation performances with respect to distance h using the mixing

coefficients a = 0.75, 0.5, 0.25. For other max-mixture models we have similar results which are

presented in the Supplementary Material (see Appendix B). Generally, our estimation procedure

appears to work well for all considered max-mixture models. Moreover, the estimation of θX(h)

becomes more precise as the mixing coefficient value increases, and vice versa for θY (h).

0.0 0.5 1.0 1.5 2.0

1.
0

1.
4

1.
8

True θX(h), mean of θX(h)

h

0.0 0.5 1.0 1.5 2.0

1.
0

1.
4

1.
8

True θY(h), mean of θY(h)

h

0.0 0.5 1.0 1.5 2.0

0.
00

00
0.

00
25

h

M
SE

re
l(θ

X(h
))

0.0 0.5 1.0 1.5 2.0

0.
00

0.
03

0.
06

h

M
SE

re
l(θ

Y(h
))

MSErel(θX(h))

MSErel

Fr
eq

ue
nc

y

0.000 0.001 0.002 0.003 0.004

0
40

0
10

00

MSErel(θY(h))

MSErel

Fr
eq

ue
nc

y

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0
10

0
25

0

Figure 5. Estimation performance of θ̂NLS(h) estimates. Data simulated from max-mixture model
M1 with parameter ψ = (0.2, 0.1,0.75, 0.9, 0.7)t in the square [0, 2]2 as described in Step 1. The top

row compares the true extermal coefficient functions (black points) and the NLS mean estimates (blue
points) against the distance h. The middle row displays the MSErel of the NLS estimates against the

distance h. While the bottom row displays the histograms of MSErel of the NLS estimates.
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Figure 6. Estimation performance of θ̂NLS(h) estimates. Data simulated from max-mixture model

M1 with parameter ψ = (0.2, 0.1,0.5, 0.9, 0.7)t in the square [0, 2]2 as described in Step 1. The top

row compares the true extermal coefficient functions (black points) and the NLS mean estimates (blue
points) against the distance h. The middle row displays the MSErel of the NLS estimates against the

distance h. While the bottom row displays the histograms of MSErel of the NLS estimates.
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Figure 7. Estimation performance of θ̂NLS(h) estimates. Data simulated from max-mixture model
M1 with parameter ψ = (0.2, 0.1,0.25, 0.9, 0.7)t in the square [0, 2]2 as described in Step 1. The top

row compares the true extermal coefficient functions (black points) and the NLS mean estimates (blue

points) against the distance h. The middle row displays the MSErel of the NLS estimates against the
distance h. While the bottom row displays the histograms of MSErel of the NLS estimates.
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Figure 8. Estimation performance of θ̂NLS(h) estimates. Data simulated from max-mixture model

M2 with parameter ψ = (0.1, 2,0.75, 2, 1.5)t in the square [0, 5]2 as described in Step 1. The top

row compares the true extermal coefficient functions (black points) and the NLS mean estimates (blue
points) against the distance h. The middle row displays the MSErel of the NLS estimates against the

distance h. While the bottom row displays the histograms of MSErel of the NLS estimates.
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Figure 9. Estimation performance of θ̂NLS(h) estimates. Data simulated from max-mixture model
M2 with parameter ψ = (0.1, 2,0.5, 2, 1.5)t in the square [0, 5]2 as described in Step 1. The top

row compares the true extermal coefficient functions (black points) and the NLS mean estimates (blue

points) against the distance h. The middle row displays the MSErel of the NLS estimates against the
distance h. While the bottom row displays the histograms of MSErel of the NLS estimates.
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Figure 10. Estimation performance of θ̂NLS(h) estimates. Data simulated from max-mixture model

M2 with parameter ψ = (0.1, 2,0.25, 2, 1.5)t in the square [0, 5]2 as described in Step 1. The top

row compares the true extermal coefficient functions (black points) and the NLS mean estimates (blue
points) against the distance h. The middle row displays the MSErel of the NLS estimates against the

distance h. While the bottom row displays the histograms of MSErel of the NLS estimates.

Now, we turn to our proposed model selection criterion (DC) for selecting the max-mixture

models with the best mixing coefficient a through a number of simulation studies using the two

mentioned max-mixture models. The boxplots in Figure 11 display the values of the decision

criterion (DC) against different mixing coefficients a ∈ {0, 0.25, 0.5, 0.75, 1} for models M1 and

M2. The lower values of DC are likely related with the true mixing coefficient a0. Boxplots of

the decision criterion (DC) for other examples of max-mixture models in which we have similar

results available in the Supplementary Material (see Appendix B).
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Figure 11. Top row: boxplots for decision criterion of 100 data replications of 2000 independent copies

from M1 with parameters φX = 0.1, rX = 0.2, φY = 0.7 and rY = 0.9 over the square [0, 2]2. Bottom
row: boxplots for decision criterion of 100 data replications of 2000 independent copies from M2 with

parameters φX = 0.1, τ = 2, v = 2 and φY = 1.5 over the square [0, 5]2.

5. Real data example

The data analysed in this section are daily rainfall amounts in (millimetres) over the years

1972-2016 occurring during April-September at 38 sites in the East of Australia whose locations

are shown in Figure 12. The altitude of the sites varying from 4 to 552 meters above mean

sea level. The sites are separated by distances of approximately (34-1383)km. This data set is

freely available on http://www.bom.gov.au/climate/data/index.shtml?bookmark=136.
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Figure 12. Geographical locations of 41 meteorological stations located in the East of Australia. Black
crosses represent the 38 stations used for selecting the mixing coefficient a. The three colored numbers

{1,2,3} correspond to the unused stations on which we shall predict conditional probabilities in order

to validate our procedure.

Following the approach of (Bacro et al., 2016) graphical assessments to explore possible

anisotropy Figure 13 based on the empirical estimates of the functions χ(h, u) and χ̄(h, u)

in different directional sectors (−π/8, π/8], (π/8, 3π/8], (3π/8, 5π/8], and (5π/8, 7π/8], where

0 represents the northing direction. Based on these estimates there is no clear evidence of

anisotropy.
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Figure 13. Pairwise empirical estimates of χ (left panel) and χ̄ (right panel) versus distance at threshold

u = 0.970. Grey points are empirical pairwise estimates for all data pairs. Colored lines are the loess
smoothed values of the empirical estimates in different directional sectors: black line (−π/8, π/8], red

line (π/8, 3π/8], blue line (3π/8, 5π/8], and green line (5π/8, 7π/8].
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We apply our methodology for the selection of the mixing coefficient for all a ∈ (0, 1) by steps

0.01. The a 7→ DC(a) function is plotted in Figure 14. The best-fitting max-mixture model as

judged by our DC criterium has a mixing coefficient a = 0.34.
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Figure 14. Decision criterion values for real data example on the interval a ∈ (0, 1) by steps 0.01. The

blue star corresponds to the minimum DC value which occurs at a = 0.34.

In the literature, the widely used parametric inference procedure is based on composite likeli-

hood methods. In particular, pairwise likelihood estimation has been found usefull to estimate

parameters in a max-stable process. A description of this method can be found in (Padoan

et al., 2010; Wadsworth and Tawn, 2012; Bacro et al., 2016) for spatial context.

Unfortunately, parameter estimation using composite likelihood suffers from some defects.

First, it can be onerous, since the computation and subsquent optimization of the objective

function is time-consuming. Second, the choice of good initial values for optimization of the

composite likelihood is essential. Third, model dependency, a preliminary step to conduct a

composite likelihood estimation is to specify the model that describes the dependence struc-

ture. So, this mission seems to be laborious, due to the large number of combinations that
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can be formed from the AD and AI processes stemming from max-stable processes, since the

variety of dependence structures that can be assumed, i.e. changing the correlation coefficient

function type in Schlather model (Schlather, 2002) leads to different dependence structures. So,

an unacurate choice may lead to severe under/over estimations of probabilities associated to

simultaneous extreme events.

In the sequel, we shall estimate the conditional probability of having daily rainfall that ex-

ceeds some threshold z at an unused site denoted by s∗0 given that this event has occurred at

the nearest observed site which is denoted by s0, i.e., P[Z(s∗0) > z|Z(s0) > z]. We compare

this estimation with that obtained by the best-fitting parametric model based on composite

likelihood estimation.

For this purpose, we fitted the daily rainfall data based on censored pairwise likelihood ap-

proach used by (Wadsworth and Tawn, 2012; Bacro et al., 2016) where the threshold is taken

corresponding to the 0.9 empirical quantile at each site. We fitted the generalized extreme value

distribution GEV(µ, σ, ξ) separately to each site and then data are transformed to unit Fréchet

margins through the transformation z → −1

log(Ĝ(z))
, where Ĝ(.) is the estimated GEV cumulative

distribution function. The models are

Ma: a MM model where X is a TEG process with an exponential correlation function

ρ(h) = exp(−‖h‖/φX), φX > 0. AX is a disk of fixed and unknown radius rX , and Y is an

inverted TEG process with exponential correlation function ρ(h) = exp(−‖h‖/φY ), φY > 0,

and AY is a disk with fixed and unknown radius rY .

Mb: a MM model where X is a TEG process as in Ma. Y is an isotropic inverted Smith

process where Σ is a diagonal matrix (σ12 = 0) with σ2
11 = σ2

22 = φ2
Y , i.e., γ(h) = (‖h‖/φY ).

Mc: a MS TEG process described as X in Ma.

Md: a MS isotropic Smith process where Σ is a diagonal matrix (σ12 = 0) with σ2
11 = σ2

22 =

φ2
X , i.e., γ(h) = (‖h‖/φX).
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Me: the inverted Smith process described as Y in Mb.

The composite likelihood information criterion (CLIC) (Varin and Vidoni, 2005), defind as

CLIC= −2[p`(ϑ̂)−tr{J (ϑ̂)H−1(ϑ̂)}] is used to judge the best-fitting model. Here, the maximum

pairwise likelihood estimator is denoted by ϑ̂. Lower values of CLIC indicate a better fit. Our

results are summarised in Table 1. The best-fitting model for the data, as judged by CLIC, is

the hybrid dependence model Mb.

Table 1. Parameter estimates of selected dependence models fitted to the daily rainfall data. The
composite likelihood criterion (CLIC) and standard errors reported between parentheses. (*) indicates

to the lower CLIC.

Model φ̂X r̂X â φ̂Y r̂Y CLIC

Ma 254.66 (179.69) 683.32 (257.18) 0.59 (0.21) 1609.42 (141.53) 981.73 (168.01) 4515964
Mb 93.16 (48.02) 166.92 (80.86) 0.27 (0.14) 971.65 (243.29) - 4515911∗

Mc 188.49 (53.27) 691.12 (215.53) - - - 4523182
Md 463.52 (216.54) - - - - 4523446
Me - - - 628.38 (86.54) - 4515981

Now, we shall use our least square estimations of a, θX and θY in order to estimate the

conditional probabilities. The following lemma is easily deduced from (2.14); see the proof in

Appendix C.

Lemma 5.1. Let Z be a max-mixture process. Its bivariate tail distribution is given by

(5.1) P[Z(s∗0) > z|Z(s0) > z] =

1− 2e−
1
z + e−

aθX (h0)

z

{
−1 + 2e−

1−a
z +

[
1− e−

1−a
z

]θY (h0)
}

1− e−
1
z

where h0 is the separation distance between s∗0 and s0. Equation (5.1) may be used to estimate

P[Z(s∗0) > z|Z(s0) > z] using both parametric and nonparametric approaches. We consider s∗0 as

the three unused sites that have been marked by colored numbers {1,2,3} on the map Figure 12.

The threshold z is taken corresponding to the q− emperical quantile at the site s0, q ∈ (0, 1).

For estimating P[Z(s∗0) > z|Z(s0) > z] nonparametrically, we fitted the data again by NLS

procedure with the best mixing coefficient a = 0.34 and we obtained the estimators θ̂X(h0) and

θ̂Y (h0) by averaging the values of θ̂X(h) and θ̂Y (h) , where h ∈ [h0−10, h0+10]km by taking the

advantage of stationarity and isotropy of our data and h0 ∈ {54.226, 92.534, 133.673}km. While,



26 MODEL-FREE SELECTION FOR THE MIXING COEFFICIENT OF A MM PROCESS

for estimating P[Z(s∗0) > z|Z(s0) > z] parametrically, θ̂X(h) and θ̂Y (h) are obtained by substi-

tuting the separating distance h0 and the estimated parameters from hybrid model Mb Table 1.

In order to compare the results obtained by the two approaches, we used the data at the

unused three sites to compute the empirical version of conditional probabilities P[Z(s∗0) >

z|Z(s0) > z]. Below are the resulting P-P plots.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Parametric

E
m

pi
ric

al

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nonparametric

E
m

pi
ric

al

0.8 0.9 0.95 0.96 0.97 0.98

Figure 15. Diagnostic P-P plots for threshold excess conditional probabilities for the three unused sites

{1,2,3} on the map Figure 12 obtained by both approaches. The best parametric model Mb as judged

by the CLIC and our nonparametric approach. Green: site 1; red: site 2; blue: site 3.

Generally, Figure 15 shows that our nonparametric approach outperforms the parametric

one for predicting P[Z(s∗0) > z|Z(s0) > z]. One of the justifications for this situation is that

with the parametric model we have to specify a model that describes the dependence structure,

and listing all choices seems to be a tedious task due to the large number of possibilities that

can emerge from the AD and AI processes stemming from max-stable processes, i.e., different

choices of correlation coefficient functions for the same model leads to different models. So,

in this case the inaccurate choice/guess of models to be fitted may lead to severe under/over

estimation of probabilities associated to simultaneous extreme events.
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6. Conclusion

In this paper, we have proposed a statistically efficient nonparametric model-free selection

criterion. We can exploit our decision about the mixing coefficient to predict conditional prob-

abilities of daily rainfall at unobserved sites depending on the dependence structure in the

analyzed data.

The main advantage of our approach is that it is model free, unlike the parametric approach

which assumes a specified model, so the risk of unaccurate choice of stochastic processes for

describing the joint tail distribution may lead to severe under/over estimation of probabilities

associated to simultaneous extreme events.

We have shown in our real data example that the max-mixture approach appears of interest

for modeling environmental data. In particular it has the eligibility to overcome the limitations

of the max-stable models in which only asymptotic dependence or exact independence can be

modeled.
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Appendix A.
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Figure 16. Simulations of the max-mixture model (2.12) on the logarithm scale according different values

of mixing coefficient a ∈ {1, 0.75, 0.5, 0.25, 0}. Top row: X is isotropic extremal−t with v1 = 1 degrees of
freedom and ρ(h) = exp(−h), Y is isotropic inverted extremal−t process with v2 = 2 degrees of freedom

and ρ(h) = exp(−h/1.5). bottom row: X is isotropic Brown-Resnick with variogram 2γ(h) = h2, X is

isotropic inverted Brown-Resnick with variogram 2γ(h) = (h/1.5)2.
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Figure 17. Theoretical Fλ−madogram functions 3.1 with λ ∈ {0.5, 1, 1.5, 3}. Left panel: Max-mixture

model in which in which X is isotropic Brown-Resnick with variogram 2γ(h) = (h/0.5)2, and Y is

isotropic inverted extremal−t process with v = 1 degrees of freedom and ρ(h) = exp(−h/1.5). Middle
panel: Max-mixture model in which X is isotropic extremal−t with v1 = 1 degrees of freedom and
ρ(h) = exp(−h), Y is isotropic inverted extremal−t process with v2 = 2 degrees of freedom and

ρ(h) = exp(−h/1.5). Right panel: Max-mixture model in which X is isotropic Brown-Resnick with
variogram 2γ(h) = (h/0.2)2, Y is isotropic inverted Brown-Resnick with variogram 2γ(h) = h2.

Appendix B.

Supplementary Material related to this article can be found online at http://math.univ-

lyon1.fr/homes-www/abuawwad/Supplementary/.
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Appendix C.

Proof of Lemma 5.1. Denoting the joint survivor function of the process Z (2.12) P[Z(s1) >

x,Z(s2) > y] by ḠZ(x, y), we may write

ḠZ(x, y) = 1−GX(x)−GY (y) +GZ(x, y)

where GX(x), GY (y) are the marginal probability distribution functions of processes X(.) and

Y (.) respectively in model (2.12) and GZ(x, y) is the bivariate probability distribution function

of the stochastic process Z(.) in the same model. using (2.14) and (2.16), setting x = y = z

P[Z(s1) > z|Z(s2) > z] =
P[Z(s1) > z,Z(s2) > z]

P[Z(s2) > z]

=
P
(
X(s1) > z

a , X(s2) > z
a

)
P
(
Y (s1) > z

1− a , Y (s2) > z
1− a

)
1− P[Z(s2) ≤ z]

=
1− 2e−

1
z + e−aVX(z,z)

{
−1 + 2e−

1−a
z + e[−VY [ω( 1−a

z ),ω( 1−a
z )]

}
1− e−

1
z

where ω
(

1−a
z

)
= −1/ log

[
1− e−

1−a
z

]
, taking the advantage of the homogeneity of order −1

of the exponent measures VX(.) and VY (.); we have VX(z, z) = θX/z, e[−VY [ω( 1−a
z ),ω( 1−a

z )] =[
1− e−

1−a
z

]θY
and this gives (5.1).
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