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Importance of material parameters and strain energy function on the 

wall stresses in the left ventricle 

Patient-specific estimates of the stress distribution in the left ventricles (LV) may 

have important applications for therapy planning, but computing the stress 

generally requires knowledge of the material behaviour. The passive stress-strain 

relation of myocardial tissue has been characterized by a number of models, but 

material parameters (MPs) remain difficult to estimate. The aim of this study is to 

implement a zero-pressure algorithm to reconstruct numerically the stress 

distribution in the LV without precise knowledge of MPs. We investigate the 

sensitivity of the stress distribution to variations in the different sets of 

constitutive parameters. We show that the sensitivity of the LV stresses to MPs 

can be marginal for an isotropic constitutive model. However, when using a 

transversely isotropic exponential strain energy function, the LV stresses become 

sensitive to MPs, especially to the linear elastic coefficient before the exponential 

function. This indicates that in-vivo identification efforts should focus mostly on 

this MP for the development of patient-specific finite-element analysis. 

Keywords: cardiac mechanics; stress sensitivity analysis; inverse method; 

1. Introduction 

Nowadays, there is a growing interest in patient-specific finite-element (FE) stress 

analysis in many soft tissues (Wang et al. 2002-2013). It is postulated that in normal 

homeostatic conditions, tissues adapt, grow or remodel themselves in order to regulate 

the stresses (Humphrey 2006, Graham et al. 1968). Consequently, the stress distribution 

may provide important indications about the mechanobiological function and 

metabolism of the tissue. As far as the left ventricle (LV) is concerned, geometrical 

adaptation may occur after myocardial infarction and also after myocardial injection 

when this treatment is employed to avoid possible risks of heart failure (Kichula et al. 

2014). In these different situations of adaptation, reconstructing the stress distribution 

may be very useful. 



Researchers mostly focused their attention on the reconstruction of three dimensional 

strain maps throughout a cardiac cycle (Tustison et al. 2006; Spottiswoode et al. 2007) 

using medical imaging modalities such as gated MRI or ultrasound (US). To assess the 

wall stress distribution from these strain maps, it is necessary to know the constitutive 

material parameters (MPs) and initial stresses in the tissue. 

Characterizing the MPs involves several difficulties. The MPs may be obtained using 

in-vitro experiments carried out on myocardial tissue collected on cadavers (Gee et al. 

2010). However, this method does not yield patient-specific MPs that can be used for 

clinical applications.  Another approach is to calibrate a model against clinical data 

(Krishnamurthy et al., 2013, Klotz et al., 2006, Raghavan et al., 2006).  One has to 

define a cost function to minimize the differences between data and the model. It may 

be difficult, though, to ensure a unique solution to the minimization problem in case of 

inadequate clinical data.  

However, stress analysis does not systematically require a precise knowledge of MPs, 

as Miller and Lu (2013) and Joldes et al. (2016) have shown for arteries and brain tissue 

for which the numerical simulations are only weakly sensitive to the MPs. Based on 

this, Lu et al. (2008) developed an inverse analysis method to reconstruct stress 

distributions in thin-walled biological organs. The point of their approach is that the 

stress field in a statically determinate problem only depends on the boundary conditions 

and on the geometry but not on the MPs. They showed an example of successful 

application to anaortic aneurysm but they did not discuss possible applications on thick-

walled geometries such as the LV. 

The hypothesis of the present study is that this approach of stress estimation without 

knowing the MPs could be extended to the reconstruction of the stress distribution in 

the LV. We will assess the validity of this hypothesis first for a passive LV, both for a 



simple isotropic material model and a more complex transversely isotropic model 

regarded as a realistic representation of passive myocardial tissue (Guccione et al., 

1995). Finally, we assess the hypothesis for a material model with active contraction, 

for reconstructing the systolic LV stress distribution. After giving the details for 

reconstructing end-diastolic (ED) and end-systolic (ES) stress distributions based on the 

proposed approach, we draw conclusions for potential future studies. 

2. Materials and Methods 

2.1 Geometrical Model 

The LV of a healthy volunteer was segmented from a 4D US scan using the VTK 

library (Hansegård et al. 2009). The mesh at ED was reconstructed with 8-noded linear 

brick elements (155,172 nodes and 141,405 elements, after performing a convergence 

study, see Figure 1(a)). The nodes of the base were constrained to remain coplanar 

during the deformations. A local curvilinear coordinate system aligned along the fiber 

direction was considered (Bovendeerd et al. 1994). Fiber directions as proposed in the 

literature (Guccione et al., 1995) varied from -70° at the epicardial surface to 60° at the 

endocardial surface, where 0° was the circumferential direction (Figure 2). At every 

element across the wall of the LV, we defined a local orthonormal basis denoted 

(�⃗� 𝒏, �⃗� 𝒔, �⃗� 𝒇), where �⃗� 𝒇 was aligned along the local fiber direction in the reference 

configuration. 

2.2 Method for Numerical Stress Reconstruction at ED 

The in-vivo heart is never unloaded, and the ED geometry extracted from US images 

corresponded to a non-zero cavity pressure. The unloaded geometry was reconstructed 

using the approach of Riveros et al. (2013); we refer to this method as the zero-pressure 

algorithm (Trabelsi et al. 2015). More specifically, we iteratively updated the unloaded 



geometry and computed its deformation upon pressurization (endocardial surface loaded 

with a 2 kPa pressure) until the deformed geometry matched the ED geometry 

(tolerance≤0.028 mm) obtained from US images. The deviation between the deformed 

geometry and the US-derived ED geometry was obtained by calculating the absolute 

maximum nodal distance as illustrated in Figure 3.  

After deriving the unloaded geometry, the Cauchy stresses at ED were deduced such as: 

𝝈𝒑𝒂𝒔𝒔𝒊𝒗𝒆 = 𝐽−1 𝑭
𝜕𝑊

𝜕𝑬
𝑭𝑇                                   (1) 

where W is the strain energy function, F is the deformation gradient, 𝐽 = det(𝑭) is the 

determinant of the deformation gradient, and 𝑬 is the Green-Lagrange strain tensor. 

In the literature, different strain energy functions have been proposed for the passive 

behaviour of cardiac tissue, as in Holzapfel et al. (2009), Guccione et al. (1995) and 

Usyk et al. (2000). Guccione et al. (1995) proposed a transversely isotropic Fung model 

and Usyk et al. (2000) proposed an orthotropic Fung model. In order to investigate the 

impact of the strain energy function on the stress reconstruction, we used first a simple 

Mooney-Rivlin strain energy function as previously used by Marchesseau et al., (2013): 

W = c1( I1̅ − 3) + c2( I2̅ − 3) +  K (J − 1) 2                   (2) 

where c1and c2 are MPs, I1̅and  I2̅ are invariants of the right Cauchy-Green strain tensor 

and K = 2/d1 is the bulk modulus,  d1 being the compressibility term.Wang et al. 

(2013) showed that the transversely isotropic and orthotropic Fung models provide 

similar results. Therefore, we used the Fung-type strain energy function developed by 

Guccione et al. (1995): 



𝑊 =
1

2
𝑐(exp(�̅�) − 1) +  K (J − 1) 2,                                                                                    

�̅� = 𝑏3�̅�𝑓𝑓
2 + 𝑏2(�̅�𝑠𝑠

2 + �̅�𝑛𝑛
2 + �̅�𝑠𝑛

2 ) + 𝑏1(2�̅�𝑓𝑠
2 + 2�̅�𝑓𝑛

2 ),                  (3) 

where 𝑊 is a function of six independent components of the isochoric Green-Lagrange 

strain tensor �̅�𝑖𝑗 in fiber (f), sheet (s) and sheet-normal (n) directions, and 𝑐 and 𝑏1−3 are 

the four MP values. 

Finally, we compared our approach to the method of Joldes et al. (2016) for stress 

reconstruction, which consists of assigning very stiff linear elastic material properties 

(10 MPa and 0.49 as elastic modulus and Poisson's ratio) to the LV in its actual 

geometry at ED. 

2.3 Method for Numerical Stress Reconstruction at ES 

The Cauchy stress tensor at ES was defined as: 

 𝝈𝒕𝒐𝒕𝒂𝒍 = 𝝈𝒂𝒄𝒕𝒊𝒗𝒆 + 𝝈𝒑𝒂𝒔𝒔𝒊𝒗𝒆                               (4) 

where 𝝈𝒂𝒄𝒕𝒊𝒗𝒆 is the contribution of myocyte contraction. 

We denote by 𝑹𝒇 the matrix of the covariant transformation from the global 

orthonormal to the local basis: 

 𝛔𝐚𝐜𝐭𝐢𝐯𝐞 = J−1 𝐅 𝐑𝐟
−1

[
0 0 0
0 0 0
0 0 af

]𝐑𝐟 𝐅
𝐓          (5) 

where 𝑎𝑓 is the active tension developed by the fibers. 

In physiological models, 𝑎𝑓 is often computed by solving systems of ordinary 

differential equations describing cell electrophysiology and contraction (Nash et al. 

2004). Here, for the sake of simplification, we assigned a predefined value to 𝑎𝑓 equal 



to 135 kPa as explained in Dorri et al. 2006 and Walker et al. 2005. In this condition, 

the only variations will be due to the MPs and not the active stress value. We performed 

FE analysis from ED to ES and estimated the induced Cauchy stress for different sets of 

MPs explained in the next subsection. 

As the reference FE model was reconstructed at ED from US, we performed a forward 

simulation to obtain the reference geometry at ES. This computation was the 

combination of systolic cavity pressure (11.24 kPa at ES) and the prestress of 135 kPa 

applied along the fiber directions with the following MP values for the Mooney-Rivlin 

strain energy function: 𝑐1=0.0176, 𝑐2=0.0188 and 𝑑1=0.1079 in MPa.  

2.4 Statistical Analysis 

Several FE analyses (40) were performed by drawing randomly different MP sets with 

uniform distribution within the range of values of Marchesseau et al. (2013) in Table 1. 

For each analysis, a random sample was drawn for each parameter (c1, c2, d1) to 

employ the zero-pressure algorithm with diastolic cavity pressure equal to 2kPa. For the 

Guccione strain energy function, we collected 12 MPs obtained from literature (Table 2) 

and performed 12 FE analyses with the zero-pressure algorithm (2kPa). In order to 

avoid the rigid body movements, all the nodes of the basal surface were constrained to 

remain coplanar during the deformation. The diastolic and systolic statistical analyses 

consist in calculating the mean and the standard deviation (SD) of all FE stress results 

from different MP sets. 

FE analyses introduced in Section 2.2 and Section 2.3 were performed with the 

Abaqus® software on a local cluster (8-core Intel Xeon-E5530 2.4-GHz, 24-Go RAM). 



3. Results 

The zero-pressure algorithm was applied with 40 samples of MPs for the Mooney-

Rivlin model at ED. The maximum nodal distance observed between the reference 

image data and the zero-pressure geometries (ZPGs) after loading was 0.027±0.001 

mm. The stress and strain results for the Mooney-Rivlin model are shown as colormaps 

in Figure 4. The Mooney-Rivlin stress values are also reported in Table 3 for different 

paths throughout the wall thickness (refer to Figure 1(b)). The circumferential stresses 

show larger values where the myocardial fibers are aligned in this direction. For all 

isotropic stress values, the SD is one to two orders less compared to the mean stress. In 

addition, the results of 99% of total LV elements vary less than 2% in terms of 

maximum-principal Cauchy stresses. 

The stress reconstruction obtained with the approach of Joldes et al. (2016), using rigid 

material properties and linear infinitesimal resolution, is shown in Figure 5. It is 

consistent with the Mooney-Rivlin case. 

The fiber stress and strain results for the Guccione model are shown as colormaps in 

Figure 4 as well. The trends for the variations of sheet and normal to sheet stresses are 

similar to the ones of fiber stresses (results not presented). The results with the 

Guccione material model are reported in Table 2, showing larger variations in fiber 

stresses than the Mooney-Rivlin model (Figure 4). The mean value for maximum 

distance between the reference image-based geometry and the ZPGs geometry after 

loading is 0.0281±8e-04 mm. The correlation coefficients between MPs and the fiber 

stresses obtained from FE analyses are shown in Table 4. There is a correlation of 

approximately 0.8 at ED between the linear coefficient and fiber stresses (Table 4). 

There is only a moderate correlation between the exponential coefficients and the fiber 



and sheet stresses. Actually, the variation of stresses is fairly low for a number of sets of 

MPs.  

The simulated reference contraction (Figure 6) produced an ejection fraction of 33.83%, 

a wall thickness change of 18.7% and Von-Mises stresses in the range of 100-150 kPa, 

which were previously observed in  (Dorri et al. 2006; Hunter et al.1998).  

Stress maps reconstructed in the equatorial plane (Mooney-Rivlin passive model) are 

displayed in Figure 7, while the stress values are reported in Table 5, for the transmural 

paths in Figure 1(b). Here, it can be noticed that the Von-Mises stress increases from 

epicardium to endocardium. For all stress values, the SD is one order of magnitude 

lower than the mean value. 

 

4. Discussion  

Reconstructing the stress distribution in the LV using the zero-pressure algorithm 

proposed by Riveros et al. (2013), we have shown that the LV stresses can be 

reconstructed relatively independently of MPs.  

This result is significant as in normal homeostatic conditions, tissues adapt, grow or 

remodel themselves in order to regulate the stresses (Humphrey 2006, Graham et al. 

1968). As far as the LV is concerned, geometrical adaptation may occur after 

myocardial infarction and also after myocardial injection when this treatment is 

employed to avoid possible risks of heart failure (Kichula et al. 2014). In these different 

situations of adaptation, reconstructing the stress distribution using the Laplace law is 

not accurate enough (Huisman et al. 1980; Yin 1985). In addition, it is interesting to 

have a patient-specific method fairly dependent on all the sets of MPs for every patient. 



We varied the MPs either by drawing them randomly or by testing different sets of 

values available in the literature. However, none of the tested values were the actual 

MPs of our subject’s myocardium. The goal was only to achieve different virtual 

experiments in order to emphasize that knowing all the MPs of a given subject is not 

required to reconstruct the LV stress distribution. 

In our analysis, we performed some of the stress reconstructions using an isotropic 

strain energy function. Although it is well known that the myocardium is transversely 

isotropic, we showed that the reconstructed stress obtained with the isotropic model is a 

rather good approximation of the same reconstructed stress obtained with a transversely 

isotropic model. The low ejection fraction in our FE analysis is the result of this choice 

of material model which reduces the wall thickening in circumferential direction (Dorri 

et al. 2006). 

Results in Figure 4 and Table 3 show a very low correlation between passive stresses 

and MPs in case of isotropy. This is consistent with the results obtained on other soft 

tissues by Miller and Lu (2013). They showed that MPs have a marginal impact on the 

stress distribution of inflated geometries. In that case, stress distributions can be 

reconstructed using a simple linear infinitesimal approach as introduced by Joldes et al. 

(2016).  

With the commonly used Guccione model, which accounts for  transverse isotropy, 

among all the MPs, only variations of the 𝑐 as the linear and 𝑏2 coefficient parameters 

had significant impact on the reconstructed stress distributions. We can even see in 

Table 3 that the calculated fiber and sheet stresses are strongly coupled to 𝑐. The 

dependence between the reconstructed stress distributions and 𝑐 points out the scaling 

role of the linear coefficient in Fung-like strain energy functions. This also indicates 



that the stress can be reconstructed fairly independently of the exponential coefficients 

of the Guccione model. This is also a significant result as no efficient method exists for 

the moment to derive non-invasively and patient-specifically all the parameters of the 

Guccione model in vivo. 

We also reconstructed stresses at ES with a combination of passive and active 

contributions. The active contribution mostly depends on 𝑎𝑓 and the passive 

contribution depends on the deformation from ED to ES, which takes the tissue from a 

state of circumferential tension to compression. We showed eventually in Figure 7 that 

passive MPs marginally impact the reconstructed stress at ES (SD less than 10% of the 

mean stress values), but this is induced by the small level of passive stresses compared 

to active stresses at ES.    

 

Limitations and future work   

The objective of this paper was to be able to reconstruct numerically the stress 

distribution in the LV without knowing the MPs of myocardial tissue. While promising, 

there are several limitations to the approach. 

The active contraction model applied for the ES data is a simplification compared with 

the state-of-the-art models (Nash et al. 2004 and Walker et al. 2005). Another limitation 

is that we did not study the effect of fiber orientations on the stress reconstructions (we 

used always the same orientations in all our analyses) which is an open question. Palit et 

al. (2015) and Wang et al. (2013) showed that fibers have a significant effect on ED 

stress distribution and on pressure-volume relationship. Eriksson et al. (2013) showed 

that the heterogeneous structure of fibers also play an important role in systolic stress 

results. However, due to the form of the Guccione strain energy at ED, we expect that 



fiber orientations have a similar effect on the stresses as varying the exponential 

coefficients. We showed that this effect was marginal. Another limitation to be 

mentioned is that the US images were captured from the basal part and other tissues 

such as valves, papillary muscles and irregularities were removed. The presence of all 

these features may affect the local distribution of stresses as the movement of the 

human heart base is significant compared to the apex movement (Palit et al. 2017). This 

means that most of the conclusions of this study would not hold at a local scale where 

these features would be resolved.  

5. Conclusion 

In this study, we showed that it is possible to reconstruct numerically the stress 

distribution in the LV without precise knowledge of MPs of myocardial tissue. However 

a patient-specific geometry of the LV is always required, which highlights the 

importance of patient-specific FE model morphology over the MPs in cardiac modelling 

as mentioned in (Palit et al., 2017) and (Palit et al., 2015)Only the linear elastic 

coefficient of the Guccione strain energy function may be required to have an accurate 

stress reconstruction. This implies that the effort should focus mostly on the 

identification of this MP for patient-specific stress reconstructions. It is also important 

to continue exploring more realistic models for ES, to determine whether the same 

relations hold. 
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Table 1. MPs intervals for isotropic material model from Marchesseau et al,(2013). 

Table 2. The Fiber and Sheet stress results across the equatorial plane in LV model for 

the Guccione strain energy function at ED in kPa. The stress values at the 

equatorial plane show higher average values in comparison to the isotopic stress 

results at the equatorial plane (Figure 4). 

Table 3. The Fiber stress and strain results through wall thickness from epicardium to 

endocardium along two paths (L1 and L2) at ED. The stress and strain results 

are concentrated where the fibers are aligned with the circumferential direction. 

In inflation loading, the circumferential direction is naturally the direction of the 

major principal stress.  

Table 4. Values of correlation coefficients for four MPs and Cauchy Fiber stress values 

(kPa) at ED obtained with the Guccione material model after application of 

zero-pressure algorithm. This table shows a strong correlation of the fiber stress 

results to the linear coefficient before the exponential term of the strain energy 

function. 

Table 5. Fiber stress across wall thickness from epicardium to endocardium along two 

paths (L1 and L2) at ES.     



Table 1 

 

 c1(kPa) c2(kPa) d1(MPa) 

7-20 7-20 0.08-0.3 



Table 2 

 c(kPa) b3 b2 b1 
Mean Fiber  

stress 

Mean Sheet 

stress 

1.Okamoto et al., 2000 0.512 67.1 24.2 21.6 4.4 2.1 

2.Keldermann et al., 2010 1.2 26.7 13.5 14.7 4 2.5 

3.Wenk et al., 2009 0.33 49.3 19.3 17.4 4.3 2.2 

4.Walker et al., 2005 0.128 53.7 21.3 17.3 4.2 2.4 

5.Walker et al., 2005 0.146 67.1 26.6 21.6 4.2 2.3 

6.Walker et al., 2005 0.233 49.3 19.3 17.4 4.3 2.3 

7.Xi et al., 2011 0.189 29.9 13.5 13.3 4.1 2.6 

8.Augenstein et al., 2005 3 11.1 1.8 10 5.4 1 

9.Land et al., 2012 1.662 14.3 4.5 10 4.6 1.8 

10.Omens et al., 1991 2.4 26.7 2 14.7 6.2 0.2 

11.Walker et al., 2005 0.359 67.1 24.2 21.6 4.4 2.1 

12.Omens et al., 1993 2.2 9.2 2 3.7 5.2 1.3 

       

  



Table3 

  

Fiber stress (kPa) 

L1 
Mean 2.58 3.16 3.77 4.35 4.75 4.91 4.77 4.34 3.73 3.01 2.48 

SD (10
-3

) 7 5 6 4 6 4 6 8 8 13 22 

L2 

Mean 1.61 1.96 2.45 2.99 3.47 3.8 3.89 3.7 3.24 2.61 1.75 

SD (10
-3

) 3 4 4 5 3 3 3 5 11 12 21 

 Fiber strain 

L1 

Mean(10
-3

) 5 10 15.4 20 23.9 25.1 23.6 19.6 13.7 7 1 

SD (10
-3

) 1 1 2 3 4 4 4 3 2 1 0 

L2 
Mean(10

-3
) 2.2 5 9 13 17 20 20 18 13 7 0 

SD (10
-3

) 0.4 0.9 1 2 3 3 3 3 2 1 0 



 

Table 4 

 Mean fiber stress Mean sheet stress 

c 0.82 -0.86 

𝑏3 -0.5 0.52 

𝑏2 -0.72 0.74 

𝑏1 -0.44 0.45 

 

  



Table 5 

Fiber stress (kPa) 

L1 
Mean 89.9 91.4 91.3 88.4 81.9 73.5 64.5 58.1 54.4 57 61.6 

SD  6.4 6.2 5.5 4.3 3.1 2.9 3.5 4 4.1 4 3.8 

L2 
Mean 35.1 40.6 46.2 54.2 67.3 82.2 90.1 80.2 58.7 32.7 9.5 

SD  4.2 3.8 3.5 3.1 2.5 2.6 3.4 2.8 3 3.7 3.5 



Figure 1. (a) LV model meshed in the Abaqus® software. (b) Selected paths across wall 

thickness used to study the stress variations across the thickness and the impact of MPs 

onto these stresses. The selected trajectories, L1 and L2, belong to the septal and lateral 

wall, respectively. In this case LV is divided into three equal segments longitudinally in 

order to study the evolution of stress in different LV level.  

Figure 2. Personalized LV model with fiber structure. The red streamlines are aligned 

along fiber directions in the local coordinate system. 

Figure 3. Flowchart of the zero-pressure algorithm used to obtain the load-free 

geometry. The image-based geometry was considered as the initial loaded 

configuration. Then, the algorithm returned the unloaded geometry of this initial 

configuration.  

Figure 4. Mean and standard deviation of the fiber stress and strain for 40 isotropic and 

12 anisotropic models. 

Figure 5. Forward elastic simulation of the ED geometry using a linear elastic 

infinitesimal resolution with rigid parameters (10 MPa and 0.49 as elastic modulus and 

Poisson's ratio). The obtained results at ED (displacement and Von-Mises stress on the 

left hand side) are compared with the ones (right hand side) using the zero-pressure 

algorithm with the Mooney-Rivlin material model (for 𝑐1=0.0117, 𝑐2=0.0182 and 

𝑑1=0.1591). The displacements U are in mm and the Von-Mises stresses in MPa. 

Figure 6. Reference ES geometry (green shaded) overlaid onto the ED initial 

configuration (grey shaded) in 3D representation and at different transversal cross 

sections. The simulation with active contraction produced an ejection fraction of 

33.83% and a wall thickness change of 18.7%. 

Figure 7. Mean and standard deviation of Maximum-Principal and Von-Mises stress 

results reconstructed at ES taking into account the active contraction. The mean von-

mises stresses increase from the pressurized endocardial surface to the epicardial 

surface. 
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