
HAL Id: hal-01671353
https://hal.science/hal-01671353v1

Submitted on 22 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model-Driven Approach for Developing a Model
Repository: Methodology and Tool Support

Brahim Hamid

To cite this version:
Brahim Hamid. A Model-Driven Approach for Developing a Model Repository: Methodol-
ogy and Tool Support. Future Generation Computer Systems, 2017, vol. 68, pp. 473-490.
�10.1016/j.future.2016.04.018�. �hal-01671353�

https://hal.science/hal-01671353v1
https://hal.archives-ouvertes.fr

To link to this article : DOI : 10.1016/j.future.2016.04.018
URL : https://doi.org/10.1016/j.future.2016.04.018

To cite this version : Hamid, Brahim A Model-Driven Approach for
Developing a Model Repository: Methodology and Tool Support.
(2017) Future Generation Computer Systems, vol. 68. pp. 473-490.
ISSN 0167-739X

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18768

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A model-driven approach for developing a model repository:
Methodology and tool support

Brahim Hamid ∗

IRIT, University of Toulosue, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France

h i g h l i g h t s

• Repository design: we describe a design framework and infrastructure to support the model-based repository lifecycle.
• Modeling: we propose a modeling language to specify a model-based repository independent from end-development applications and execution

platforms.
• Tooling: we describe an operational architecture for development tools to support the proposed approach.
• Validation: we apply the approach to a resource-constrained embedded system (RCES) in the context of the TERESA project : Railway Systems.

Keywords:

Modeling artifact

Repository

Meta-model

Model-driven engineering

Security & dependability patterns

a b s t r a c t

Several development approaches have been proposed to cope with the increasing complexity of
embedded system design. The most widely used approaches are those using models as the main artifacts
to be constructed and maintained. The desired role of models is to ease, systematize and standardize the
approach to the construction of software-based systems. To enforce reuse and interconnect the process of
model specification and system development withmodels, we promote amodel-based approach coupled
with a model repository. In this paper, we propose a model-driven engineering methodological approach
for the development of a model repository and an operational architecture for development tools. In
addition, we provide evidence of the benefits and feasibility of our approach by reporting on a preliminary
prototype that provides a model-based repository of security and dependability (S&D) pattern models.
Finally, we apply the proposed approach in practice to a use case from the railway domain with strong
S&D requirements.

1. Introduction

1.1. Motivation and background

Designers and developers of next-generation software systems
are faced with the exponential challenge of managing the con-
tinuously increasing requirements of such systems. For instance,
non-functional requirements, such as security and dependability
(S&D) [1], have become increasingly important as well as increas-
ingly difficult to achieve. As a result, new recommendations should
be considered to build novelmethods capable of handling the com-
plexity and reducing the cost of the development of these systems.
The specification and packaging of software modeling artifacts can
provide an efficient way to address these problems, improving

∗ Fax: +33 (0)5 6150 4173.

E-mail address: Hamid@irit.fr.

the industrial efficiency, fostering technology reuse across domains
(reuse of models at different levels), and thus reducing the amount
of effort and time needed to design a complex system.

Repositories of modeling artifacts have gained increasingly
attention recently to enforce reuse in software engineering. In
fact, repository-centric development processes are often adopted
in software/system development, such as architecture- or pattern-
centric development processes.

According to Bernstein and Dayal [2], a repository is a shared
database of information on engineered artifacts. These researchers
state that a repository has (1) a Manager for modeling, retrieving,
and managing the objects in a repository, (2) a Database to store
the data and (3) Functionalities to interact with the repository. In
our work, we go one step further by proposing a model-based
repository to support the specifications, definitions and packaging
of a set of modeling artifacts to assist the developers of trusted
applications for embedded systems. Closely related to our vision is
the approach for specifying, designing and implementing a reuse
repository presented in [3].

In this paper, we propose a model-driven engineering (MDE)
approach to produce a repository of modeling artifacts and an
operational implementation in the context of the FP7 TERESA
project [4]. Modeling artifacts derived from and associated
with domain-specific models will help developers to integrate
in-development application building blocks with pre-defined
modeling artifact building blocks. Additionally, various services
dedicated to repository features will be developed in this task. The
goal is to integrate features together via model-based repository
engineering coupledwithMDE technology, thus allowing the reuse
of model building blocks from the repository to be leveraged.

1.2. Development context

In recent years, there has been a paradigm shift in terms of
design with the combination of multiple software engineering
paradigms; namely, MDE [5], component-based software engi-
neering (CBSE) [6] and software reuse [7]. Such a paradigm shift
is changing the way in which systems are currently developed and
reducing development time significantly.

In our work, we promote a new discipline for system and
software engineering that uses modeling artifacts as its first-
class citizens. We build on a theory and novel approach called
SEMCO (System and software Engineering with Multi-COncerns
support) [8], which is based on an integrated repository of
modeling artifacts working as a group, each relevant to a key
concern. The associated framework provides methods, modeling
languages and a tool-chain to support two categories of users:
‘‘reuse’’ producers and ‘‘reuse’’ consumers. The former category
encompasses developers of artifacts to be stored in the repository,
whereas the latter concerns developers who reuse existing
artifacts from the repository.

Models are used to denote abstract representations of comput-
ing systems. Specifically, we need models to represent software
architectures and software platforms to test, simulate and vali-
date the proposed solutions. MDE promotes models as first-class
elements. Amodel can be represented at different levels of abstrac-
tion, and the MDE vision is based on (1) the meta-modeling tech-
niques to describe thesemodels and (2) themechanisms to specify
the relations between them. Model exchange, as well as the trans-
formation/refinement relation between two models, is at the core
of theMDEmethodology. In software engineering, domain-specific
modeling (DSM) [9] is a methodology that uses models to spec-
ify applications within a particular domain. There are several DSM
environments, one being the open-source EclipseModeling Frame-
work (EMF) [10]. The EMF provides an implementation of essential
meta object facility (EMOF), a subset of theMOF [11], called Ecore.1

However, our vision is not limited to the EMF platform. The EMF
offers a set of tools to specify metamodels in Ecore and to gen-
erate other representations of them. Query view transformation
(QVT) [11] is a standard to specify model transformations between
metamodels conforming to the MOF in a formal manner. In our
vision, the SEMCO framework is based on a federation of domain-
specific modeling languages (DSMLs) built on an integrated repos-
itory of modeling artifacts.

The industrial context of our work is the question of how to
account for several constraints, mainly those related to S&D that
are not satisfied by the well-known and widely used technol-
ogy for building applications for resource-constrained embedded
systems (RCESs). Such systems have many common character-
istics, including real-time, temperature, memory, computational
processing power and/or energy consumption constraints, as well

1 Ecore is a meta-metamodel.

as security, dependability and efficiency requirements. The com-
puting resources of RCESs, e.g., memory, tasks, and buffers, are
generally statically determined. Thus, the generation of RCESs in-
volves specific software building processes. Furthermore, many
RCESs have assurance requirements, ranging from strong levels in-
volving certification (e.g., DO178 and IEC-61508 for the develop-
ment of safety-relevant embedded systems) to lighter levels based
on industry practices.

These requirements introduce conflicts for the three main
factors that determine the owner-ship cost of applications: the
cost of production, the cost of engineering and the cost of
maintenance. In other words, systems with high dependability
requirements for which the security level must be demonstrated
and certified nearly exclusively use technical solutions that are
strongly oriented by the application domains. Applications based
on these solutions are dedicated by definition; they are not
typically portable between different execution platforms and
require specific engineering processes. These specificities greatly
increase the cost of development in the different phases of their
lifecycle. For instance, the integration of S&D features requires
the availability of both application domain-specific knowledge and
S&D expertise. Hence, capturing and providing this expertise via
modeling artifacts can enhance the development of embedded
systems.

1.3. Intended contribution

The envisioned repository framework will be comprised of two
main pillars: solid theory and proven principles. The first pillar will
offer an integrated conceptual design for the specification of the
repository structure; the second pillar will offer a set of concrete
and coherent techniques to generate a model-based repository.
We will provide evidence of its benefits and applicability through
an example of a representative industrial case from the TERESA
project: safe4Rail application. The basis formulation of the
approach presented in this article has been previously published
in a research paper at the 4th International Conference on Model
and Data Engineering (MEDI’14) [12]. This work extends ideas
described in this earlier paper and presents a holistic approach for
the design, implementation and management of a model-based
repository of modeling artifacts. Specifically, we provide a more
comprehensive and complete description of our approach. The
work presented in this paper has the following aspects:

• Repository design: a design framework and infrastructure to
support the model-based repository lifecycle.

• Modeling: we propose a modeling language to specify a
model-based repository independent from end-development
applications and execution platforms.

• Tooling: we propose a connected data objects (CDO)2-based
implementation of the repository and a set of EMF tree-based
editors to create patterns and the required libraries.

• Validation: applied in practice to a resource-constrained
embedded system (RCES) with strong S&D requirements in the
context of the TERESA project [4,13]: Railway Systems.

1.4. Organization of the contribution

The remainder of this paper is structured as follows. In Sec-
tion 2, we highlight the overall approach for designing and de-
veloping a model-based repository of modeling artifacts. Section 3
presents the basic concepts as the basis for the definition of amod-
eling language to support the design of the repository structure and

2 http://www.eclipse.org/cdo/.

its interfaces. In Section 4, we describe the proposed methodology

for designing, implementing and exploiting the repository of mod-

eling artifacts. Section 5 describes the architecture of the tool suite

and an example of an implementation of a repository. Section 6 de-

scribes amodeling framework for themodeling artifact-based sys-

tem and software engineering around amodel-based repository, as

well as the usage of the definedmodeling framework in the context

of the FP7 TERESA project through the railway case study. In Sec-

tion 7, we present a review of themost important related work. Fi-

nally, Section 8 concludes and presents future work directions. We

investigate various open issues, mainly the issues of generalization

and implementation, including the usability of the proposed mod-

eling framework.

2. Approach

In this section, we provide a description of the global vision of

a model-based repository system as a living structure of models

for software systems engineering. Fig. 1 highlights the architecture

of the model-based repository system lifecycle, decomposed into

components, as in [3]. The main components of the model-based

repository are (1) Design, (2) Infrastructure, (3) Development for

reuse, (4) Management and (5) Development by reuse. In this

section, we describe each component and provide indications as

to how these components work in conjunction to cover all aspects

of the model-based repository lifecycle.

In the next section, we present the specification language for

the repository and its interfaces, and in Section 5, we detail an

implementation of a model-based repository of S&D patterns.

2.1. Design and specification

The core of the framework is the definition of the model of

the repository, including the structure and interfaces, and a set of

specification languages for the modeling artifacts to be stored in

this repository. In addition, we specify views on the repository for

access according to its interfaces, its organization and the needs of

the targeted system engineering process.

2.2. Infrastructure for the repository software

Once this specification language has been defined, it is possible

to develop a repository. The repository software is proposed as a

platform where the modeling artifact specifications and instances

are stored and managed. Another element of the infrastructure

component is the interfaces, which are responsible for supporting

repository interactions. Finally, the infrastructure provides tools

for the installation, deployment and configuration of the repository

software with respect to the configuration of the accompanying

development tools that are installed in the user development

environment.

2.3. Development for reuse environment

The development environment associated with the repository

is composed of design and validation tools that define modeling

artifacts and generate reports and documentation to populate

the repository. Moreover, these tools should implement the

appropriate interfaces to publish the results in the repository.

2.4. Management environment

For the repository management, to be used by the repository
manager, we provide a set of facilities for the repository
organization that allow for the enhancement of its usage. We
also provide basic features, such as user, domain and artifact
management. Moreover, we provide features to support the
management of the relationships among artifact specifications and
between artifact specifications and their complementary models.
The tools belonging to this component should also implement
appropriate interfaces.

2.5. Development by reuse environment

Once the repository3 is available, it serves an underlying system
engineering process through access tools for reuse. For a system
engineer accessing the repository, this component provides a set
of facilities to help in selecting appropriate modeling artifacts,
including keyword search, lifecycle stage search and relationship
types. The access tools include features for exportation and
instantiation as dialogues targeting domain-specific development
environments. Moreover, the tool includes dependency-checking
mechanisms.

3. Repository metamodel

Concretely, the repository system is a structure that stores
specification languages, models and relationships among them,
coupled with a set of tools to manage, visualize, export, and
instantiate these artifacts to use them in engineering processes.We
start with a set of definitions and concepts that might prove useful
in understanding our approach.

Definition 1 (Modeling Artifact). We define a modeling artifact
as a formalized piece of knowledge for understanding and
communicating ideas produced and/or consumed during certain
activities of system engineering processes. The modeling artifact
may be classified in accordance with engineering process levels.

Adapting the definition of pattern language given by Christo-
pher Alexander [14], we define the following:

Definition 2 (Modeling Artifact System). A modeling artifact lan-
guage is a collection of modeling artifacts forming a vocabulary.
Such a collection may be skillfully woven together into a cohesive
‘‘whole’’ that reveals the inherent structures and relationships of
its constituent parts toward fulfilling a shared bijective.

3.1. System and software artifact repository model (SARM) specifica-

tion

The specification of the structure of the repository is based
on the organization of its content, mainly the modeling artifacts
and specification languages. Moreover, we identified an API as
a specification of the repository interaction system architecture.
That is, we propose a metamodel to capture these two main parts:
the first is dedicated to storing and managing data in the form of
Compartments, and the second regards the Interfaces for publishing
and retrieving modeling artifacts and for managing interactions
between users and the repository. The principal classes of the
metamodel are described with the Ecore notations in Fig. 2. The
following part depicts the meaning of principal concepts used to
specify the repository in detail:

3 The repository system populated with artifacts.

Fig. 1. Proposed framework for the repository system lifecycle.

Fig. 2. Repository specification metamodel (SARM).

Fig. 3. Repository interface specification metamodel.

• SarmRepository. The core element used to define a repository.

• SarmCompartment. Used for categorizing the stored data. We
have identified two main types of compartments.

– SarmSpecLangCompartment. Used to store the specifica-
tion languages (SeSpecLang) of the modeling artifacts
(SeArtefact).

– SarmArtefactCompartment. Used to store the modeling
artifacts. To simplify the identification of a modeling artifact
regarding the software development stage in which it is
involved, an SeArtefact has a lifecycleStage typed with an
external model library SeLifecycleStage.

• SarmStorable. Used to define a set of characteristics of
the model-based repository content, mainly those related to
storage. We can define: artefactURI, storageDate, sizeByte, and
so on.

In addition, it contains a set of references (SarmReference) to
describe the different links with the other artifacts. The set
of possible links is defined through an external model library
SeReferenceKind.

• SarmSpecLangKeyEntry. The key entry to point towards a
specification language model in the repository.

• SarmArtefactKeyEntry. The key entry to point towards a
modeling artifact specification in the repository.

• SarmAccesRight. Used to define the characteristics regarding the
access right to the repository and its content.

• SarmUser. Used to define the user profile.

• SarmUserList. Used to store the list of users in the repository.

3.2. Repository interface specification

For interaction purposes, the repository exposes its content
through a set of interfaces (SarmInteractionInterface), as shown in
Fig. 3. The meaning of the proposed concepts is presented in the
following:

• SarmAdministrationInterface. Manages the repository.

• SarmSpecLangDesignerInterface. Offers a set of operations,
including connection/disconnection to the repository and
population of the repository with metamodels.

• SarmSpecLangUserInterface. Offers a set of operations, mainly
including connection/disconnection to the repository and
search/selection of the specification languages.

• SarmArtifactDesignerInterface. Offers a set of operations, includ-
ing connection/disconnection to the repository and population
of the repository with artifacts.

• SarmArtefactUserInterface. Offers a set of operations, mainly
including connection/disconnection to the repository and
search/selection of the modeling artifacts.

4. Methodology

In this section, we describe a methodological approach to
describe the entire cycle comprising the creation of a flexible
repository of modeling artifacts and managing the models in
that repository, as shown in Fig. 4. We first describe the
model-based repository building process (Section 4.2) and then
present a description of the model-based repository usage process
(Section 4.3). The first process describes the steps to be followed
by the metamodelers, modelers and implementers of a model-
based repository. The second process describes the steps to be
followed by the modelers of modeling artifacts for reuse and the
developers of software systems by reuse. For illustration purposes,
in the remainder of this paper, we focus on the repository of S&D
patterns, which acts as a specific demonstration for the TERESA
resource-constrained embedded systems, called TeresaRepository.

The following sections introduce the example of TeresaReposi-
tory and describe in detail the process to be followed by the repos-
itory developers, including the designers of the metamodels of the
artifacts and the modelers of these artifacts. The process describes
the entire cycle, including the creation of the artifacts’ metamod-
els, the instantiation of the repository metamodel, the instantia-
tion of these metamodels as modeling artifacts for populating the
repository, the management of the repository, and an overview on
how the resulting repository software will support the system en-
gineering process.

4.1. An S&D pattern repository

In the context of the TERESA project, we consider three types
of modeling artifacts: S&D patterns, S&D property models and
resource property models. In this vision, the S&D pattern, derived
from (or associated with) domain-specific models, aims to help
the system engineer integrate application S&D building blocks.
Now, we briefly describe the modeling languages used to specify
these artifacts. For more details on property modeling language
and pattern modeling language, the reader is referred to [15,16],
respectively.

4.1.1. Generic property modeling language

The Generic PRoperty Metamodel (GPRM) [15] is a metamodel
defining a new formalism (i.e., language) for describing property
libraries, including units, types and property categories. For
instance, S&D attributes [17], such as authenticity, confidentiality
and availability, are defined as categories. These categories require
a set of measures types (e.g., degree, metrics) and units (e.g.,
Boolean, float). For this purpose, we instantiate the appropriate
type library and its corresponding unit library. These models are

Fig. 4. Overview of the model-based repository building process.

used as external model libraries to type the properties of the

patterns. During the editing of the pattern,wedefine the properties

and constraints using these libraries. The principal classes of the

GPRM are described with Ecore notations in Fig. 5. Their meanings

are explained in more detail in the following paragraphs.

• GprmProperty. A property is a basic attribute shared by all

members of an artifact (e.g., pattern, resource). As we shall

see, it will be used to define pattern properties (see SEPM

metamodels). The property is defined by its category, type and

value.

Example. CPU execution time for encryption and energy

consumption for encryption are two properties (resource-

related) of the pattern SecureCommSSL.

• GprmPropertyCategory. A property category is a classification

for properties. Its role is to group all of the properties sharing

common characteristics. These characteristics may depend on

the user or application domain viewpoint. A category supports

a set of types that define the nature of the property, and it can

also be defined based on other categories by specialization. A

category is defined with at least one default type.

Example: CPUTime is a category of resource properties, and

Authenticity is a category of S&D properties.

• GprmResourceCategory. A resource category is a classification

for resources. Its role is to group all of the resources sharing

common characteristics. These characteristics may depend on

the user or application domain viewpoint. The main categories

are those related to computing, data storage and energy

consumption. However, other categories may be defined, such

as peripheral, sensor, and actuator. A categorymay also be built

based on existing categories by specialization.

4.1.2. Pattern specification metamodel

The System and Software Engineering Pattern Metamodel
(SEPM) [16] is a metamodel defining a new formalism for
describing S&D patterns and constitutes the base of our pattern
modeling language. Here, we consider patterns as sub-systems
that expose services (via interfaces) andmanage S&D and resource
properties (via features), yielding a unified method of capturing
meta-information related to a pattern and its context of use. Fig. 6
describes the principal concepts of the SEPM metamodel with the
Ecore notations. Theirmeanings are explained inmore detail in the
following paragraphs.

• SepmPattern. This block represents a security pattern as a
subsystem describing a solution for a particular recurring
security design problem that arises in a specific design context.
A SepmPattern defines its behavior in terms of the provided and
required interfaces.

• Interface. A SepmPattern interacts with its environment via
Interfaces. We consider two types of interfaces:
– SepmExternalInterface. Allows for the implementation of

interaction with regard to the integration of a pattern into an
application model or the composition of patterns.

– SepmTechnicalInterface. Allows for the implementation of
interaction with security primitives and protocols, such
as encryption, and specialization for specific underlying
software and/or hardware platforms, mainly during the
deployment activity.

• SepmProperty. A GprmProperty denoting a particular character-
istic of a pattern related to the concern it is considering and
dedicated to capture its intent in a certain manner (e.g., S&D
properties).

Example. We illustrate the use of the SEPM to specify a pattern
with the example of a secure communication pattern based on the

Fig. 5. The (simplified) GPRM.

Fig. 6. The (simplified) SEPM.

SSL4 mechanism. Here, we specify an S&D property: ‘‘authenticity
of sender and receiver’’. We use a previously defined category from
the S&D category library to type the category of this property:
Authenticity. Moreover, we identify various resource properties,
such as ‘‘CPU resource time for encryption’’ and ‘‘CPU resource
time for authentication’’, which belong to the category CPUTime,
and ‘‘extra energy cost for encryption’’ and ‘‘extra energy cost for
authentication’’, which belong to the category PowerConsumption.

4.2. Steps for a model-based repository building process

Oncewehave developed the conceptualmodel of the repository
(Section 3), we can create the modeling languages to specify its
content and the appropriate tools to support the entire cycle of
system engineering around a model-based repository of modeling
artifacts. As we can see, the implementation steps were performed

4 The TLS Protocol Version 1.2. rfc5246, 2008.

transversely to the other steps of the proposed methodology. The
repository building process, as visualized in Fig. 7, consists of the
following steps:

Create the artifacts’ metamodel. Specify the metamodel of each
artifact to be stored in the repository, as shown in the top part of
Fig. 4. For instance, the GPRM and SEPM are created and stored as
Ecore models (Figs. 5 and 6, respectively).

Specify model libraries for artifact classification. After the
modeling artifacts’metamodels are specified, classificationmodels
are added. At each stage of the system engineering development
process, the appropriate modeling artifacts to use are identified by
classifying them. In our context, we use the pattern classification
of Riehle and Buschmann [18,19], which is (1) System Patterns,
Architectural Patterns, Design Patterns and Implementation Patterns,
to create the model library SeLifecycleStage.

Specify model libraries for the relationships between artifacts.
After the modeling artifacts’ metamodels are specified, relation-
ship models are added. At each stage (phase) n of the system en-
gineering development process, the modeling artifacts previously

Fig. 7. The model-based repository building process.

Fig. 8. The deployment and configuration process.

identified in stage (n−1)will be used in the selection activity of the
current phase. For instance, a patternmay be linkedwith other pat-
terns and associated with property models using a predefined set
of reference types, for example refines, specializes, and uses. Here,
we create the SeReferenceKind model library to support the spec-
ification of relationships across artifacts.

Create tools to support the repository modeling process. Write
editors for the specification of the repository structure and
interfaces.

Specify the repository structure. Once a repository design tool is
created, the repositorymodel can be specified using themetamod-
els and model libraries. The model of the repository is an instance
of the SARM metamodel, comprising the creation of metamodels’
compartments, the artifacts’ compartments, and the users’ lists.
The structure of the repository and its interfaces are then available
to modelers to populate and manage the repository (as seen in the
middle part of Fig. 4). In our example, we define TeresaRepository
as an instance of the SarmRepository: a model-based repository of
S&Dpatterns and their related propertymodels. To implement S&D
patternmodels and propertymodels, we use aMetamodelCompart-
ment as an instance of the SarmSpecLangCompartment, which has
two instances of SarmSpecLangKeyEntry to store the patternmod-
eling language and property modeling language. We also define a
set of compartments to store the artifacts. In addition to the repos-
itory structure, we define the model of interfaces (APIs) to exhibit
the content of the repository and its management.

Implementation of the repository software. Once the repository
model has been specified, the repository software can be
implemented using code generation techniques. The resulting
models are used as input for the model transformations to
generate the repository structure and interface (API) software
implementations targeting a specific technological platform, such
as CDO (see the middle part of Fig. 4). Additionally, scripts to
perform the installation and deployment of the resulted repository
software system are specified. The next step after creating
the repository structure and interfaces, they are connected to
populating, accessing and management tools.

Create tools to support the repository interactions. After defining

themetamodels of artifacts and the specification and implementa-

tion of the repository structure and interfaces, repository interac-

tion tools are developed. Each modeling artifact is associated with

a set of editors and helpers to deposit and retrieve artifacts to/from

the repository.Moreover, a set ofmanagement perspectiveswithin

the repository are proposed.

• Create tools to support the populating of the repository. Create

editors to support the instantiation of the metamodels of

artifacts. Furthermore, these tools include mechanisms to

validate the conformity of themodeling artifact and publish the

results into the repository using the appropriate interfaces.

• Create tools to support the access to the repository. Create views

on the repository according to its APIs, its organization and the

needs of the targeted system engineering process. For instance,

a keyword-based search access tool is implemented for the

TeresaRepository.

• Create tools to support the administration of the repository. Create

editors to support the administration of the repository and

the evolution of existing model libraries, users, artifacts and

relationships.

4.3. Steps for deployment and configuration

We identified several roles. The modeling expert interacts with

the repository to specify the modeling artifacts and then stores

these artifacts, and the domain expert interactswith the repository

to instantiate and then reuse these artifacts. The repository

manager is responsible for the repository administration. Finally,

the system developer selects the modeling artifact for building an

application. Fig. 8 shows the process to be followed to prepare the

usage of the repository.

Installation and deployment . Using the script developed dur-

ing the implementation of the repository, the repository software

system is deployed on an appropriate host, and the accompanying

development tools are installed in the user development environ-
ment. Assuming that all of the hardware and software resource re-
quirements aremet, the first step is the download and deployment
of the repository server application. Once the server is started, we
perform the repository initialization, comprised of the creation of
the structure of the repository aswell as the initialization andman-
agement of the compartments and users. Then, we proceed with
the installation of the client tool suite.

Define access security. Once the repository server has been
deployed, an access policy is added to specify resources, roles and
access rules. For each user, access rights to compartments are
added, which are filteredwhen such a user logs onto the repository
system. Furthermore, the scope of access can be limited to a group
of modeling artifacts.

Createmodels. Create instances of themodeling artifactmetamod-
els and publish the results in the repository using the appropriate
editors. During this activity, the pattern artifacts are built conform-
ing to the pattern modeling language. An activity is added at this
point to check the design conformity of the pattern.

Generate reports and documentation. At this point, the modeling
artifact designer may generate documentation. If the pattern has
been correctly defined, i.e., it conforms to the pattern modeling
language, the pattern is ready for publication to the model-based
repository. Otherwise, the issues from the report can be identified,
and the pattern can be re-built by correcting or completing its
relevant constructs. In addition, this task will be used during the
usage of the repository to generate development environment-
specific and multi-target documentation.

Define relationships betweenmodels. We provide a set of facilities
for the repository organization allowing for the enhancement
of its usage. For instance, we provide features to support the
management of the relationships among artifact specifications and
between artifact specifications and their complementary models.
Each artifact is studied to identify its relationships with the other
artifacts belonging to the same application domain with respect
to the engineering process activity in which it is consumed. In our
case, the goal of this activity is to organize patterns and give them
a structure of a set of systems of patterns. For instance, a pattern
is linked with other patterns and associated with property models
using a predefined set of reference types.

Reuse of existing artifacts. Once the repository system is available,
it serves an underlying trust engineering process through access
tools, conforming to the process model shown in Fig. 11.

5. Architecture and implementation tools

In this section, we propose an MDE tool chain to support
the proposed approach and assist the developers of a repository
system, thus assisting the developers of software systems based
on the repository. As discussed below, the proposed tool chain is
designed to support the proposed metamodels; hence, the tool
chain and the remainder of the activities involved in the approach
may be developed in parallel. Appropriate tools for supporting our
approach must satisfy the following key requirements:

• Enable the creation of the UML class diagrams used to describe
the repository metamodel and the artifact metamodels.

• Support the implementation of a repository to storemodels and
the related model libraries for classification and relationships.

• Enable the creation of models and the related model libraries
and publication of the results into the repository.

• Support the administration and the internalmanagement of the
repository.

• Enable the creation of visualizations of the repository to
facilitate its access.

• Enable the creation of application models.
• Enable transformations of the models from the repository

format into the target-modeling environment.
• Enable the integration of application models and models

imported from the repository.

To satisfy the above requirements, we define four integrated
sets of software tools:

• Toolset A for populating the repository,
• Toolset B for retrieval and adaptation from the repository,
• Toolset C to serve as the repository software, including its

administration and internal management, and
• Toolset D as the augmented target development environment.

This software system, including the specification, over target
technology, evolution and maintenance for acquiring organiza-
tions, and end-users and front-end support provider, is detailed
in the following. For illustration purposes, the described tool suite
is related to the TeresaRepository. Specifically, we develop SEM-
COMDT5 (SEMCO model development tools) as an MDE tool chain
to support all of the steps in our approach. We implemented the
proposed approach as a set of Eclipse plug-ins as a proof of con-
cept. We provide an installation based on the Eclipse standards of
the p2 repository (update site). The current version is installable
via the installation routines of the Eclipse Platform and our update
site.6 In addition, a video tutorial presenting the tool suite is pro-
vided under the SEMCO Video Tutorial.

All of the presented metamodels, including the repository
structure and interfaces as well as the S&D patternmetamodel and
property metamodel, are specified using the EMF. The design tools
are generated semi-automatically from thesemetamodels. Several
enhancements are added to the generated code, such as creation
wizards, to guide the modeling artifact designer in populating
the repository. Visual enhancements are added to facilitate the
recognition of different concepts as a first step toward a future
visual syntax. The QVT operational language is used to describe the
model transformations. The repository is implemented using the
Eclipse CDO framework. SEMCOMDT offers the following features:

• Gaya for specifying and implementing a repository to store
models,

• Tiqueo for specifying models of S&D properties conforming to
GPRM,

• Arabion for specifying patterns that conform to SEPM (see
Fig. 9),

• Admin for the repository management (see Fig. 10),
• Retrieval for the repository access (see Fig. 15).

The server part of the repository is provided as an Eclipse
plugin that will handle the launch of a CDO server defined by
a configuration file. This configuration file indicates that a CDO
serverwill be active on a givenport and itwillmake available a CDO
repository identified by its name. In addition, the configuration file
is used to select which type of database will be used for the proper
functioning of the CDO model repository. The repository APIs are
implemented as CDO clients and provided as an Eclipse plugin. The
implementation is mainly based on the automatic code generation
from the APImodel defined above. The generated Java code defines
the different interfaces and functions provided by the repository
APIs. The skeletons of the APIs implementations are thenmanually
completed based on CDO technology. For more details, the reader
is referred to [20].

For populating purposes, we build two design tools, (1) the
property designer (Tiqueo), to be used by a property designer, and

5 http://www.semcomdt.org.
6 http://www.semcomdt.org/semco/tools/updates/1.2.

Fig. 9. Designing a pattern.

Fig. 10. Repository management and re-organization.

(2) the pattern designer (Arabion), to be used by a pattern designer.
Tiqueo (resp. Arabion) interacts with the Gaya repository for pub-
lication purpose using the Gaya4Property (resp. Gaya4PatternAPI).
The user applications for populating the repository are imple-
mented as a set of EMF tree-based editors to create patterns and
the required libraries and are provided as Eclipse plugins.

To access the repository, which is to be used by a system
engineer, the tool provides a set of facilities to help in selecting
appropriate patterns, including keyword search, lifecycle stage
search and property categories. The Tool includes features for
exportation and instantiation as dialogues targeting domain-
specific development environments. Moreover, the tool includes
dependency-checking mechanisms. For example, a pattern cannot
be instantiated when a property library is missing, and an error
message will be thrown.We also provide software, as a Java-based
GUI application, to support the management of the relationships
among artifact specifications and between artifact specifications
and their complementary models.

6. Framework for software systemmodeling artifacts

The proposed approach promotes model-based development
coupledwith a repository ofmodeling artifacts. This approach aims
to define an engineering discipline to enforce reuse and to share
expertise. The main goal of this section is to define a modeling
framework to support the packaging of a set of modeling artifacts
for system software engineering.

6.1. A modeling artifact-based development process

In our work, we promote a new discipline for system engineer-
ing around a model-based repository of modeling artifacts. The
proposed framework addresses two types of processes: the pro-
cess ofmodeling artifacts development and system development with

modeling artifacts. The main concern of the first process is design-
ing modeling artifacts for reuse, and the second concern is finding

Fig. 11. The modeling artifact-based development process.

adequate modeling artifacts and evaluating them with regard to

the requirements of the system under development. Therefore, we

add a repository as a tier that acts as an intermediate agent be-

tween these two processes. A repository should provide a mod-

eling container to support modeling artifact lifecycles associated

with different methodologies.

Once the repository is available (the repository system is

populated with modeling artifacts), it serves an underlying

engineering process. In the process model visualized in Fig. 11 as

an activity diagram, the developer starts with system specification

(A1), fulfilling the requirements. In a traditional approach (non-

repository-based approach) the developer would continue with

the architecture design, module design, implementation and test.

In our vision, instead of following these phases and defining new

modeling artifacts, which typically consumes large amounts of

time and effort and is prone to errors, the system developermerely

needs to select appropriate modeling artifacts from the repository

and integrate them in the system under development.

For each phase, the systemdeveloper executes the search/select

from the repository to instantiate modeling artifacts in its

modeling environment (A4 and A9) and integrate them in its

models (A5 and A10) following an incremental process. The model

specified in a certain activity A(n − 1) is then used in activity

An. In the same manner, for a certain development stage n, the

modeling artifacts identified previously in stage (n − 1) will help

during the selection activity of the current phase. Moreover, the

system developer can use a modeling artifact design process to

develop their own solutions when the repository fails to deliver an

appropriate modeling artifact at this stage. The software designer

does not necessarily need to use one of the previously included

artifacts stored in the repository. He can define custom software

architecture for some modeling artifact (components) and avoid

using the repository facilities (A6 and A11).

6.2. Application to a railway system case study

In this section, we report on an industrial case study performed
in the railway domain. The case study enables us to determine
that the model-based repository of patterns approach leads to a
reduced number of or simplification of the engineering process
steps and helps assess whether domain experts agree on the
benefit of adopting the model-based repository approach in a real
industrial context.

6.2.1. Overview of the case study

We demonstrate the applicability of our proposed framework
through the Safe4Rail demonstrator, which is a simplified version
of a real European Train Control System (ETCS) signaling, control
and train protection system. The main functionality of this
demonstrator is to supervise that the travel speed and distance
do not exceed the authorized maximum values provided by the
railway infrastructure. Safe4Rail is in charge of the emergency
brake of a railway system. Itsmission is to checkwhether the brake
needs to be activated. Most importantly, the emergency brake
must be activated when something goes wrong.

As shown in Fig. 12, the entire system is composed of:

• (1) the brake system. Stops or decelerates the train. There
are several types of brakes (e.g., mechanical, electrical and
emergency).

• (2) the system. Collects inputs from sensors and performs a
number of calculations to make decisions, which are typically
propagated as outputs.

• (3) sensors. Provide inputs in diverse forms so that decisions can
be made. For instance, there are track tags and radars.

• (4) rail track. The railway convoy moves along the rail track
and the systemmonitors a number of parameters from assorted
sensors.

Fig. 12. Railway control system.

The fundamental functionality of the system is based on a set
of inputs from the rail track, assorted sensors, balises, and so on.
Starting from them, it performs some calculations and decides
whether the emergency brake needs to be activated. An output
signal is sent accordingly.

6.2.2. Description of the application and identification of patterns

There are threemain use cases of the Safe4Railsystem,which are
described below. Fig. 13 provides a diagram of selected use cases,
illustrating their relationships and their classification as safety-
relevant or non-safety-relevant. We describe only a small part of
this system, and we do not show the resulting model here, as it
contains proprietary information from our industrial partner.

1. Activate the emergency brake and realize diagnostics (when the

system is in Standby mode).

2. Supervise the train speed and position (when the system is in

Supervision mode).

(a) Estimate the current position and speed.

(b) Supervise the current position and speed and activate

warnings and brakes accordingly.

(c) Provide information to the User.

3. Change between Standby and Supervision modes.

6.2.3. Repository of S&D patterns for the railway domain

The architects analyze system safety and security requirements

and identify possible security and safety patterns to be used.

Table 1 shows the list of patterns that are going to be used in the

railway demonstrator, whereas Fig. 14 provides an overview of the

railway S&D pattern system.

We used the Tiqueo editor and Arabion editor to create

the corresponding property libraries and the set of patterns,

respectively. Arabion uses the property libraries provided by

Tiqueo to type the pattern property. Finally, we used the Gaya

manager tool to set the relationships between the patterns. Fig. 14

provides an overview of the railway S&D pattern system.

Fig. 13. Part of the Safe4Rail use-case diagram.

Table 1

List of patterns.

Pattern Origin

TMR (Triple Modular Redundancy) IEC-61508-2 (Table 2, 3), EN-50129 (Table E.4)

Majority voter IEC-61508-2 (Table A.2, A.3 A.4)

Data agreement protocol Book ‘‘Real-Time Systems:Design Principles for Distributed Embedded Applications’’

Black channel IEC-61508-2

Hypervisor EN-50129 (Table E.4; Separation of safety-related systems from non safety-related systems)

Watchdog EN-50126, IEC-61508-3 (Table A.11)

Reciprocal comparison IEC-61508-2 (Table A.4), EN-51028 (Fault Detection & Diagnosis)

Safety communication layer IEC-61784 / IEC-62280

Security communication layer Book ‘‘Security patterns in practice: Building secure architectures using software patterns’’

Fig. 14. Railway pattern system—overview.

6.2.4. Access tool for the railway domain

A customized access tool to facilitate the connection between
the railway development environment and TERESA repository
was developed. For this purpose, the access tool implements the
Gaya4SystemDeveloper API provided as an Eclipse plugin and offers
a GUI that allows the user to search and select patterns. When
a pattern is selected, the access tool instantiates the pattern in
the domain-specific tool. Because this task is carried out during
product development, the instantiated pattern must be compliant
with the current phase of the domain process and the user tools.
By accessing the repository, we provide features based on model
transformation techniques to adapt themodel of the pattern to the
target development environment. In the TERESA railway use case,
the target format is a subset of UML, which can be imported by
Rational Rhapsody.

The left part of Fig. 15 shows the main window for the railway
access tool user interface.

This window has two panels: one for search and the other
for display. The display panel on the bottom shows the name
of the selected pattern and the different associated views, for
instance, an example of a graphic view with a class diagram of
the pattern implementation. The repository is searched by using
either the ‘‘Name’’ field to enter part of the name or ‘‘Keywords’’
to enter some characteristics of the desired pattern. To instantiate
the selected pattern, as shown in the right part of Fig. 15, the
Access Tool will create a new representation of the selected
pattern as a UML package for UML Rational Rhapsody using model
transformation techniques.

6.2.5. System developer view point: Reuse of existing artifacts

In this process model, as shown in Fig. 16, the developer starts
with requirement engineering/specification, followed by system
specification. For each phase, the system developer executes
the search/select from the repository to instantiate appropriate
patterns in its modeling environment using the Access tool and
then integrates them in its models following an incremental
process. Moreover, the system developer can use the pattern
designer tool (Arabion) to develop their own solutions when the
repository fails to deliver the appropriate patterns in this phase.

The process flow for the example can be summarized with the
following steps:

• Once the requirements are properly captured and imported
into the development environment, such as Rhapsody, the
repository may suggest possible patterns to meet general
or specific S&D needs (according to the requirements and
application domain): e.g., if the requirements contain the
keywords Redundancy or SIL4, a suggestion could be to use
a TMR pattern at the architecture level. In addition, some
diagnosis techniques imposed by the railway standard may be
suggested:
– TMR (suggested by the tool),
– Diagnosis techniques (suggested by the tool),
– Sensor Diversity (searched by the System Architect).

• Based on the selected patterns, the repository may suggest
related or complementary patterns. For instance, if the TMR has
been integrated, the following patterns may be pro-posed in a
second iteration, for instance, in the design phase:
– Data Agreement
– Voter
– Black Channel
– Clock Synchronization.

The system architecture shown in Fig. 17 specifies the Safe4Rail
system decomposition, the relationship between the different
blocks that compose the system. At this stage, the system architect
makes some architectural decisions (based on the safety concept
and requirements) and accesses the repository to search for and
import suitable refined and specialized design patterns of interest:

1. The TMR is implemented with
(a) Three homogeneous nodes (‘‘SupervisionNode’’) connected

to two Ethernet switches in a star topology, composed of:
i. a computing unit microcontroller (‘‘ComputingUnit ’’,

‘‘Microcontroller ’’),
ii. an ‘‘FPGA’’ that provides safety and non-safety related

inputs/outputs (‘‘IO Safety’’ and ‘‘IO No Safety’’),
iii. a watchdog as a pattern,
iv. a software application (‘‘SupervisionApplication’’) exe-

cuted at the computing unit that integrates the Safety
Communication Layer and Secure Communication Layer
as patterns to support safe and secure communication
among replicated communication channels,

v. the usage of a hypervisor
(‘‘DI_SA_BL_Hypervisor ’’) as a pattern to enable the inte-
gration in a single software application (‘‘SupervisionAp-
plication’’) of
• safety software, such as software functionalities and

safety techniques previously described in the safety
concept,

• non-safety-related application software such as the
communication stack of the black channel.

(b) Two Ethernet switches (‘‘EthernetSwitch’’) associated with a
black channel.

2. A single (safety) balise reader (‘‘BaliseReader ’’).
3. A black channel communication protocol (Ethernet/EtherCAT).

During this phase, new design patterns have been imported
from the repository based on the system architect’s decisions.
For example, the selection of a supervision node with a single
microcontroller has led to the use of a hypervisor to integrate
safety- andnon-safety-related software in a singlemicrocontroller.

Fig. 15. Railway access tool.

Fig. 16. Overview of the railway reference process model.

6.2.6. Discussion

In this subsection, the adaptation of railway processes to

incorporate the model-based repository of patterns approach has

been described. We test which of the provided tools are able

to support the pattern integration and assist in the engineering

process. In this context, the extendibility of the pattern repository

for new patterns, as well as the extendibility of existing patterns, is

also observed. Furthermore, we evaluate the degree to which the

patterns are useful for increasing engineering productivity.

The S&D knowledge comprised in a pattern (e.g., in the

form of guidelines and source code) will be observed with

respect to its generality, i.e., we attempt to prove whether

the same guidelines can be used to successfully instantiate the
TERESA sector-specific engineering processes and whether they
can also be used to instantiate other processes. We intend to
demonstrate that themodel-based repository of patterns approach
leads to a reduced number of or to a simplification of the
engineering process steps. The guidelines that are provided should
support the developer regarding S&D issues and reduce the error
frequency. We demonstrate that the application of the proposed
approach theoretically yields important benefits for development
engineers. This statement was proven in practice through the real
implementation of the demonstrators.

The objective is to demonstrate the process flowand integration
of the tools in the domain tool chains, not to solve the low-

Fig. 17. Overview of the Safe4Rail system architecture.

level details of the approach integration. In this respect, there

is considerable work to be done. For instance, in the railway

domain, some examples of the modeling artifact (e.g., pattern)

representation at different phases have been proposed, but

these representations must be completely refined to allow for a

straightforward integration of these modeling artifacts into the

project models. The required modeling artifact representation at

the same level may differ from one domain to another, so the

Repository Access Tool is responsible for providing the information

in the required format. The layout of the Repository Access Tool

depends on the sector particularities, so a new ‘‘skin’’ must be

defined every time a new sector is considered.

Projects for the development of embedded railway systems

are commonly implemented by multidisciplinary teams that

may be geographically dispersed. Therefore, the existence of a

repository with pre-engineered patterns (designed and verified)

can reduce the time-to-market (and overall project cost), facilitate

complexity management, decrease the probability of systematic

faults and improve the robustness of the developed products.

These advantages are attained predominantly because each design

pattern provides a concise representation of a concept (e.g.,

redundancy, as specified by IEC-61508) and/or well-known and

pre-engineered solutions that naturally fit into the relevant

engineering lifecycle.

7. Related work

In Model-Driven Development (MDD), model repositories
[2,21,22] are used to facilitate the exchange of models through
tools by managing modeling artifacts. Model repositories are often
built as a layer on top of existing technologies (e.g., databases).

To lighten the queries to the repository, metadata can be
added to select the appropriate artifacts. Therefore, there are some
repositories that are composed solely of metadata. For instance, as
presented in the standard ebXML [23] and an ebXML Repository
Reference Implementation [24], a service repository can be seen
as a metadata repository that contains metadata about location
information to find a service. In [22], the authors proposed a
reusable architecture decision model for setting-up model and
metadata repositories. They aimed to design data model and
metadata repositories. In addition, some helpers are included
in the product to select a basic repository technology, choose
appropriate repository metadata, and select suitable modeling
levels of the model information stored in the repository. In [25],
the authors proposed a repository implementation with support
for storing and managing of artifacts. The supported artifacts are:
metamodels, models, constraints, specifications, transformation
rules, code, templates, configuration or documentation, and their
metadata.

Moogle [26] is a model search engine that uses UML or a
domain-specific languagemeta-model to create indexes that allow

Table 2

Solutions analysis.

Approaches Representation flexibility User-level interaction Tool support Methodology engineering oriented

Specific reuse repository [31,27,29] ∗∗∗ n+ n+ ∗∗∗∗

Code dependences repository [32–36] n+ ∗∗ n+ ∗∗

Metadata repository [23,24] n+ n+ ∗∗∗ ∗∗

Model repository [2,30,21,22,26,37,28] n− n+ n+ n−

Our approach n+ n+ n+ n+

for the evaluation of complex queries. Its key features include
searching through different types of models (as long as their
metamodel is provided). The index is built automatically, and the
system attempts to present only the relevant parts of the results,
for example, by trying to remove the XML tags or other unreadable
characters to improve readability. The model elements’ type and
attributes and the hierarchy between model elements can be used
as search criteria. Models are searched by using keywords (simple
search), specifying the types of model elements to be returned
(advanced search) and using filters organized into facets (browse).
The user must know the metamodel elements to use the advanced
search engines properly. Moogle uses the Apache SOLR ranking
policy of the results. Themost important information of the results
is highlighted to make it clearer to the user.

The MORSE project [27] proposes a Model-Aware Service
Environment repository to facilitate dynamic services for reflection
models. MORSE addresses two common problems in MDD
systems: traceability and collaboration. Themodel repository is the
main component of MORSE and has been designedwith the goal of
abstracting from specific technologies. MORSE focuses on runtime
services and processes and their integration and interaction with
the repository.

The work described in [28] is a general-purpose approach that
uses graph query processing to search repositories of models
represented as graphs. First, the repository models are translated
into directed graphs. Then, the system receives a query conforming
to the consideredDSLmetamodel. To reduce thematching problem
into a graphmatching one, the submitted query is also transformed
into a graph.Matches are calculated by finding amapping between
the query graph and project graphs or sub-graphs, depending
on the granularity. The results are ranked using the graph edit
distance metric via the A-Star algorithm. The prototype considers
the case of the domain-specific WebML language.

The work in [29] presents a survey of business process model
repositories and their related frameworks. This work addresses
the management of large collections of business processes using
repository structures and provides common repository functions,
such as storage, search and version management. It targets the
process model designer and allows for the reuse of process model
artifacts. A comparison of process model repositories is presented
to highlight the degree of reusability of artifacts.

Another issue is graphical modeling tool generation, as studied
in the GraMMi project [30]. In this project, the repository is
based on three levels of abstraction (metametamodel, meta-model
and model). The repository stores both metamodels (notation
definitions) and models (instantiation definitions). The repository
access is enabled by an interface provided by itself.

GraMMi’s Kernel allows for the management of persistent
objects. Thus, this kernel aims to convert the objects (models) into
an understandable form for the user via the graphical interface.

Compared to other work, our approach considers general
metamodels and offers a generic transformation between the
metamodel and implementation platforms. Furthermore, our
approach does not focus on the implementation but rather
on the methodology to develop the repository of models. Our
implementation of the repository structure and interfaces is
based on the EMF and a CDO-based repository. However, other

existing technologies to support repository implementations may
be used in our work as target platforms for repository generation.
Our work aims to provide a model-based methodology for
developing a repository of models that effectively supports reuse
and interconnects the process of model specification and system
development with models. The metamodel and methodology
described in this paper may be used to specify the management
and use of several types of repositories, as detailed above. In fact,
model aspects or the overall assets of these repositories can be seen
as artifacts supported by our metamodel. For instance, a process
model aspect or the overall process model of the listed process
models can be seen as artifacts supported by our metamodel. In
return, the vision of the business process model repositories [29]
may be used to manage the process element-type libraries.

Table 2 shows a comparison of the existing approaches and how
difficult it is to implement/describe the most common concepts
related to repositories in system and software engineering. The
scale goes from natively supported (n+) and natively supported
but not easy to use (n−), past usable but requires adaption (* * * *),
down to nearly impossible to use (*).

8. Conclusion

Repositories ofmodeling artifacts have recently gained increas-
ing attention for the enforcement of reuse in software engineer-
ing. In fact, repository-centric development processes are more
adopted in software/system development, such as architecture- or
pattern-centric development processes. The proposed framework
for building a repository is based on metamodeling, which allows
the structure of a repository and modeling artifacts to be specified
at different levels of abstraction, and model transformation tech-
niques for generation purposes. Moreover, we have proposed an
operational architecture for the implementation of a repository. In
addition, the tool suite promotes the separation of concerns during
the development process by distinguishing the roles of the differ-
ent stakeholders.Mainly, the access to the repository is customized
regarding the development phases, the stakeholder’s domain and
his system knowledge.

The approach for developing a repository of models is generic;
however, the discussion and implementation in this paper is based
on the Eclipse platform, Ecore and a CDO-based repository. We
have implemented a prototype named SEMCOMDT to support
the approach as an Eclipse plug-in. Thus, this prototype plug-in
supports the methodology defined in Section 4. The approach has
been evaluated in the context of the TERESA project to build a
repository of S&D patterns and property models to support the
development of a railway signaling, control and train protection
system.

In a wider scope, new specification languages may be designed
and stored with their related artifacts in the repository. For
instance, components, resources, analysis and simulations are
important types of artifacts that we can consider in our framework
to serve the systematic construction of large complex systemswith
multiple concerns. From another perspective, formal modeling
language is used as a complementary approach when verification
and validation are needed. For example, in security engineering,
we may use formal languages, such as the Security Modeling

Framework (SeMF) [38,39], to represent the model of the solution
and the security properties to enable verification. In the context
of the TERESA project, [40] built the xSeMF language to provide
a syntactically and semantically clear and consistent way to
describe the security properties of systems or patterns. The
metamodel behind xSeMF is specified using the EMF, and the
xText7 framework was used for the realization of a textual
editor. Therefore, the xSeMF language comes with a syntax-aware
editor for the Eclipse platform for manipulation. This ensures
compatibility with the remainder of the repository and pattern
tooling, as it utilizes the same modeling technology platform.

This similarity facilitates the integration in the Tool chain. It
also avoidsmedia discontinuity and the need for an additional tool.
As a result, specification languages (semi-formal and formal), roles
and compartments related to each of them can be clearly defined
and applied in system development for increased flexibility and
efficiency. The appropriate tools will also be adapted accordingly.

In future work, we plan to study the automation of the search
and instantiation of models, for which a framework for simpler
constraint specifications would be beneficial. The expected goal
is to highlight the content of the repository in the form of a
map representing modeling artifact dependences. In addition,
we will study the integration of our tooling with other MDE
tools. Additionally, we will seek new opportunities to apply the
framework to other domains. Other issues are that

• The repository is generated from existing metamodels. The
question raised is whether the proposed structure can support
evolution and dynamic specification languages.

• Access control policy is delegated to the underlying platform
implementation. In our case, this policy is organized around
compartments and not around the artifact.

• There are CDO-based implementation limitations.
• The effort of creating the repository and artifacts must be

evaluated.

Acknowledgments

Thisworkwas initiated in the context of the SEMCOproject. It is
supported by the European FP7 TERESA project and by the French
FUI 7 SIRSEC project. The authors are particularly grateful to Adel
Ziani and JacobGeisel for their valuable help in the implementation
and development of SEMCO tools. In addition, the authors would
like to thank TERESA consortium members for their participation
in the implementation of the use case.

References

[1] S. Ravi, A. Raghunathan, P. Kocher, S. Hattangady, Security in embedded
systems: Design challenges, ACM Trans. Embed. Comput. Syst. 3 (3) (2004)
461–491.

[2] P.A. Bernstein, U. Dayal, An overview of repository technology, in: Proceedings
of the 20th International Conference on Very Large Data Bases, VLDB’94,
Morgan Kaufmann Publishers Inc., 1994, pp. 705–713.

[3] V. Burégio, E. de Almeida, D. Ludrédio, S. Meira, A reuse repository system:
From specification to deployment, in: H. Mei (Ed.), High Confidence Software
Reuse in Large Systems, in: Lecture Notes in Computer Science, vol. 5030,
Springer, Berlin, Heidelberg, 2008, pp. 88–99.

[4] TERESA, TERESA Project, Trusted Computing Engineering for Resource Con-
strained Embedded Systems Applications, http://www.teresa-project.org/.

[5] D. Schmidt, Model-driven engineering, IEEE comput. 39 (2) (2006) 41–47.
[6] I. Crnkovic, M.R.V. Chaudron, S. Larsson, Component-based development

process and component lifecycle, in: Proceedings of the International
Conference on Software Engineering Advances, ICSEA 2006, IEEE Computer
Society, 2006, p. 44.

[7] W. Frakes, K. Kang, Software reuse research: Status and future, IEEE Trans.
Softw. Eng. 31 (7) (2005) 529–536.

7 https://eclipse.org/Xtext/.

[8] B. Hamid, SEMCOProject, System and software Engineering for embedded sys-
tems applications with Multi- COncerns support, http://www.semcomdt.org.

[9] J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema, J. Sprinkle, Domain-
Specific Modeling, Chapman & Hall/CRC, 2007.

[10] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Modeling
Framework 2.0, second ed., Addison-Wesley Professional, 2009.

[11] OMG, Meta Object Facility (MOF) 2. 0 Query / View / Transformation
Specification, 2008.

[12] B. Hamid, A model-driven methodology approach for developing a repository
of models, in: Model and Data Engineering—4th International Conference—
MEDI 2014, in: Lecture Notes in Computer Science, vol. 8748, Springer, 2014,
pp. 29–44.

[13] B. Hamid, N. Desnos, C. Grepet, C. Jouvray, Model-based security and
dependability patterns in RCES: the TERESA approach, in: 1st International
Workshop on Security and Dependability for Resource Constrained Em-
bedded Systems, SD4RCES, 2010.

[14] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language, in: Center for
Environmental Structure Series, vol. 2, Oxford University Press, New York, NY,
1977.

[15] A. Ziani, B. Hamid, S. Trujillo, Towards a unified meta-model for resources-
constrained embedded systems, in: 37th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), IEEE, 2011, pp. 485–492.

[16] B. Hamid, S. Gurgens, C. Jouvray, N. Desnos, Enforcing S&D pattern design in
RCES with modeling and formal approaches, in: J. Whittle (Ed.), ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, MODELS, Vol. 6981, Springer, 2011, pp. 319–333.

[17] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy
of dependable and secure computing, IEEE Trans. Dependable Secure Comput.
1 (2004) 11–33.

[18] D. Riehle, H. Züllighoven, Understanding and using patterns in software
development, TAPOS 2 (1) (1996) 3–13.

[19] G. Buschmann, R.Meunier, H. Rohnert, P. Sommerlad,M. Stal, Pattern-Oriented
Software Architecture: A Systemof Patterns, Vol. 1, JohnWiley and Sons, 1996.

[20] B. Hamid, A. Ziani, J. Geisel, Towards tool support for pattern-based secure and
dependable systems development, in: ACadeMics Tooling with Eclipse, ACME,
Montpellier, France, ACM DL, 2013, pp. 1–6.

[21] R.B. France, J.M. Bieman, B.H.C. Cheng, Repository for model driven develop-
ment, ReMoDD, in: MoDELS Workshops’06, 2006, pp. 311–317.

[22] C. Mayr, U. Zdun, S. Dustdar, Reusable architectural decision model for model
and metadata repositories, in: FMCO, 2008, pp. 1–20.

[23] ebXML: Oasis Registry Services Specification v2.5, 2003.

[24] freebXML: Oasis ebxml registry reference implementation project, 2007.
http://ebxmlrr.sourceforge.net/.

[25] N. Milanovic, R.-D. Kutsche, T. Baum, M. Cartsburg, H. Elmasgünes, M.
Pohl, J. Widiker, Model&Metamodel, Metadata and Document Repository for
Software and Data Integration, in: MoDELS, 2008, pp. 416–430.

[26] D. Lucrédio, F. de Mattos, P. Renata, J. Whittle, MOOGLE: A model search
engine, in: MoDELS, Springer, 2008, pp. 296–310.

[27] T. Holmes, U. Zdun, S. Dustdar, MORSE: A model-aware service environment,
2009.

[28] B. Bislimovska, A. Bozzon, M. Brambilla, P. Fraternali, Graph-based search over
web application model repositories, in: ICWE, Springer, 2011, pp. 90–104.

[29] Z. Yan, R.M. Dijkman, P. Grefen, Business process model repositories—
framework and survey, Inf. Softw. Technol. 54 (4) (2012) 380–395.

[30] C. Sapia, M. Blaschka, G. Höfling, GraMMi: Using a standard repository man-
agement system to build a generic graphical modeling tool, in: Proceedings
of the 33rd Hawaii International Conference on System Sciences- Volume 8—
Volume 8, HICSS’00, IEEE Computer Society, 2000, p. 8058.

[31] H.B. Hadji, K. Su-Kyoung, C. Ho-Jin, A Representation Model for Reusable
Assets to Support User Context, in: Service-Oriented System Engineering,
2008. SOSE’08. IEEE International Symposium on, 2008, pp. 91–96.

[32] Apache Software Foundation, Ivy, 2015. http://ant.apache.org/ivy/.

[33] Apache Software Foundation, Maven, 2015. https://maven.apache.org/what-
is-maven.html.

[34] GRADLE INC., Gradle, 2015. https://gradle.org/why/robust-dependency-
management/.

[35] Bundler Core Team, Bundler, 2015. http://bundler.io/.

[36] D.L. Berre, P. Rapicault, Dependency management for the eclipse ecosystem:
eclipse p2, metadata and resolution, in: Proceedings of the 1st International
Workshop on Open Component Ecosystems, ACM, 2009, pp. 21–30.

[37] C. Hein, T. Ritter, M.Wagner,Model-driven tool integrationwithmodelbus, in:
Workshop Future Trends of Model- Driven Development, 2009, pp. 50–52.

[38] S. Gürgens, P. Ochsenschläger, C. Rudolph, On a formal framework for security
properties, Int. Comput. Stand. Interface J. (CSI) 27 (5) (2005) 457–466.
Special issue on formal methods, techniques and tools for secure and reliable
applications.

[39] B. Hamid, S. Gürgens, A. Fuchs, Security patterns modeling and formalization
for pattern-based development of secure software systems, Innov. Syst. Softw.
Eng. 11 (3) (2015) 1–32. http://dx.doi.org/10.1007/s11334-015-0259-1.

[40] J. Eichler, A. Fuchs, N. Lincke, Supporting security engineering at design
time with adequate tooling, in: 2012 IEEE 15th International Conference on
Computational Science and Engineering, CSE, 2012, pp. 194–201.

Brahim Hamid is an associate professor at the University
of Toulouse Jean-Jaurés and he is a member of the IRIT-
MACAO team. He got his Ph.D. degree in 2007 in the area
of dependability in distributed computing systems from
the University of Bordeaux (France). In addition, he has an
M.Sc. in Theoretical Computer Science that provides him
with background on mathematical, logic and formal con-
cepts. He has been an assistant professor (ATER) at EN-
SEIRB (Bordeaux, France), and amember of LaBRI (France).
Then heworked as a post-doc in themodeling group at the
CEA-Saclay List (France). He was a visiting professor at the

university of Concordia (August 2011), at the university of Florida (September 2014)
and at the university of Vienna (April 2015). His main research topics are software
languages engineering, at both the foundations and application level, particularly
for resource constrained systems. Heworks on security, dependability, software ar-
chitectures, formalization, validation and verification as well as supporting recon-
figuration. Furthermore, he is an expert in model-driven development approaches

both in research and teaching. Emphasis of hiswork lies on the development of tools
to model and to analyze secure and dependable software architecture of critical in-
frastructures as railway and metrology systems. He has participated in a number
of national and European research projects. In particular, he has led successfully
the IRIT effort on the TERESA FP7 European project, and several national projects.
Brahim Hamid is author or co-author of over 50 internationally reviewed publica-
tions, mostly on software engineering and IT security and dependability, and he has
co-organized several internationalworkshops (DANCE, SD4RCES). He serves as a re-
viewer in numerous leading journals of the software engineering domain (SOSYM,
ADHOC networks, JSA, JSS, JSME, SPE, DIST, etc.), and as a member of various inter-
national conference programcommittees (SERE, EUROPLOP, SEAA, SERENE, etc.). He
has been invited to do expertise work for various organizations: FWF, FIT (Austria)
and for various national research programs (ANR, CIR, etc.). He is also participat-
ing in several working groups and involved in several teaching activities related to
security and system engineering, as well as engaging technology transfer to other
organizations and other bodies or agencies, and more generally through consulting
and training activities.

