
HAL Id: hal-01671350
https://hal.science/hal-01671350v1

Submitted on 22 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Branch Resolution based on Combined Static
Analyses

Wei-Tsun Sun, Hugues Cassé

To cite this version:
Wei-Tsun Sun, Hugues Cassé. Dynamic Branch Resolution based on Combined Static Analyses. 16th
International Workshop on Worst-Case Execution Time Analysis (WCET 2016) in conjunction with
ECRTS, Jul 2016, Toulouse, France. pp. 1-10. �hal-01671350�

https://hal.science/hal-01671350v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18774

The contribution was presented at WCET 2016 :
https://wcet2016.compute.dtu.dk/

To cite this version : Sun, Wei-Tsun and Cassé, Hugues Dynamic Branch
Resolution based on Combined Static Analyses. (2016) In: 16th
International Workshop on Worst-Case Execution Time Analysis
(WCET 2016) in conjunction with ECRTS, 5 July 2016 (Toulouse,

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Dynamic Branch Resolution Based on Combined

Static Analyses∗

Wei-Tsun Sun1 and Hugues Cassé2

1 IRIT, University of Toulouse, Toulouse, France

wsun@irit.fr

2 IRIT, University of Toulouse, Toulouse, France

casse@irit.fr

Abstract

Static analysis requires the full knowledge of the overall program structure. The structure of a

program can be represented by a Control Flow Graph (cfg) where vertices are basic blocks (bb)

and edges represent the control flow between the bb. To construct a full cfg, all the bb as well

as all of their possible targets addresses must be found. In this paper, we present a method to

resolve dynamic branches, that identifies the target addresses of bb created due to the switch-

cases and calls on function pointers. We also implemented a slicing method to speed up the

overall analysis which makes our approach applicable on large and realistic real-time programs.

Keywords and phrases WCET, static analysis, dynamic branch, assembly, machine language

Digital Object Identifier 10.4230/OASIcs.WCET.2016.8

1 Introduction

The verification of critical real-time system is utterly important to ensure safety and to avoid

catastrophic failures. An aspect of this verification is related to check the schedulability of

the real-time programs, which requires computing the Worst Case Execution Time (wcet).

To be precise, the wcet computation needs to be performed at machine code level to cope

with all details of the work of the underlying microprocessor and memory system.

Implicit Path Enumeration Technique (ipet), one of the most effective approach to

compute the wcet by static analysis, consists in three phases: (a) the execution path

analysis, (b) the block timing analysis, and (c) the wcet estimation as a maximisation of

an object function modelled as an Integer Linear Programming system (ilp). Usually the

execution paths are represented synthetically by a Control Flow Graph (cfg) where vertices

are basic blocks (bb)1 and edges represent the control flow between the bb. This phase is

crucial because, if some paths are missing, the obtained wcet will not be sound.

Yet, working at the machine-code level means that the analyser has to retrieve the control

flow from semantically-poor instructions, as the results of translating the rich high-level

language structures and of the optimisations performed by the compiler to speed up the

program. The cfg may be viewed as a kind of canonical representation of the execution

path independent of the high-level language. Yet, some paths are harder to recover. Usually,

∗ This work is supported by the french research foundation (ANR) as part of the W-SEPT project
(ANR-12-INSE-0001).

1 A BB is a sequence of instructions which are only started at the first instruction and which accepts only
the last instruction as a control instruction.

© Wei-Tsun Sun and Hugues Cassé;

licensed under Creative Commons License CC-BY

16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016).

the execution paths are determined by executing control instructions (such as branches) that

can be executed conditionally or unconditionally. Different execution paths are the result

from control instructions that modify the program counter of the microprocessor to execute

one part of the code (e.g. the branch is taken) or another. Most of these instructions are

static: the target address is obtained as a combination of the instruction program counter

and of the literal operand (e.g. a constant) found in the instruction word (therefore known

at analysis time). Such control instructions are used to translate selection or loop structures.

In the opposite, the target addresses of some high-level structures are results of complex

computations based (a) on the current state of the program or/and (b) on the data stored in

memory. For example, the C language supports the concept of function pointer meaning

that the control flow depends on the data flow of the program and the program points that

set this pointer. Another construct of the C language, the switch-case statement, may be

translated and optimized as a branch whose possible target addresses are stored in a look-up

table: an index is computed from the case value and used to get the corresponding index of

the table. We call this type of control instruction, dynamic: to be analysed, they require

data-flow information that is usually obtained, in turn, from an analysis of the cfg.

The contributions and the organisation of the paper

This paper proposes a new approach to determine the possible target(s) of dynamic control-

flow instructions based on the combination of different types of analyses, the Circular-Linear

Progression (clp) [5, 11] and the k-set analyses. We are also introducing LightSlicing, a

policy of program slicing which does not require address analysis for both simplicity and

better performances. LightSlicing works on the machine code and (1) is relatively cheap in

computation time and (2) remains precise enough to slice out the program parts that are not

involved in the calculation of the control flow targets. Hence, the reduction of the analysis

time for both small benchmarks and large realistic programs. We believe our solution is

well-adapted to industrial applications.

The remaining of the article is organized as follows: in Section 2 we look into the problem

of dynamic branches and expose our combined analyses approach. Section 3 shows our

approach for the fast program slicing to speed-up the analysis. The experimentation and the

related works are presented, respectively, in Section 4 and 5. Finally, Section 6 concludes the

paper and also proposes possible extensions of our approach.

2 Dynamic Branch Resolution

This section presents the combined analysis used to resolve the targets of dynamic branch.

2.1 Path Analysis

The path analysis aims to provide a representation of the execution paths of the program.

In this paper, we focus on the cfg representation, a graph G = (V, E, ǫ) where V is the set

of bb, the set E = V × V is the set of edges, and the vertex ǫ ∈ V is the entry of the graph.

G is built from the binary representation of the program by following the instruction flow

from known entry points that may be the starting point of the program or function entries

provided in the symbol table of the binary file. Usually, it is not feasible to sequentially

decode the code segments because (a) they may also contains data and (b) some instruction

sets have variable-size instruction words.

Algorithm 1 cfg Building.

1: V ← {ǫ}; E ← ∅; wl ← {(ǫ, i0)}

2: while wl Ó= ∅ do

3: (v, i) ← pop(wl)

4: B ← [i]

5: while ¬ is_control(i) do ⊲ if the current instruction is not a control instruction

6: i ← next(i); B ← B @ [i] ⊲ append the instruction to the BB

7: end while

8: if B /∈ V then

9: V ← V ∪ {B} ⊲ collect the current BB

10: end if

11: E ← E ∪ {(v, B)}; wl ← wl ∪ {(B, target(i))} ⊲ creating the edges between BBs

12: if is_conditional(i) then ⊲ for conditional instructions, such as BEQ

13: wl ← wl ∪ {(B, next(i)} ⊲ the next instruction will be used to start a new BB

14: end if

15: end while

Algorithm 1 gives an overview of how to build a cfg. In brief, the sets V and E are

built incrementally from the synthetic initial bb, ǫ and from the initial instruction i0. A bb

is obtained from continuously collecting the current instruction i until reaching a control

instruction. Depending on the nature of this instruction (conditional or not), the next

instruction and/or the target instruction of the branch are added to the working list wl.

When wl is empty, all paths have been traversed and the cfg is complete.

Functions is_control, is_conditional, and next are instruction-set dependent but can

be easily derived from the instruction words, which also applies for the targets of static

branches. However, the target may also be resulted from a computation involving the state

of the program: such an instruction is called a dynamic branch. Having dynamic branches

leads to an incomplete cfg. To compute its possible targets, an analysis of the possible

program state is required.

2.2 The Flow of the Dynamic Branching Analysis

Let’s take the example of Fig 1 that implements a switch-case statement. The actual

computation of the branch address is performed by instructions at addresses 0x2e260 to

0x2e268. r3 is loaded from a byte in memory; if it is not greater than 3 (comparison at

0x2e264), it is used to compute the address pc + r3 × 4 that points to an entry of the

subsequent table that contains the actual targets of the branch. Hence, (a) the calculation of

the possible targets of dynamic control instruction 0x2e268 is feasible and (b) we need to use

a value analysis to evaluate its components. Another outcome of this example is that we

need to apply value analyses to partial cfg and we need also to repeat the analysis until

we get the whole cfg: on the first path, the cfg until the dynamic control instruction is

obtained and values for pc and r3 are estimated and enable the calculation of dynamic control

instruction targets; in the second path, the cfg is extended and, possibly, new dynamic

control instruction are discovered and so on.

In our approach, the flow to identify the targets of dynamic branches consists of the

following steps: (1) First we perform a clp analysis [5, 11] to obtain the possible values

of the registers and the memory addresses. The range of the represented values is over-

approximated, i.e. this includes both of all possible values (values which may present during

Addrs Content Assembly (ARM)

1 2e250 e59f2050 ldr r2 , [pc , #80] ; load for r2

2 2e254 e51b3008 ldr r3 , [fp , #-8] ; load for r3

3 2e258 e0823003 add r2 , r3 , r2 ; r2 used by some cases

4 2e25c e59f3264 ldr r3 , [pc , #612]

5 2e260 e5d33000 ldrb r3 , [r3]

6 2e264 e3530003 cmp r3 , #3

7 2e268 979 ff103 ldrls pc , [pc , r3 , lsl #2]

8 2e26c ea000075 b 2e448 ; address of the default case

9 2e270 0002 e280 ; target address for the 1st case

10 2e274 0002 e2dc ; target address for the 2nd case

11 2e278 0002 e364 ; target address for the 3rd case

12 2e27c 0002 e3c4 ; target address for the 4th case

13 2e280 e59f3254 ldr r3 , [pc , #596] ; the first case

Figure 1 Example of the switch code in ARM’s assembly.

the program execution) and spurious values (which are included due to the analysis because of

the performed abstraction). (2) A k-set analysis is then applied to gather the concrete values

of the registers and the memory addresses. (3) The dynamic branch resolution is carried

out to find the targets of the control instructions. If new targets of a control instruction are

found, the cfg of the program will be updated with newly added code segments and the

analysis will restart from the step (1). The analysis terminates once reached a fix-point such

that no more new targets are added.

2.3 CLP analysis and its drawbacks

The clp analysis makes use of abstract interpretation [6] with the trade-off of (1) having the

better performance, especially when performing analysis on loops, and (2) the accuracies of

the analysis, for example the strategy for performing widening.

A range of integers can be represented in the format of clp, and we call the represented

range a clp value. To differentiate, we use sub-values to call the integers within a clp value.

Each clp value is a triple (b, δ, m) representing set {b + δi | 0 ≤ i ≤ m}: b is the starting

integer, δ the amount of difference between integers and m the number of integers within a

clp representation. For example, to represent a set of integers 2, 4, 10 in clp, we will have

base = 2, delta = 2, and multiple = 5, such that the clp value will cover the set 2, 4, 6, 8,

10. Therefore, one may consider that in the domain of clp, the set of sub-values is presented

in an over-sampling manner, i.e. in order to include all the possible (in this case 2, 4, and

10) values, some spurious values (6 and 8 here) are included.

The over-sampling behaviour of clp is for the sake of soundness but this can also bring

unwanted behaviours in the analysis. We use Figure 1 to demonstrate this. Figure 1 contains

the ARM instructions typically generated from a switch case and perform as the follows: (1)

storing the result of some calculation to the register r2 (lines 1 to 3), which will be used

later; (2) lines 4 and 5 provides the switch-index number used to calculate the target address

of the switch-cases; (3) the values of the switch-index, infers as the number of the possible

targets, are limited by line 6 so that line 7 will only execute if the switch-index falls in the

desired range; and (4) if none of the case is chosen, the default case falls through (line 8). By

looking at the lines 6 and 7, we know that the index (stored in r3) falls between the range 0

to 3. The target addresses to load is calculated as pc + r3 × 4, which are stored between the

address 0x2e270 to 0x2e27c (lines 9 to 12). The clp representation of these target addresses

is thereby of base = 0x2e280, delta = 0x4, and multiple = 0x51. This indicates that there

could be 82 (number of the multiple plus one) potential targets which is a huge difference

from the actual amount of the possible targets (which is 4).

2.4 k-set analysis

To overcome the drawback of clp abstraction, we use a k-set analysis [4]. In contrast with

the clp, the values in the k-set analysis are in the form of sets which size is bound to k

values. If we get a set bigger than k, it is approximated to ⊤ (any possible value): this

property avoids too long or endless analysis looping to reach a fix-point. The k-set analysis

is only slightly better than a constant propagation because it usually does not cope well with

most of variable behaviour (often linear): the analysis time would become excessively large.

Yet, the branch target addresses are not linear and to avoid the over-sampling problem, they

need to be stored as an explicit set and k-set is a good candidate to represent them.

Let Ŝ ⊆ 2N to be the set of k-set values that abstracts concrete value as set over N. The

abstraction, α : N → Ŝ is quite simple: ∀n ∈ N, α(n) = { n }. It is easy to extend a function

f : N → N to f̂ : Ŝ → Ŝ by just applying the concrete function f to each element of the

input set:

∀ a ∈ Ŝ, f̂(a) = { f(e) | e ∈ a} (1)

Likely, an abstraction of functions with an arity bigger than 1 may be built by a

Cartesian product. Yet, if the size of the resulting set is bigger than k, the resulting value is

approximated to ⊤ (the abstraction of any possible value). In the static analysis, in order to

reduce the number of paths to explore, we often use a join operator ⊔ to combine together

values when several paths of the cfg join. Its definition for k-set is given in Eq. 2: the set

union ∪ is mainly used while the resulting set size is lower or equal to k. Otherwise, the

result is ⊤.

∀ a, b ∈ S, a ⊔ b =

{
⊤ if |a ∪ b| > k

a ∪ b else
(2)

∀ a, b ∈ S, a ∇ b =

{
a if a = b

⊤ else
(3)

Finally, to speed up the convergence of paths containing loops, a widening operator

∇ : Ŝ × Ŝ → Ŝ is useful. As the usual k-set implementation exhibits very poor performances,

because of the number of generated values in a loop context, we use a stringent implementation

of ∇ in Eq. 3: if both operands are the same the result is this value, else the ⊤ value is

returned. This definition works well with purpose of our k-set analysis: the code addresses

are rarely, maybe never, the result of a computation and even less the result of a loop

computation. They are either read from the memory or computed from the pc register.

Therefore, we want to get rid as soon as possible of values which are not instruction addresses.

However, this widening operator quickly leads to a lot of values approximated to ⊤.

Usually, this is not an issue as we are not interested by most of computed data computations

except when this value is the address handled by a store instruction: in this case, a ⊤ address

would touch the whole memory. This means that all information collected by the analysis

about the memory is scratched and lost. In turn, this would negatively impact the remaining

of the analysis. This is why the k-set analysis is useless alone: it is combined with another

more precise value analysis (like clp) such that, when an important value is required (address

to load from, address to store to) and approximated by ⊤ in k-set, the matching clp value

is used instead and this usually leads to a much more precise analysed value.

Applying this method to the example of Fig. 1, the instruction at 0x2e260 may produce,

for register r3, the ⊤ value for k-sets and (0, 1, 255) for clp. If the condition ls of the

comparison at 0x2e264 holds, r3 becomes {0, 1, 2, 3} for k-sets thanks to the clp value

(0, 1, 3). From this, the address accessed at instruction 0x2e268 is 0x2e270 + {0, 1, 2, 3} × 4

and results in {0x2e270, 0x2e274, 0x2e278, 0x2e26c}. These are the exact set of addresses

stored in the table used to translate the switch-case obtained by loading the words at the

addresses provided by the k-set value.

3 Dynamic Branch and Real-Time Application

The approach presented in the previous section is effective but expensive to apply to a

complete program. Therefore, we expose here a slicing method to speed up these analyses.

3.1 Analysis of the Whole Program

The functionality of real-time systems are often divided into tasks. The execution of the tasks

are scheduled statically in the event loop or dynamically with the help of a real-time operating

system. A task can be stand-alone, i.e. performing its functionality without depending on

the outcome of the other tasks. On the other hand, a task might require the results of the

others, through task communications [12]. The communication between the tasks relies on

mechanisms such as globally shared variables and pointers, where a task writes to a variable

and it is read by other tasks.

When analysing solely a task which reads from a globally shared variable, there will be

no assumption made to the value of such variable, i.e. the writes to the variable are outside

of the analysed task. Also, as stated in [7], to have a safe analysis (where all the possibilities

are considered) of the function pointers, it is required to perform the analysis on the program

as a whole. Indeed, a function pointer called in one task may be used by another task.

3.2 LightSlicing – a Smart and Effective Slicing Approach

To have safe results, tasks communicating with each other shall be analysed together. It

is obvious to see that the complexity of the analysis grows as the number of tasks grows.

Even though the amount of instructions to analyse grows, it can also be seen that some

codes/instructions do not have influence over the results of the analysis. In this case, the

technique program slicing [14] can be applied to remove the uninteresting codes. For example,

in Figure 1, the lines 1 to 3 (as well as lines 8 to 13) do not affect the outcome of the

branching, and they can be sliced away.

The problem now is that slicing a program is a costly operation in analysis time requiring

data flow analyses and several graph constructions and are even more time-consuming

operations applied to machine language. To be effective, the slicing time must not exceeds

the gain in analysis time of the dynamic control instructions. It already exists an approach

to perform fast slicing on machine code [10]. However, while the slicing is performed, the

working elements (registers and memory locations of interest) continue to grow even if their

content is no more relevant, which leads to keep unnecessary parts of the program. It is not

efficient enough to significantly reduce the program cfg size.

Algorithm 2 LightSlicing algorithm.

1: K ← I

2: wl ← {(v, USE(i)) / i ∈ I ∧ i ∈ v ∧ v ∈ V } ⊲ consider bb containing instructions of I

3: while wl Ó= ∅ do

4: (v, we) ← pop(wl)

5: WE(v) ← we

6: for all i ∈ reverse(v) do ⊲ examine instructions of bb in reverse order

7: if DEF (i) ∩ we Ó= ∅ then ⊲ if the instruction define a useful register

8: K ← K ∪ {i} ⊲ the instruction is kept

9: we ← we \ DEF (i) ∪ USE(i) ⊲ its used registers are now interesting

10: end if ⊲ yet its defined registers are no more interesting

11: if i = FIRST_INST (v) then ⊲ when reaching the first instruction

12: wl ← wl ∪ {(w, we ∪ WE(w)) | w ∈ pred(v) ∧ we \ WE(w) Ó= ∅}

13: end if ⊲ the predecessors are added to wl if the fixed-point is not reached

14: end for

15: end while

Hence, we introduce our slicing approach on binary code: the LightSlicing. It adapts the

conventional DEF and USE approach used to build DU- or UD-chains described in [8]. The

DEF and the USE give up a set of elements (i.e. registers and/or memory addresses) that

an instruction writes a value to and reads a value from, respectively. Conventional program

slicing based on this will start with a set of elements of interest, which we call working

elements, or we. During the process, the instructions inst that write to any of these elements,

donated by using the DEF(inst), will be kept. Then, the redefined element(s) are removed

from the working elements; while the required elements, i.e. the elements to read which are

obtained by using the USE(inst), are added to the working element. In general, identifying

the registers in the DEF and USE is straight-forward. In contrast, obtaining the memory

addresses can be complicated. For example, a memory address to read (or write) may be

stored in a register which value is decided at run-time. Therefore, the help of address analysis

is required. For a large program, to have a coherent result of the address analysis, the whole

program must be taken into account, which may lead to an expensive computation time. To

achieve better performance, LightSlicing does not require the address analysis: the whole

memory is considered as a single register: we loose in precision but hope to gain a lot in

speed. LightSlicing is applied just before each iteration of the dynamic branching resolution

to avoid unnecessary computations and hence the speed-up. The details of LightSlicing is

shown in Algorithm 2: the result is K, the set of instructions to keep while the initial set of

interesting instructions is I.

4 Experiments and Findings

We carried out the experiments over two sets of benchmarks: the Mälardalen benchmarks

[9], and the realistic industrial Engine Management System from Continental Corporation

(which consists of 7 tasks, 184 KLOC). The experiments were carried out on Intel i7-4810MQ

2.8 GHz with 32 GB of RAMs. Because we are mainly interested in the detection of the

unknown target addresses, due to the switch-cases and calls on function pointers, we only

experimented with cover, duff, and lcdnum from the Mälardalen benchmarks. The results of

the analysis times and speed-ups (due to applying LightSlicing) are shown in the Figure 2.

Since the examples from the Malardalen benchmarks are much smaller than the industrial

case, we multiply the analysis time with 1000 to make them visible in Figure 2. Because we

are interested in the impacts due to the application of the slicing, we performed the analyses

for three different cases: (a) the analysis without program slicing, (b) applying program

slicing with address analysis, and (c) the analysis with LightSlicing. We are able to resolve

all the dynamic branches of the Mälardalen benchmarks, but 92% for the industrial example.

It is mainly due to that the slicing of the industrial application makes irreducible loops that

are not completely handled by OTAWA framework, hence we can not perform the analysis

on the whole program but on its individual tasks.

Figure 2 shows the distributions of time taken by each analysis. For the analysis without

slicing, we use the real execution time (in micro-seconds) for the vertical axis. To compare

the performance for the analyses that take advantage of the slicing, we use the speed-up as

the vertical axis. The speed-up is calculated by Equations 4. When the value of the speed-up

is less than one, this means that the analysis runs slower than the non-slicing approach: we

use red lines in the figure to represent this boundary.

It shows that the analysing times decrease drastically, with the average of 7.30 times, and

the maximum of 33.37 times of speed-up, when applying LightSlicing. From (a) we can see

that the clp analysis takes the majority of the analysis times because it is more complex

than the k-set analysis. Since the address analysis used in (b) is implemented within the

clp analysis, which leads the clp analysis to take more proportion in the analysis. Because

the size of the cfgs are reduced, the time spent on k-set analysis is also reduced. We can

also observe that the slicing does not impact overall performance heavily. In (c), both of the

clp and k-set analyses are performed upon the reduced cfgs, as the result from applying

LightSlicing and hence the reduction of the analysis time. LightSlicing takes more proportion

in the analysis because it works on the full cfgs, however it reduces the analysis by large

amounts for all cases.

It also shows that having slicing with address analysis may have negative impact on

the performance for smaller examples, whose speed-ups are less than one (in the grey-out

area). This is because the overhead from the address analysis can not be compensated by

the time saved due to slicing. We avoid the address analysis in LightSlicing and obtained

the improvements up to 33.37 times faster. LightSlicing works particularly well on larger

codes which justifies its use in realistic and real-time applications.

Speedup =
Tnon-sliced

Tsliced

(4)

5 Related Works

Building cfgs from binaries is a recurrent issue for static analysis of binaries, for making

smart debugger or for reverse-engineering programs [15]. Theiling, in [13], proposes a multi-

instruction set generic framework to extract cfgs from binaries. He identifies the issues in

the determination of dynamic branches but no solution is provided.

Bardin et al. in [4] use variable-precision k-sets to compute the targets of dynamic branch

instructions. The k determination is variable for each handled value and adjusted according

to the need of precision, focused in this case, on the set of possible targets of a branch.

The experimentation on an industrial application (21 kloc of C) exhibits relatively long

computation times (in tens of minutes). Moreover, the authors do not address the problem

of memory loss due to imprecise k-set values.

In [3, 1, 2], Balakrishnan and Reps present a complete method to perform data flow

analysis, resolve dynamic branches and extend the cfg in an incremental way. The approach

Figure 2 Execution comparisons of the dynamic branching analyses.

is quite integrated and therefore relatively costly in analysis time. Yet, they use, as abstraction

of values, a form close to clp and hence suffers from the over-sampling problem.

In a recent article [7], Holsti et al. experiments and compares several common value

analyses (including clp) to resolve the target of dynamic control instructions. They identify

several shortcomings in these classic value analyses (particularly the over-sampling problem

of clp) and the requirement to analyse the whole application for function pointers resolution

inside tasks of a real-time system. None of the experimented analyses overtakes the others

but their limitations are highlighted.

6 Conclusion

In this paper, we have presented an approach to resolve dynamic control instructions. The

approach is based on a usual value analysis (clp in this case but this could be another value

analysis) used to help the k-set analysis. The k-set analysis enables us to precisely preserve

the possible target addresses of branch instructions. In the case of function pointers, it is

shown in [7] that a whole analysis of the application is needed. As this analysis may be

time-consuming, we propose a fast slicing method which works on the machine codes and

speed up the subsequent value analyses.

The experiments conducted on a subset of Mälardalen benchmarks and on a real industrial

application shows good but not perfect results. The main cause of unresolved dynamic

branches is the precision of the auxiliary value analysis (clp): in future works, we plan either

to improve our clp analysis, or to replace it with a better value analysis, or to combine

together several value analyses providing different aspects of the program values.

Then, although we have achieved very good analysis time, particularly on the real

industrial application, it remains some room for improvement: at each step of the analysis,

clp and k-set analyses are wholly re-computed while only a small part of the cfg is changed.

A good effect of Abstract Interpretation based analyses is that the detailed behaviors of each

instruction/bb are simplified and abstract states are used to present the effects constituted

by each part of the cfg. The changes in the abstract states propagate throughout the cfg

and new paths of propagation could be formed according to the evolution of the abstract

states. If the propagation of new paths does not contribute a lot of time to the overall

analysis, we expect substantial speed-ups from the incremental calculation of the clp and

the k-set analyses for the calculation of dynamic branches targets.

References

1 G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum. Compiler Construction: 14th

International Conference, CC 2005, chapter CodeSurfer/x86 – A Platform for Analyzing

x86 Executables, pages 250–254. Springer Berlin, 2005.

2 G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In Com-

piler Construction, volume 2985 of Lecture Notes in Computer Science, pages 2732–2733.

Springer Berlin, 2004.

3 G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum. Verified Software: Theories,

Tools, Experiments, chapter WYSINWYX: What You See Is Not What You eXecute, pages

202–213. Springer Berlin Heidelberg, 2008.

4 S. Bardin, P. Herrmann, and F. Védrine. Refinement-based CFG reconstruction from un-

structured programs, pages 54–69. Springer, 2011.

5 Hugues Cassé, Florian Birée, and Pascal Sainrat. Multi-architecture value analysis for

machine code. In 13th International Workshop on Worst-Case Execution Time Analysis,

WCET 2013, July 9, 2013, Paris, France, pages 42–52, 2013. doi:10.4230/OASIcs.WCET.

2013.42.

6 P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Conference Record of the

Fourth Annual ACM SIGPLAN-SIGACT, pages 238–252. ACM Press, 1977.

7 Niklas Holsti, Jan Gustafsson, Linus Källberg, and Björn Lisper. Analysing switch-case

code with abstract execution. In 15th International Workshop on Worst-Case Execution

Time Analysis, WCET 2015, July 7, 2015, Lund, Sweden, pages 85–94, 2015. doi:10.

4230/OASIcs.WCET.2015.85.

8 S. S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann, 1997.

9 WCET Project Mälardalen University. Benchmarks. URL: http://www.mrtc.mdh.se/

projects/wcet/benchmarks.html.

10 C. Sandberg, A. Ermedahl, J. Gustafsson, and B. Lisper. Faster WCET Flow Analysis

by Program Slicing. In Proceedings of the 2006 ACM SIGPLAN/SIGBED, pages 103–112.

ACM, 2006.

11 R. Sen and Y. N. Srikant. Executable Analysis with Circular Linear Progressions. Tech-

nical Report IISc-CSA-TR-2007-3, Computer Science and Automation Indian Institute of

Science, February 2007.

12 A. Silberschatz, P. B. Galvin, and G. Gagne. Operating system concepts, volume 4. Addison-

Wesley Reading, 1998.

13 H. Theiling. Extracting safe and precise control flow from binaries. In Proc. of 7th Confer-

ence on Real-Time Computing System and Applications, 2000.

14 M. Weiser. Program slicing. In Proceedings of the 5th International Conference on Software

Engineering, pages 439–449. IEEE Press, 1981.

15 W. Yin, L. Jiang, Q. Yin, L. Zhou, and J. Li. A control flow graph reconstruction method

from binaries based on XML. In Computer Science-Technology and Applications, 2009.

IFCSTA’09. International Forum on, volume 2, pages 226–229, Dec 2009.

