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Abstract 

 

It is not known how long it takes from the initial neoplastic transformation of a cell to the 

detection of a tumor, which would be valuable for understanding tumor growth dynamics. 

Meningiomas show a broad histological, genetic and clinical spectrum, are usually benign and 

considered slowly growing. There is an intense debate regarding their age and growth pattern 

and when meningiomas should be resected. We have assessed the age and growth dynamics 

of 14 patients with meningiomas (WHO grade I: n = 6 with meningothelial and n = 6 with 

fibrous subtype, as well as n = 2 atypical WHO grade II meningiomas) by combining 

retrospective birth-dating of cells by analyzing incorporation of nuclear-bomb-test-derived 

14C, analysis of cell proliferation, cell density, MRI imaging and mathematical modeling. We 

provide an integrated model of the growth dynamics of benign meningiomas. The mean age 

of WHO grade I meningiomas was 22.1 ± 6.5 years, whereas atypical WHO grade II 

meningiomas originated 1.5 ± 0.1 years prior to surgery (p < 0.01). We conclude that WHO 

grade I meningiomas are very slowly growing brain tumors, which are resected in average 

two decades after time of origination.   

 

Key Words: Radiocarbon; C14; Meningioma; tumor growth  

 

Highlights 

 

- The age of meningiomas has been difficult to study and is not understood, however age and 

growth dynamics may affect clinical decision making regarding surgery  

- We determined the age and dynamics of meningioma tumor cells using 14C retrospective 

birth dating strategy together with MR imaging and histological parameters 
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- We demonstrate that the average time between initial tumorous cell transformation and 

detection with resection is 26.3 years in fibrous and years in 17.8 meningothelial 

meningiomas, a finding that may help predict future tumor growth  

 

Research in context 

 

Meningiomas are usually benign, slowly growing and frequently occurring brain tumors that 

are detected incidentally upon imaging or because of causing symptoms. Many tumors remain 

stable, while others keep growing, why there is a debate whether or not meningiomas need 

surgical resection upon diagnosis. Specifically, if tumors grow in difficultly accessible brain 

areas, it would be clinically valuable to predict their age and growth dynamics. The 14C 

(radiocarbon) retrospective birth dating technique, an approach taking advantage of the 

above-ground atomic bomb tests during the Cold War, harbors the unique feature of dating 

the tumor age, thus providing insights into tumor origination and growth. Using this technique 

we here establish the age of meningiomas and provide an integrated model – using also MRI 

and histological parameters – to predict future growth of detected meningiomas, which may 

help in clinical decision making whether to resect the tumor. 
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Introduction 

 

It is not known how long it takes from the initial neoplastic transformation of a cell to the 

detection of a tumor, which would be valuable for understanding tumor growth dynamics and 

to establish at what stage therapy may be needed. Along with gliomas, meningiomas are the 

most frequent CNS tumors with an annual incidence of about 4-5/100.000 individuals 

(Wiemels et al., 2010, Whittle et al., 2004). Meningiomas arise from arachnoidal cap cells and 

show a broad histological, genetical and clinicopathological spectrum (Riemenschneider et 

al., 2006). The dignity of the various subtypes is graded according to the World Health 

Organization (WHO) classification, the vast majority of meningiomas (80%) being benign, 

slowly growing, WHO grade I tumors (Louis et al., 2016, Riemenschneider et al., 2006). 

There has been an intensive debate regarding the age of meningiomas (Braunstein and Vick, 

1997, Herscovici et al., 2004, Nakasu et al., 2011). Estimates were often based on consecutive 

MRI imaging of patients with incidental and recurrent meninigiomas (Nakasu et al., 2011, 

Nakamura et al., 2003, Herscovici et al., 2004, Nakamura et al., 2005). However, it has been 

difficult to establish their growth pattern and to decide when meningiomas should be resected 

(Braunstein and Vick, 1997, Herscovici et al., 2004, Nakasu et al., 2011).  

 

We used retrospective birth dating (Spalding et al., 2005) to assess the age of meningioma 

cells. This strategy takes advantage of the dramatically elevated levels of the isotope 14C 

caused by above ground nuclear bomb testing during the Cold War (De Vries, 1958, Nydal 

and Lövseth, 1965, Levin and Kromer, 2004). 14C together with oxygen forms 14CO2 and 

enters the food chain through plant photosynthesis such that the 14C concentration in the 

human body closely corresponds to that in the atmosphere at any given time (Libby et al., 

1964, Harkness, 1972). During cell division 14C is integrated into genomic DNA, resulting in 

a stable date mark (Spalding et al., 2005). We have previously used this technique to establish 
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the age and cell renewal rates of various human cell types including neurons, 

oligodendrocytes, heart muscle and fat cells (Bergmann et al., 2009, Huttner et al., 2014, 

Yeung et al., 2014, Bergmann et al., 2015b, Bergmann et al., 2015a, Spalding et al., 2013, 

Spalding et al., 2008).  

 

We have assessed the age and growth dynamics of meningiomas by combining 14C-based 

retrospective birth dating, analysis of cell proliferation, cell density, MRI imaging and 

mathematical modeling. We provide an integrated model of the growth dynamics of benign 

meningioma and show that growth curve estimation models may benefit from incorporating 

14C data to predict future progress and facilitate the decision of whether to remove a detected 

meningioma. 
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Material and methods 

 

Patient selection and tumor sample preparation 

All investigated samples were taken from tumor tissue bio-banks of the Departments of 

Neurosurgery of the University Hospitals Hannover and Erlangen, Germany. Upon 

meningioma surgery routine sample handling included (i) instantaneous section analysis, (ii) 

paraffin embedding of the gross of the sample for subsequent neuropathological 

characterization as well as (iii) snap freezing a representative tumor part (roughly 0.5 x 0.5 x 

0.5 cm) and unfixed storage of this tumor aliquot at -80°C immediately after surgery. All 

subjects gave written informed consent and the study was approved the local institutional 

review boards (Ethics Committee Approval No: 104_13B).  

 

Clinical characteristics and imaging 

Demographic and baseline clinical information were collected by screening the institutional 

electronic databases and by reviewing the patients´ medical charts. All patients underwent 

MR imaging and examinations were reviewed on a PACS workstation using FDA-approved 

software (syngo.via, MR Onco Brain, Siemens, Erlangen, Germany). Evaluation of each 

examination was performed on contrast-enhanced T1-weighted images with a slice thickness 

of 5 mm or less. For volume measurement, the semi-automated lesion segmentation of the 

software based on signal intensity values was used. The appropriate lesion detection was 

approved by two neuroradiologists in consensus and the volume was calculated by the 

software for each examination and time point. 

 

Histology and immunohistochemistry 

Initial histological analysis for verification of tumor type and WHO classification (Louis et 

al., 2016) was performed by local experienced neuropathologists on formalin embedded tissue 
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pieces (frozen tumor tissue samples, 20 µm microtome sectioning and fixed in 4% 

formaldehyde buffered in PBS for 30 min). Standard HE staining confirmed meningothelial 

and fibrous/fibromatous tumor types. Sections were incubated with the primary antibody 

overnight at 4°C: mouse Ki-67 (Mib1 monoclonal, 1:200, Thermo Fischer Scientific), 

phospho-Histone H3 (rabbit, Abcam, 1:1000) and visualized with the matching secondary 

antibody conjugated to Alexa 488, 546 or 647 (Invitrogen, 1:500). Apoptosis was detected 

with TUNEL staining (Click-It Alexa-Flour, Invitrogen). The indices for positive cells labeled 

with, Ki-67, phospho-Histone H3 (p-HH3), and TUNEL respectively, were calculated 

referring to overall DAPI-positive nuclei and averaged on 5 arbitrarily chosen high power 

fields (400 x magnification) (Riemenschneider et al., 2006, Vranic et al., 2010, Louis et al., 

2016). Immunohistochemistry was analyzed using a confocal microscope (LSM 710, Carl 

Zeiss Jena, Germany using ZEN software). 

 

Isolation of nuclei  

Tumor tissue samples were thawed at room temperature and homogenized in 10 ml lysis 

buffer (0.32 M sucrose, 5 mM CaCl2, 3 mM magnesium acetate, 0.1 mM EDTA, 10 mM Tris-

HCl [pH 8.0] and 1 mM DTT) using a T25-digital-Ultra-Turrax® disperser (www.ika.com). 

Samples were then diluted with additional 190 ml lysis buffer, dounce homogenized, filtered 

twice in 100 µm and 60 µm Nylon Net Filters (Millipore), equally distributed into 4 tubes 

with 50 ml and subsequently centrifuged (700 x g for 10 min at 4° C). The pellets of each of 

the four tubes were resuspended in 2.5 ml lysis buffer, pooled and added to 20 ml of sucrose 

solution (1.7 M sucrose, 3 mM magnesium acetate, 1 mM DTT, and 10 mM Tris-HCl [pH 

8.0]). As described previously (Bergmann et al., 2012, Huttner et al., 2014), the samples were 

subjected to a gradient centrifugation after layered onto a cushion of 10 ml sucrose solution 

(36,500 × g for 2.20 hr at 4°C). The isolated nuclei were resuspended in 10 ml nuclei storage 

buffer (NSB; 10 mM Tris [pH 7.2], 2 mM MgCl2, 70 mM KCl, and 15% sucrose) and again 
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centrifuged for 10 min at 700 x g at 4° C. The resulting pellet was transferred to glassware for 

consecutive DNA extraction. 

 

Extraction of DNA  

As published earlier (Bergmann et al., 2012, Huttner et al., 2014), DNA extraction 

experiments were carried out in a clean room (ISO8) to prevent any carbon contamination. All 

used instruments and glassware were prebaked at 450°C for 4 hr. DNA isolation was 

performed according to (Bergmann et al., 2012, Huttner et al., 2014); briefly summarized 

here: to each sample of collected nuclei 500 µl of DNA lysis buffer (100 mM Tris [pH 8.0], 

200 mM NaCl, 1% SDS, and 5 mM EDTA) and 6 μl Proteinase K (20 mg/ml) were added and 

incubated overnight at 65°C. Three µl RNase cocktail (Ambion) was added and incubated at 

65°C for 45 min. We added half of the existing volume of 5 M NaCl solution, vortexed for 15 

sec and the solution was centrifuged for 3 min at 13,000 rpm for 3 min. The supernatant 

containing the DNA was transferred to a 12 ml glass vial. Three times the volume of absolute 

ethanol was added, and the glass vial was inverted several times to precipitate the DNA. The 

DNA precipitate was washed three times in DNA washing solution (70% Ethanol [v/v] and 

0.5 M NaCl) and dried out overnight at 65°C. Finally, 500 μl DNase/RNAase free water 

(GIBCO/Invitrogen) was added to the glassware allowing the crystallized DNA to be 

dissolved entirely during another 24 h incubation at 65°C. The DNA was quantified and DNA 

purity verified by UV spectroscopy (NanoDrop). 

 

Accelerator mass spectrometry (AMS)  

As described previously, all AMS analyses were performed blind to age and clinical 

information (Huttner et al., 2014). Purified DNA samples suspended in water were combusted 

to CO2, and reduced to graphite according to the procedures described previously (Spalding et 

al., 2013). 14C AMS measurements of graphitized samples were carried out at the Tandem 
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Accelerator Laboratory in Uppsala, Sweden using a 5 MV Pelletron tandem accelerator. 14C 

measurement results and carbon background subtraction are reported as described earlier 

(Spalding et al., 2013, Salehpour et al., 2013, Salehpour et al., 2015). Age calibration of 14C 

concentrations was performed using the software CALIbomb 

(http://calib.qub.ac.uk/CALIBomb) with the following parameters: smoothing in years, 1 

year; resolution, 0.2; 14C calibration, two sigma. 

 

Interpretation of 14C analysis and mathematical modeling of growth dynamics 

To estimate the age of the tumor in each patient a mathematical model was established that 

described the proliferation and aging of a given cell population. According to the Gompertz 

law, the tumor size follows a sigmoid curve: growth is initially exponential and slows down 

as the tumor size approaches a maximal value. The Gompertz law was shown to reproduce 

well the growth dynamics in low grade meningiomas (Nakamura et al., 2003). During growth 

the age of tumor cells is tracked by the age-structure of the equation (see supplementary 

methods for details). We assumed that newborn cells were aged zero and that mother cells 

retained their age at division. Estimates were based on two experimentally measured 

quantities for each patient: the tumor volume (one or two time points) and the average age of 

the tumor cells. Using the model and available neuropathological data, we estimated the 

values of three parameters for each patient: a proliferation coefficient describing how fast the 

tumor grows initially, a carrying capacity describing the maximal size the tumor can take, and 

the time since the beginning of tumor development (the time since the tumor had a volume 

corresponding to one cell). For patients with only one tumor volume measurement, the model 

was complemented with published tumor volume growth data (Nakamura et al., 2003). For 

each patient, the parameters were estimated using a least-square method that minimizes the 

difference between the observations and the model predictions (Sen and Srivastava, 1990).  

 

ACCEPTED MANUSCRIPT

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=08966273&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fcalib.qub.ac.uk%252FCALIBomb


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

10 
 

Results 

 

14C-based retrospective birth dating determines the average age of meningioma cells 

We included a total of 14 patients with surgically resected meningiomas in the study 

(supplementary Table 1), including benign World Health Organization (WHO) grade I 

(meningothelial, n = 6, and fibrous, n = 6) and atypical WHO grade II (n = 2) tumors. Five 

patients with meningiomas were monitored by serial MR imaging and underwent surgery 

motivated by evidence of tumor growth. The remaining 9 patients were de-novo diagnosed 

meningioma patients who were clinically symptomatic and were subjected only once to MR 

imaging prior to surgery. 

  

We measured the average genomic 14C concentrations of all cells constituting the meningioma 

by accelerator mass spectrometry (Fig. 1A-C). The period between time of surgery and 

measured averaged 14C-cell-age of each meningioma is shown in Fig. 1D. The average age of 

all cells within WHO grade I meningiomas dated back 2.3 - 9.5 years prior to surgery 

providing evidence of a moderate tumor cell turnover. In contrast, the 14C concentration of the 

WHO grade II meningiomas closely corresponded to the atmospheric 14C levels of the 

calendar years of surgery, indicating a high cell turnover. Genomic 14C concentrations of 

cortical and cerebellar neurons of individuals who did not undergo meningioma surgery but 

who were born in similar years to the respective meningioma patients were not different from 

atmospheric 14C values at birth demonstrating no postnatal cellular turnover of these 

populations (supplementary Fig. 1) (Bergmann et al., 2012, Huttner et al., 2014). 

 

Mathematical modelling to explore meningioma growth dynamics  

To gain further information about the proliferation kinetics, we determined the proportion of 

cells in cycle by Ki-67 labelling, and of mitotic cells by phospho-Histone H3 (p-HH3) 
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labeling. This revealed a range of Ki-67 frequency between 0.3 % - 2.4 %, and of p-HH3 

frequency between 0.002 % - 0.1 % in WHO grade I. WHO grade II tumors showed higher 

frequencies of Ki-67 between 7.1% - 12%, and p-HH3 between 0.4 % - 0.8 %. In line with the 

pathological definition of low-grade meningiomas (Riemenschneider et al., 2006), we did not 

find any evidence for apoptosis (data not shown). The mean tumor cell density in WHO grade 

I tumors was 5900 ± 750 1/mm3 and ranged between 3700 – 4900 1/mm3 in atypical WHO 

grade II tumors. In addition, when comparing the cell density in meningothelial versus fibrous 

subtypes we did not observe any significant difference (meningothelial: 5560 ± 437 1/mm3 vs. 

fibrous: 6001 ± 101 1/mm3; p = 0.611).   

 

Retrospective 14C dating allowed establishing the average age of all cells within the 

meningioma (Fig. 1). Due to tumor expansion the average cell age, however, does not reflect 

the beginning of meningioma growth, but only the age of the cells present at the time of 

analysis. To estimate the time of the initial cell transformation and onset of the meningioma in 

each patient, we applied a mathematical model consisting of an age-structured partial 

differential equation with Gompertz growth that tracks both the tumor size and the age of the 

cells (see supplementary methods for details). The model included the measured 14C data, the 

cell density and MRI volume measurements (5 patients with follow-up MR imaging, Fig. 2, 

and 9 patients with one MR imaging prior to surgery, supplementary Fig. 2).  

 

We predicted future growth dynamics of benign meningiomas by extrapolating the respective 

Gompertz growth function derived from the age-structured mathematical model (Fig. 3). 

According to our model 3 of 14 meningiomas were still in pre-exponential growth (lag phase) 

without having reached exponential growth at the time of surgery (Fig. 3A). Most 

meningiomas were in the exponential growth phase (n = 6) (Fig. 3B), and three already exited 

the exponential growth and started to plateau at the time of surgery (Fig. 3C). 
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The onset of meningioma growth  

The mathematical model allowed calculating the onset of meningioma growth, i.e. the time-

point of the first meningioma cell origination (Fig. 4). The mean age of WHO grade I 

meningiomas was 22.1 ± 6.5 SD years (ranging from 10.8 - 31.1 years), whereas atypical 

WHO grade II meningiomas originated 1.5 ± 0.1 SD years prior to surgery (t-test: p < 0.001) 

(Fig. 4A). There was no difference when comparing patients with symptomatic or 

asymptomatic meningiomas (symptomatic: 23.9 ± 5.1 SD years versus 18.3 ± 8.2 SD years in 

asymptomatic; t-test: p = 0.174). We observed a statistically significant difference in the age 

of meningiomas between patients with meningothelial versus fibrous meningioma 

(meningothelial: 17.8 ± 5.8 SD years versus 26.3 ± SD 4.0 years in fibrous meningiomas; t-

test: p = 0.015; Fig. 4B). Given the fact that (i) meningioma volumes at time of surgery were 

not different (meningothelial: 28.4 (IQR: 2.7 – 82.7) cm3 cc versus 29.8 (IQR: 6.3 – 57.5) cm3 

in fibrous meningiomas; p = 0.936), and (ii) there was no significant difference in 

proliferation rates (supplementary table 1), we conclude that fibrous meningiomas have 

slower growth rates compared to meningothelial variants. Overall, there were no significant 

correlations of meningioma age with age of patients (R = 0.17; p = 0.61), Ki-67 frequency 

(R=0.03; p=0.92) and p-HH3 frequency (R = 0.10; p=0.81; supplementary Fig. 3). 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

13 
 

Discussion 

 

In contrast to traditional strategies to predict the growth of meningiomas by volumetric 

measurements (Nakamura et al., 2003, Nakamura et al., 2005, Nakasu et al., 2011), we used 

14C birth dating to determine the age of meningioma cells and to investigate growth dynamics 

of meningiomas. We devised an age-structured mathematical model based on cell age and 

meningioma growth to predict the time of tumor initiation and thereby the formation age of 

meningiomas. We demonstrate that the average age of meningioma cells was significantly 

older in benign compared to atypical meningiomas, and mathematical modelling revealed 

tumor initiation to date back up to three decades in benign tumors, whereas it was less than 

two years in their atypical counterparts.  

 

Ki-67 labeling has been used as a parameter to distinguish benign from atypical meningiomas 

and correlates with the doubling time of benign meningiomas (Roser et al., 2004). 

Additionally, the mitotic index measured by p-HH3 labeling was reported as an independent 

predicator of recurrence-free survival in meningioma patients (Olar et al., 2015).  However, 

Ki-67 and mitotic makers provide only a glimpse of the number of proliferating cells at the 

time of surgery, and Ki-67 and p-HH3 based estimates of turnover dynamics can be biased by 

focal heterogeneity in cell proliferation (Siegers et al., 1989). Accordingly, we did not find 

any correlation between Ki-67 and p-HH3 based indices and the age of benign meningiomas. 

In contrast, 14C birth dating in combination with mathematical modeling allowed establishing 

age distributions of cell populations present in meningiomas at the time of surgery. We found 

that the WHO grade I fibrous subtype is older than the meningothelial type, which implies 

that fibrous subtype is diagnosed later in patients with benign meningiomas. In line with this 

finding, 50% of all meningothelial meningiomas (3 out of 6) compared to fibrous 

meningiomas (0 out of 6) became already symptomatic before they reached the exponential 
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growth phase. However, our patient population is not large enough to explicitly answer the 

question whether meningothelial meningiomas become symptomatic earlier than fibrous 

tumors e.g. because of subtype characteristics. Another explanation could refer to the different 

localizations in the brain, with fibrous meningiomas occurring rather at the convexity of the 

scull (Louis et al., 2016). However, in our cohort of patients we did not observe significant 

differences with respect to meningioma location among meningothelial and fibrous subtypes 

(supplementary table 1). 

 

Our data suggests that tumor origination occurs throughout life, which is in contrast to the 

hypothesis that meningiomas are initiated already early in life or in development as suggest 

by a mouse model based on a biallelic gene inactivation of neurofibromatosis 2 gene (Nf2) in 

leptomeningeal cells (Kalamarides et al., 2011). Although Nf2 gene inactivation can be found 

in 50–80% of sporadic meningiomas in humans (Gutmann et al., 1997), our data indicate that 

tumor origination is not resticted to a critical time window (patient age of tumor origination: 

range 12 to 62 years of age). 

 

There are several shortcomings, notably the retrospective study design. A larger cohort of 

patients, preferably enrolled prospectively, would have allowed a more precise subgroup 

analysis. In addition, we did not obtain control meningeal tissue for ethical reasons why a 

correlation of the age of meningioma cells with normal meningeal cells was not performed. 

Further, as this investigation lacked longitudinal prospective follow up information, we could 

not correlate our findings (i) with clinical end-points such as progression-free survival or 

functional outcomes, or (ii) possible MRI-based tumor relapse or re-growth. Also, we did not 

specifically perform molecular profiling, exome sequencing or methylation analyses of the 

analyzed tissue samples leaving room for uncertainties regarding subtype analysis.  
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To guide clinical decision making, establishing growth dynamics and answering the question 

since when benign meningiomas have been growing in individual subjects may help screening 

and monitoring and may guide diagnostic and therapeutic procedures after biopsy. 

Specifically, estimates of meningioma growth were often based on consecutive MRI imaging 

of patients with incidental and recurrent meningiomas (Nakasu et al., 2011, Nakamura et al., 

2003, Herscovici et al., 2004, Nakamura et al., 2005). Although this may provide precise 

information regarding the volume increase of the meningioma during the study period, it is 

not possible to predict the future growth rate, as the volume expansion goes through different 

phases. Hence, in clinical routine, there are frequently situations in which a meningioma is 

diagnosed in an eloquent brain area, or in a surgically only very difficultly accessible tumor 

site, e.g. immuring vital vessels. While in these patients a meningioma resection may 

potentially be harmful with possible complications outweighing the benefits of removal, a 

stereotactical biopsy with subsequent 14C analysis may help predict future growth dynamics 

and may guide clinical decision making. In this regard it seems valuable to prospectively 

verify if tumor growth estimations – based on more than two MRI, taking histological aspects 

into account and including 14C data upon biopsy – may identify such meningiomas that switch 

from lag phase to exponential growth, and from exponential towards a plateauing growth 

curve respectively, and which therefore should or not necessarily be resected.  
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Table and figure legends 

 

Figure 1. Retrospective 14C birth-dating to determine the average age of meningioma 

cells. 

(A) Schematic presentation of 14C data points of meningiomas. The black curve indicates 

atmospheric 14C concentrations measured over the last decades in the northern hemisphere. 

The peak indicates the steep increase in atmospheric 14C levels caused by the above-ground 

nuclear bomb testing during the Cold War (1950’s to 1960’s), which declined since the Test 

Ban Treaty in year 1963. The vertical turquoise line depicts the date of birth of a hypothetical 

patient. The black dot represents the average hypothetical genomic 14C concentration of all 

meningioma cells obtained at the time of surgery. The average age of meningioma cells can 

be established by matching the genomic 14C concentration with atmospheric 14C values 

(dashed blue lines). The blue arrows indicate the average age of the meningioma cells. (B and 

C) Examples of a 14C dated fibrous meningioma (case 12) (B), and of meningothelial 

meningioma (case 11). (D) The average age of meningioma cells (n = 14) at the time of 

surgery. Note the young ages of atypical WHO grade II meningiomas (red) in comparison to 

benign meningiomas (blue). Dark blue bars indicate fibrous meningiomas, light blue bars 

indicate meningothelial meningiomas. 

 

Figure 2. Growth curves of meningiomas.  

Model-fitted meningioma growth curves given for 5 patients with benign meningothelial (A 

and C, light blue), fibrous (B and D, dark blue) and atypical meningiomas (E, red). The 

growth curves were estimated using nonlinear least-square with uniform weighting. 

Parameters were based on 14C measurements, histological data and on sequential MRI 

volumetric measurements (see Methods).  
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Figure 3. Growths projection of benign meningiomas. 

Model-fitted future projections on meningioma growth based on the growth phase at the time 

of surgery. The Gompertz growth curve can be parted into a lag phase, an exponential growth 

phase and a plateau phase. (A) Three tumors were surgically removed before reaching the 

exponential growth phase (lag phase), (B) six tumors were removed being in exponential 

growth phase, (C) and three tumors already left exponential growth (plateau phase). Dark blue 

indicates fibrous meningiomas, light blue indicates meningothelial meningiomas. Zero 

indicates the time of surgery, negative number range (years) indicates growth until surgery, 

and positive number range (years) indicates growth prediction. 

 

Figure 4. The age of meningiomas.  

Mathematical modeling established the age of benign (n = 12), and atypical (n = 2, red) 

meningiomas. Benign meningiomas were 22 ± 6.5 SD years of age, whereas atypical 

meningiomas were 1.5 ± 0.1 SD years of age. Benign fibrous meningiomas (n = 6) were 8.5 

years older than menigothelial meningiomas (n = 6) at the time of surgery (t-test,* p < 0.05, 

** p< 0.001). 
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Highlights 

 

- The age of meningiomas has been difficult to study and is not understood, however age and 

growth dynamics may affect clinical decision making regarding surgery  

- We determined the age and dynamics of meningioma tumor cells using 14C retrospective 

birth dating strategy together with MR imaging and histological parameters 

- We demonstrate that the average time between initial tumorous cell transformation and 

detection with resection is 26.3 years in fibrous and years in 17.8 meningothelial 

meningiomas, a finding that may help predict future tumor growth  
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Research in context 

 

Meningiomas are usually benign, slowly growing and frequently occurring brain tumors that 

are detected incidentally upon imaging or because of causing symptoms. Many tumors remain 

stable, while others keep growing, why there is a debate whether or not meningiomas need 

surgical resection upon diagnosis. Specifically, if tumors grow in difficultly accessible brain 

areas, it would be clinically valuable to predict their age and growth dynamics. The 14C 

(radiocarbon) retrospective birth dating technique, an approach taking advantage of the 

above-ground atomic bomb tests during the Cold War, harbors the unique feature of dating 

the tumor age, thus providing insights into tumor origination and growth. Using this technique 

we here establish the age of meningiomas and provide an integrated model – using also MRI 

and histological parameters – to predict future growth of detected meningiomas, which may 

help in clinical decision making whether to resect the tumor. 
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