
HAL Id: hal-01671327
https://hal.science/hal-01671327v1

Submitted on 22 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Pretty Complete Combinatorial Algorithm for the
Threshold Synthesis Problem

Christian Schilling, Jan-Georg Smaus, Fabian Wenzelmann

To cite this version:
Christian Schilling, Jan-Georg Smaus, Fabian Wenzelmann. A Pretty Complete Combinatorial Al-
gorithm for the Threshold Synthesis Problem. International Workshop on Combinatorial Algorithms
(IWOCA 2013), Jul 2013, Rouen, France. pp.458-462. �hal-01671327�

https://hal.science/hal-01671327v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18735

The contribution was presented at IWOCA 2013 :
http://iwoca2013.univ-rouen.fr/

To cite this version : Schilling, Christian and Smaus, Jan-Georg and Wenzelmann,
Fabian A Pretty Complete Combinatorial Algorithm for the Threshold Synthesis
Problem. (2014) In: International Workshop on Combinatorial Algorithms
(IWOCA 2013), 10 July 2013 - 12 July 2013 (Rouen, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Pretty Complete Combinatorial Algorithm

for the Threshold Synthesis Problem

Christian Schilling1, Jan-Georg Smaus2, and Fabian Wenzelmann1

1 Institut für Informatik, Universität Freiburg, Germany
2 IRIT, Université de Toulouse, France

smaus@irit.fr

1 Introduction

A linear pseudo-Boolean constraint (LPB) [1,4,5] is an expression of the form
a1ℓ1 + . . .+ amℓm ≥ d. Here each ℓi is a literal of the form xi or 1−xi. An LPB
can be used to represent a Boolean function; e.g. 2x1 + x2 + x3 ≥ 2 represents
the same function as the propositional formula x1 ∨ (x2 ∧ x3).

Functions that can be represented by a single LPB are called threshold func-

tions. The problem of finding the LPB for a threshold function given as disjunc-
tive normal form (DNF) is called threshold synthesis problem. The reference on
Boolean functions [4] formulates the research challenge of recognising threshold
functions through an entirely combinatorial procedure. In fact, such a procedure
had been proposed in [3,2] and was later reinvented by us [7]. In this paper,
we report on an implementation of this procedure for which we have run ex-
periments for up to m = 22. It can solve the biggest problems in a couple of
seconds.

There is another procedure solving this problem using linear programming
[4], which we also implemented and compared to the combinatorial one.

2 Preliminaries

Anm-dimensional Boolean function f is a function Boolm → Bool . A linear

pseudo-Boolean constraint (LPB) is an inequality of the form

a1ℓ1 + . . .+ amℓm ≥ d ai ∈ N, d ∈ Z, ℓi ∈ {xi, 1− xi}. (1)

We call the ai coefficients and d the threshold. A DNF is a formula of the
form c1 ∨ . . . ∨ cn where each clause cj is a conjunction of literals.

It is easy to see that an LPB can only represent monotone functions, i.e.,
functions represented by a DNF where each variable occurs in only one polarity.
Without loss of generality, we assume that this polarity is positive.

3 The Combinatorial Algorithm

For space reasons, we do not give a general definition of our algorithm but rather
illustrate it using a running example: φ ≡
(x1 ∧x2)∨ (x1 ∧x3)∨ (x1 ∧x4)∨ (x1 ∧x5)∨ (x2 ∧x3)∨ (x2 ∧x4)∨ (x3 ∧x4 ∧x5).

false false

x3 ∧ x4 ∧ x5
false false false

(x2 ∧ x3)∨ x4 ∧ x5 x5
false

(x2 ∧ x4)∨ true

(x1 ∧ x2) ∨ (x1 ∧ x3) (x3 ∧ x4 ∧ x5) x4
false

∨(x1 ∧ x4) ∨ (x1 ∧ x5) x3 ∨ x4 true true

∨(x2 ∧ x3) ∨ (x2 ∧ x4) true

∨(x3 ∧ x4 ∧ x5) x5
false

x4 ∨ x5 true true

x2 ∨ x3 ∨ x4 ∨ x5
x3 ∨ x4 ∨ x5 true true true
true true true true

true

Fig. 1. The recursive subproblems for φ

Before we start, it should be noted that the basic procedure we describe here
is not complete. The issue of completeness is very complicated, and [3] devote
23 pages to it! In our implementation, we have realised an extension of the basic
procedure that implements some of the ideas described by [3] but still does not
achieve full completeness. As it stands, for up to m = 7, our procedure always
succeeds; up to m = 14, it fails on less than 1% of the threshold functions, while
this rate rises up to 18.3% for m = 22.

For some DNFs, it is possible to establish a complete order � on the variables
which has the following meaning: xi � xj iff starting from any given input tuple
X∗ ∈ Boolm, setting x∗

i to true is more likely to make the DNF true than setting
x∗
j to true. There is a lemma stating that � must be respected by any LPB (if

there is one!) representing the DNF, i.e., xi � xj implies ai ≥ aj . For φ, it is the
case that x1 � . . . � x5 and so if we find a solution, then a1 ≥ . . . ≥ a5.

Now there is a theorem stating that the problem can be tackled using a special
kind of recursion. In φ, we can distinguish the clauses that contain x1 and the
ones that do not. This is illustrated in Figure 1. In the leftmost column (column
0), we have φ. In column 1, we have two smaller DNFs: on top the clauses of
φ that do not contain x1, and on bottom the clauses of φ that contain x1, but
with those occurrences of x1 removed. We say that we split away x1 from φ, and
we call the two formulae we obtain the upper and lower successor of φ. We thus
have two smaller subproblems, and the theorem says that we must find solutions
to these subproblems that agree on the coefficients a2, . . . , a5 (but differ on the
threshold, of course).

Similarly, we can split away x2 from each DNF in column 1, giving the four
formulae of column 2. Observe that the only clause in x2∨x3∨x4∨x5 containing
x2 is x2, and if we remove x2 from it, we are left with the empty conjunction
which is true; hence we have true as lowermost formula in column 2.

We continue by splitting away x3 from the DNFs in column 2. From now on,
it is no more the case that the number of DNFs doubles in each step. In fact,

thanks to the symmetry of the variables in x2 ∨ x3 ∨ x4 ∨ x5, it happens that
the lower successor of x3 ∨ x4 ∨ x5 coincides with the upper successor of true,
namely true. Due to this fact, Figure 1 is not quite a tree, as some nodes are
shared.

Reducing the size of the datastructure by exploiting symmetries within the
DNF is obviously good for the space complexity of our procedure, and is an
advantage of [7] compared to [3,2]. In fact, [2] does consider symmetries but
only at the global level: in φ, the variables x3 and x4 are symmetric, but in the
subproblems, there are more symmetries.

Observe also that x3 ∧ x4 ∧ x5 has no clause not containing x3, and thus we
get the empty DNF (= false) as upper successor.

This process is continued until we finally obtain the “tree” in Figure 1. As
leaves, it has 12 (rather than 25 = 32 as a construction not exploiting any
symmetries would give) occurrences of true or false .

We now generalise LPBs by recording to what extent thresholds can be shifted
without changing the meaning.

Definition 1. Given an LPB I ≡
∑m

i=1 aixi ≥ d, we call s the minimum

threshold of I if s is the smallest number (possibly −∞) such that for any
s′ ∈ (s, d], the LPB

∑m

i=1 aixi ≥ s′ represents the same function as I. We call
b the maximum threshold if b is the biggest number (possibly ∞) such that∑m

i=1 aixi ≥ b represents the same function as I. We denote by
∑m

i=1 aixi ≥ (s, b]
any LPB with minimum threshold s and maximum threshold b.

Now that we have constructed the “tree” containing trivial subproblems as
leaves, we must work back from the right to the left: we first find LPBs for the
formulae in the rightmost column, which have 0 variables and hence we must
determine 0 coefficients. Next to the left, we have formulae that contain (at
most) x5, and we determine LPBs representing these, where we use the same a5
for all formulae! Then we determine a4, and so forth.

Instead of giving the according theorem, we stick to our example: Figure 2 is
arranged in correspondence to Figure 1 and shows LPBs for all subproblems. In
the top line we give the l.h.s. of the LPBs, which is the same for each LPB in a
column. In the actual “tree”, we list the minimum and maximum threshold of
each formula. We show how to construct this “tree”.

Observe first that
∑5

i=6 aixi ≥ (−∞, 0] and
∑5

i=6 aixi ≥ (0,∞] are LPB
representations (with empty sum as l.h.s.) for true and false, respectively. This
explains the entries in column 5.

Next observe that column 5 has three blocks sepa-
rated by horizontal lines, two of which are non-empty.
Consider the uppermost block consisting of four inter-
vals, and within it, the northwest-southeast diagonals,
as illustrated by the dashed shapes in the figure to the
right. Each diagonal joins two numbers, and we compute
the difference between the upper left and the lower right
number for each diagonal, i.e., 0−∞, 0−∞, and 0− 0,
which give −∞, −∞, and 0, respectively. Our theorem

(0, ∞]

(0, ∞]

(0, ∞]

(−∞, 0]

Fig. 3. A block

4x1 + 3x2+ 3x2+

2x3 + 2x4+ 2x3 + 2x4+ 2x3 + 2x4+ 2x4+
∑

5

i=6
aixi

x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . x5 ≥ . . . ≥ . . .

(1,∞] (0,∞]
(3,∞] (1,∞] (0,∞]

(4, 5] (2, 3] (0, 1] (0,∞]
(4, 5] (−∞, 0]

(1, 2] (1,∞]
(1, 2] (−∞, 0] (−∞, 0]

(4, 5] (−∞, 0]

(0, 1] (0,∞]
(0, 1] (−∞, 0] (−∞, 0]

(0, 1] (0, 1] (−∞, 0] (−∞, 0] (−∞, 0]
(−∞, 0] (−∞, 0] (−∞, 0] (−∞, 0]

(−∞, 0]

Fig. 2. LPBs for φ and its subproblems

states that a5 must be chosen greater than any of those numbers, and thus in
particular greater than 0. The theorem also states that a5 must be chosen less
than any of the differences obtained by taking the northeast-southwest diago-
nals, i.e. ∞− 0,∞− 0,∞−−∞, which however only says that a5 < ∞. In the
same way, constraints on a5 can be collected from the lowermost block, in any
case just stating that a5 > 0. We simply choose a5 = 1.

Now, each node in column 4 with upper successor (su, bu] and lower successor
(sl, bl], is filled by the thresholds (max{su, sl + a5},min{bu, bl + a5}]. E.g., the
topmost (1,∞] is (max{0, 0 + a5},min{∞,∞+ a5}].

In the next step, we have to choose a4 so that

max{1−∞, 1− 1, 1− 0,−∞− 0, 0− 0,−∞− 0,−∞− 0} < a4 <

min{∞− 1,∞− 0, ∞−−∞, 0−−∞, 1−−∞, 0−−∞, 0−−∞}.

Choosing a4 = 2 will do. Note that the bound 1− 0 < a4 comes from the middle
block of column 4 and thus ultimately from x3∨x4. Our algorithm enforces that
a4 > a5, which must hold for an LPB representing x3 ∨ x4.

In the next step, a3 can also be chosen to be any number > 1 so we choose
2 again. In the next step, 2 < a2 < 4 must hold so we choose a2 = 3. Finally,
3 < a1 < 5 must hold so we choose a1 = 4. As result we obtain the LPB
4x1 + 3x2 + 2x3 + 2x4 + x5 ≥ (4, 5].

4 Experiments

Both algorithms were implemented in C++ based on a previous implementation
in Java [6,8]. For evaluation we used more than 300,000 randomly generated
DNFs known to be threshold functions, for m ≤ 22.

Figure 4 shows the run-
time per problem for both
algorithms in ms, as well as
the problem size. The x-axis
shows m. The y-axis is in
logarithmic scale. We observe
that the combinatorial algo-
rithm could solve problems
up to m = 22 in a cou-
ple of seconds, while the LP
algorithm appears to scale
worse and needs around 30
seconds for the biggest prob-
lems. Second, the runtime
seems to be exponential in
m. Let us now discuss the

5 10 15 20

10−2

100

102

104

106 Comb. alg.
LP alg.

Input size

Fig. 4. Runtime

problem size. Note that the input to our procedure is a DNF. The combina-
torics wants it that the size of the DNFs grows exponentially in m. The size,
around 243,000 for m = 22, is shown in the figure. The fact that the curve is
almost a perfect straight line and appears to be parallel to the curve for the
runtime of the combinatorial algorithm shows that the input size increases at
the same rate as that runtime, which means that the algorithm appears to run
in time linear to the input, whereas the LP algorithm performs worse.

References

1. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. In: Proceedings
of the 40th Design Automation Conference, pp. 830–835. ACM (2003)

2. Coates, C.L., Kirchner, R.B., Lewis II, P.M.: A simplified procedure for the real-
ization of linearly-separable switching functions. IRE Transactions on Electronic
Computers (1962)

3. Coates, C.L., Lewis II, P.M.: Linearly-separable switching functions. Journal of
Franklin Institute 272, 366–410 (1961); Also in an expanded version, GE Research
Laboratory, Schenectady, N.Y., Technical Report No.61-RL-2764E

4. Crama, Y., Hammer, P.L.: Boolean Functions: Theory, Algorithms, and Applica-
tions. Encyclopedia of Mathematics and its Applications. Cambridge University
Press (May 2011)

5. Dixon, H.E., Ginsberg, M.L.: Combining satisfiability techniques from AI and OR.
The Knowledge Engineering Review 15, 31–45 (2000)

6. Schilling, C.: Solving the Threshold Synthesis Problem of Boolean Functions by
Translation to Linear Programming. Bachelor thesis, Universität Freiburg (2011)

7. Smaus, J.-G.: On boolean functions encodable as a single linear pseudo-Boolean con-
straint. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510,
pp. 288–302. Springer, Heidelberg (2007)

8. Wenzelmann, F.: Solving the Threshold Synthesis Problem of Boolean Functions by
a Combinatorial Algorithm. Bachelor thesis, Universität Freiburg (2011)

